1,287 research outputs found

    Deep seabed mining

    Get PDF

    Proper connectivity of Drosophila motion detector neurons requires Atonal function in progenitor cells

    Get PDF
    BACKGROUND: Vertebrates and invertebrates obtain visual motion information by channeling moving visual cues perceived by the retina through specific motion sensitive synaptic relays in the brain. In Drosophila, the series of synaptic relays forming the optic lobe are known as the lamina, medulla, lobula and lobula plate neuropiles. The fly’s motion detection output neurons, called the T4 and T5 cells, reside in the lobula plate. Adult optic lobe neurons are derived from larval neural progenitors in two proliferating compartments known as the outer and inner proliferation centers (OPC and IPC). Important insight has been gained into molecular mechanisms involved in the development of the lamina and medulla from the OPC, though less is known about the development of the lobula and lobula plate. RESULTS: Here we show that the proneural gene Atonal is expressed in a subset of IPC progenitors that give rise to the higher order motion detection neurons, T4 and T5, of the lobula plate. We also show that Atonal does not act as a proneural gene in this context. Rather, it is required specifically in IPC neural progenitors to regulate neurite outgrowth in the neuronal progeny. CONCLUSIONS: Our findings reveal that a proneural gene is expressed in progenitors but is required for neurite development of their progeny neurons. This suggests that transcriptional programs initiated specifically in progenitors are necessary for subsequent neuronal morphogenesis

    Food security among dryland pastoralists and agropastoralists: The climate, land-use change, and population dynamics nexus

    Get PDF
    During the last decades, pastoralist, and agropastoralist populations of the world’s drylands have become exceedingly vulnerable to regional and global changes. Specifically, exacerbated stressors imposed on these populations have adversely affected their food security status, causing humanitarian emergencies and catastrophes. Of these stressors, climate variability and change, land-use and management practices, and dynamics of human demography are of a special importance. These factors affect all four pillars of food security, namely, food availability, access to food, food utilization, and food stability. The objective of this study was to critically review relevant literature to assess the complex web of interrelations and feedbacks that affect these factors. The increasing pressures on the world’s drylands necessitate a comprehensive analysis to advise policy makers regarding the complexity and linkages among factors, and to improve global action. The acquired insights may be the basis for alleviating food insecurity of vulnerable dryland populations.info:eu-repo/semantics/acceptedVersio

    Apoptosis and p53 expression in rat adjuvant arthritis

    Get PDF
    INTRODUCTION: RA is a chronic inflammatory disorder that is characterized by inflammation and proliferation of synovial tissue. The amount of DNA fragmentation is significantly increased in rheumatoid synovium. Only low numbers of apoptotic cells are present in rheumatoid synovial tissue, however. The proportion of cells with DNA strand breaks is so great that this disparity suggests impaired apoptosis. Therefore, the development of novel therapeutic strategies that are aimed at inducing apoptosis in rheumatoid synovial tissue is an attractive goal. Although animal models for arthritis only approximate RA, they provide a useful test system for the evaluation of apoptosis-inducing therapies. AA in rats is among the most commonly used animal models for RA. For the interpretation of such studies, it is essential to characterize the extent to which apoptosis occurs during the natural course of the disease. Therefore, we evaluated the number of apoptotic cells and the expression of p53 in various phases of AA. MATERIALS AND METHODS: In order to generate the AA rat model, Lewis rats were immunized with Mycobacterium tuberculosis in mineral oil on day 0. Paw swelling usually started around day 10. For the temporal analysis rats were sacrificed on days 0, 5 (prearthritis), 11 (onset of arthritis), 17 (accelerating arthritis), or 23 (chronic arthritis). For the detection of apoptotic cells, the hind paws were harvested on days 0(n=6),5 (n=6), 11 (n=6), 17 (n=6), or 23 (n=4). The right ankle joints were fixed in formalin, decalcified in ethylenediaminetetra-acetic acid, embedded in paraffin, and sectioned. The TUNEL method was applied. The percentage of TUNEL-positive cells of the total inflammatory cell infiltrate was noted. For Western blot analysis, hind paws were harvested on days 0 (n=2), 5 (n=3), 11 (n=4), 17 (n=4), or 23 (n=4). In addition, hind paws of normal rats (n=2) were studied. The right ankle joints were snap frozen and pulverized. Synovial tissue was also obtained by arthroscopy of three patients with longstanding (>5 years) RA. After protein extraction in lysis buffer, equal amounts of protein samples from lysates were pooled and examined by Western bolt analysis using anti-p53 monoclonal antibody D07, which recognizes wild-type and mutant p53 from rodents and humans. For immunohistochemical analysis, six rats were sacrificed on day 23 after immunization and synovial tissue of the right ankle joints was snap frozen and evaluated by immunohistochemistry using anti-p53-pan. The sections were evaluated semi-quantitatively using a 0-4 scale. The kruskal-Wallis test for several group means was used to compare the percentage of TUNEL-positive cells at different time points. RESULTS: The percentages of TUNEL-positive cells were strongly dependent on the stage of the disease. Very few TUNEL-positive cells were detected in normal rats or in the early phases of AA; the number of TUNEL-positive cells was 1% or less of the total cell infiltrate, including neutrophils, from days 0-17 (Table 1). On day 23, however, the percentage of TUNEL-positive cells was significantly increased [15.8±5.1% (mean ± standard error of the mean); P=0.01]. TUNEL-positive cells were observed in the intimal lining layer and synovial sublining of the invasive front, as well as in the articular cartilage (Fig. 1). Subsequently, we examined expression of the tumor suppressor gene p53, because this is a key regulator of apoptosis. Expression of p53 in pooled rat AA joint extracts gradually increased from day 0 (6 arbitrary units) to day 23 (173 arbitrary units), which was markedly higher than p53 levels in RA synovium (32 arbitrary units; Table 1). Overexpression of p53 protein on day 23 was confirmed by immunohistochemistry in a separate experiment in six rats with AA. Overexpression of p53 was observed in the intimal lining layer and synovial sublining in all rats on day 23. In all cases a semiquantitative score of 4 was assigned, indicating that 51% or more of the cells were positive, whereas control sections were negative. DISCUSSION: The results presented here reveal that the number of TUNEL-positive cells remained very low until chronic arthritis developed. This indicates that, although there was sufficient DNA damage to cause an increment in p53 expression in the early phases, DNA strand breaks that can be detected by TUNEL assays only occurred in chronic AA. The observation that TUNEL-positive cells were nearly absent in early AA clearly indicates that only very few cells were undergoing programmed cell death. This is an important observation, which makes it possible to study the effects of apoptosis-inducing therapies in situ in early and accelerating AA. An effective therapy would obviously increase the number of TUNEL-positive cells. There is already some overexpression of p53 in the preclinical phase and during the onset of the arthritis, with an additional increment in p53 expression during accelerating and chronic arthritis. Presumably, this is wild-type p53, because the disease duration is likely too short to allow for the development of p53 mutations. Transcription of p53 is probably increased in response to the toxic environment of the inflamed joint. The increased expression of p53 in the joints of rats with chronic AA was even greater than that observed in synovial tissue of RA patients with long-standing disease. Overexpression of p53 and increased numbers of apoptotic cells did not occur simultaneously in this model; rather p53 overexpression preceded increased apoptosis. Activation of p53 leads to induction of cell growth arrest, allowing time for DNA repair. It appears that DNA damage is only extensive enough to induce apoptosis in the latter stages of AA. Factors other than p53 may also play an important role in the actual induction of apoptosis Taken together, significant apoptosis only occurs late in AA and it follows marked p53 overexpression, making it a useful model for testing proapoptotic therapies. AA is not the best model for p53 gene therapy, however, because dramatic p53 overexpression occurs in the latter stages of the disease

