135 research outputs found
Heritability of Problem Drinking and the Genetic Overlap with Personality in a General Population Sample
This study examined the heritability of problem drinking and investigated the phenotypic and genetic relationships between problem drinking and personality. In a sample of 5,870 twins and siblings and 4,420 additional family members from the Netherlands Twin Register. Data on problem drinking (assessed with the AUDIT and CAGE; 12 items) and personality [NEO Five-Factor Inventory (FFI); 60 items] were collected in 2009/2010 by surveys. Confirmatory factor analysis on the AUDIT and CAGE items showed that the items clustered on two separate but highly correlated (r = 0.74) underlying factors. A higher-order factor was extracted that reflected those aspects of problem drinking that are common to the AUDIT and CAGE, which showed a heritability of 40%. The correlations between problem drinking and the five dimensions of personality were small but significant, ranging from 0.06 for Extraversion to −0.12 for Conscientiousness. All personality dimensions (with broad-sense heritabilities between 32 and 55%, and some evidence for non-additive genetic influences) were genetically correlated with problem drinking. The genetic correlations were small to modest (between |0.12| and |0.41|). Future studies with longitudinal data and DNA polymorphisms are needed to determine the biological mechanisms that underlie the genetic link between problem drinking and personality
Dopaminergic Genetic Variants and Voluntary Externally Paced Exercise Behavior
PURPOSE: Most candidate gene studies on the neurobiology of voluntary exercise behavior have focused on the dopaminergic signaling pathway and its role in the mesolimbic reward system. We hypothesized that dopaminergic candidate genes may influence exercise behavior through additional effects on executive functioning and that these effects are only detected when the types of exercise activity are taken into account. METHODS: Data on voluntary exercise behavior and at least one SNP/VNTR were available for 12,929 participants of the Netherlands Twin Registry. Exercise activity was classified as externally paced if a high level of executive function skill was required. The total volume of voluntary exercise (minutes per week) as well as the volume specifically spent on externally paced activities were tested for association with nine functional dopaminergic polymorphisms (DRD1: rs265981, DRD2/ANKK1: rs1800497, DRD3: rs6280, DRD4: VNTR 48bp, DRD5: VNTR 130-166bp, DBH: rs2519152, DAT1: VNTR 40bp, COMT: rs4680, MAOA: VNTR 30bp), a polygenic score (PGS) based on nine alleles leading to lower dopamine responsiveness, and a PGS based on three alleles associated with both higher reward sensitivity and better executive functioning (DRD2/ANKK1: 'G' allele, COMT: Met allele, DAT1: 440bp allele). RESULTS: No association with total exercise volume or externally paced exercise volume was found for individual alleles or the nine-allele polygenic score. The volume of externally paced exercise behavior was significantly associated with the reward and executive function congruent PGS. This association was driven by the DAT1 440bp and COMT Met allele which acted as increaser alleles for externally paced exercise behavior. CONCLUSION: Taking into account the types of exercise activity may increase the success of identifying genetic variants and unraveling the neurobiology of voluntary exercise behavior. Key words: candidate gene, exercise behavior, reward sensitivity, executive functioning
Genetic contribution to the P3 in young and middle-aged adults.
Previous studies in young and adolescent twins suggested substantial genetic contributions to the amplitude and latency of the P3 evoked by targets in an oddball paradigm. Here we examined whether these findings can be generalized to adult samples. A total of 651 twins and siblings from 292 families participated in a visual oddball task. In half of the subjects the age centered around 26 (young adult cohort), in the other half the age centered around 49 (middle-aged adult cohort). P3 peak amplitude and latency were scored for 3 midline leads Pz, Cz, and Fz. No cohort differences in heritability were found. P3 amplitude (∼50%) and latency (∼45%) were moderately heritable for the 3 leads. A single genetic factor influenced latency at all electrodes, suggesting a single P3 timing mechanism. Specific genetic factors influenced amplitude at each lead, suggesting local modulation of the P3 once triggered. Genetic analysis of the full event-related potential waveform showed that P3 heritability barely changes from about 100 ms before to 100 ms after the peak. Age differences are restricted to differences in means and variances, but the proportion of genetic variance as part of the total variance of midline P3 amplitude and latency does not change from young to middle-aged adulthood
Association of polygenic score for major depression with response to lithium in patients with bipolar disorder
Lithium is a first-line medication for bipolar disorder (BD), but only one in three patients respond optimally to the drug. Since evidence shows a strong clinical and genetic overlap between depression and bipolar disorder, we investigated whether a polygenic susceptibility to major depression is associated with response to lithium treatment in patients with BD. Weighted polygenic scores (PGSs) were computed for major depression (MD) at different GWAS p value thresholds using genetic data obtained from 2586 bipolar patients who received lithium treatment and took part in the Consortium on Lithium Genetics (ConLi+Gen) study. Summary statistics from genome-wide association studies in MD (135,458 cases and 344,901 controls) from the Psychiatric Genomics Consortium (PGC) were used for PGS weighting. Response to lithium treatment was defined by continuous scores and categorical outcome (responders versus non-responders) using measurements on the Alda scale. Associations between PGSs of MD and lithium treatment response were assessed using a linear and binary logistic regression modeling for the continuous and categorical outcomes, respectively. The analysis was performed for the entire cohort, and for European and Asian sub-samples. The PGSs for MD were significantly associated with lithium treatment response in multi-ethnic, European or Asian populations, at various p value thresholds. Bipolar patients with a low polygenic load for MD were more likely to respond well to lithium, compared to those patients with high polygenic load [lowest vs highest PGS quartiles, multi-ethnic sample: OR = 1.54 (95% CI: 1.18-2.01) and European sample: OR = 1.75 (95% CI: 1.30-2.36)]. While our analysis in the Asian sample found equivalent effect size in the same direction: OR = 1.71 (95% CI: 0.61-4.90), this was not statistically significant. Using PGS decile comparison, we found a similar trend of association between a high genetic loading for MD and lower response to lithium. Our findings underscore the genetic contribution to lithium response in BD and support the emerging concept of a lithium-responsive biotype in BD
Prediction from polygenic scores based on GWA of neuroticism to psychiatric and lifestyle traits
The first genetic variants associated with neuroticism were identified in a meta-analysis of genome-wide association (GWA) results based on 1000Genomes imputation in 63,661 participants from 29 discovery cohorts and 9786 participants from a replication cohort. Participants came from Europe, the United States or Australia (Van den Berg et al. Behav Genet 2014; de Moor et al. in press). Polygenic scores based on the meta-analysis of neuroticism in 27 cohorts (removing data from NTR and NESDA) significantly predicted neuroticism and MDD in NTR and NESDA. Here we extend the polygenic score prediction to other traits hypothesized to show genetic overlap with a higher neuroticism (anxiety, borderline personality disorder, migraine, smoking), with lower neuroticism (e.g. exercise) or to be independent of neuroticism (other NEO personality traits, alcohol use)
Amygdala responses to emotional faces in twins discordant or concordant for the risk for anxiety and depression.
Background: Functional brain imaging studies have shown deviant amygdala responses to emotional stimuli in subjects suffering from anxiety and depressive disorder, but both hyperactivity and hypoactivity compared to healthy controls have been reported. To account for these discrepant findings, we hypothesize that genetic and environmental risk factors differently impact on amygdala functioning. Methods: To test this hypothesis, we assessed amygdala responses to an emotional faces paradigm during functional magnetic resonance imaging in monozygotic twin pairs discordant for the risk of anxiety and depression (n = 10 pairs) and in monozygotic twin pairs concordant for high (n = 7 pairs) or low (n = 15 pairs) risk for anxiety and depression. Results: Main effects (all faces vs. baseline) revealed robust bilateral amygdala activity across groups. In discordant twins, increased amygdala responses were found for negatively valenced stimuli (angry/anxious faces) in high-risk twins compared to their low-risk co-twins. In contrast, concordant high-risk pairs revealed blunted amygdala reactivity to both positive and negative faces compared with concordant low-risk pairs. Post-hoc analyses showed that these findings were independent of 5-HTTLPR genotype. Conclusions: Our findings indicate amygdala hyperactivity in subjects who are at high risk for anxiety and depression through environmental factors and amygdala hypoactivity in those at risk mainly through genetic factors. We suggest that this result reflects a difference in baseline amygdala activation in these groups. Future imaging studies on anxiety and depression should aim to avoid admixture of subjects who are at genetic risk with those at risk due to environmental factors. © 2008 Elsevier Inc. All rights reserved
- …