    Control over imidazoquinoline immune stimulation by pH-degradable poly(norbornene) nanogels

    Get PDF
    The reactivation of the innate immune system by toll-like receptor (TLR) agonists holds promise for anticancer immunotherapy. Severe side effects caused by unspecific and systemic activation of the immune system upon intravenous injection prevent the use of small-molecule TLR agonists for such purposes. However, a covalent attachment of small-molecule imidazoquinoline (IMDQ) TLR7/8 agonists to pH-degradable polymeric nanogels could be shown to drastically reduce the systemic inflammation but retain the activity to tumoral tissues and their draining lymph nodes. Here, we introduce the synthesis of poly(norbornene)-based, acid-degradable nanogels for the covalent ligation of IMDQs. While the intact nanogels trigger sufficient TLR7/8 receptor stimulation, their degraded version of soluble, IMDQ-conjugated poly(norbornene) chains hardly activates TLR7/8. This renders their clinical safety profile, as degradation products are obtained, which would not only circumvent nanoparticle accumulation in the body but also provide nonactive, polymer-bound IMDQ species. Their immunologically silent behavior guarantees both spatial and temporal control over immune activity and, thus, holds promise for improved clinical applications

    The Impact of Socioeconomic Status, Surgical Resection and Type of Hospital on Survival in Patients with Pancreatic Cancer:A Population-Based Study in The Netherlands

    Get PDF
    The influence of socioeconomic inequalities in pancreatic cancer patients and especially its effect in patients who had a resection is not known. Hospital type in which resection is performed might also influence outcome. Patients diagnosed with pancreatic cancer from 1989 to 2011 (n = 34,757) were selected from the population-based Netherlands Cancer Registry. Postal code was used to determine SES. Multivariable survival analyses using Cox regression were conducted to discriminate independent risk factors for death. Patients living in a high SES neighborhood more often underwent resection and more often were operated in a university hospital. After adjustment for clinicopathological factors, risk of dying was increased independently for patients with intermediate and low SES compared to patients with high SES. After resection, no survival difference was found among patients in the three SES groups. However, survival was better for patients treated in university hospitals compared to patients treated in non-university hospitals. Low SES was an independent risk factor for poor survival in patients with pancreatic cancer. SES was not an adverse risk factor after resection. Resection in non-university hospitals was associated with a worse prognosis.</p

    A pathogenic role for secretory IgA in IgA nephropathy

    Get PDF
    IgA nephropathy (IgAN) is characterized by deposits of IgA in the renal mesangium. It is thought that deposits of IgA mainly involve high molecular weight (HMW) IgA1. However, there is limited information on the exact composition of HMW IgA in these deposits. In this study, we investigated the presence of secretory IgA (SIgA) in human serum and in the glomerular deposits of a patient with IgAN. Furthermore, we analyzed the interaction of SIgA with mesangial cells. With enzyme-linked immunosorbent assay, SIgA concentrations in the serum of IgAN patients and healthy controls were measured. Both patients and controls had circulating SIgA that was restricted to the HMW fractions. Patients tended to have higher levels of SIgA, but this difference was not significant. However, in patients with IgAN, high serum SIgA concentrations were associated with hematuria. Binding of size-fractionated purified serum IgA and SIgA to mesangial cells was investigated with flow cytometry. These studies showed stronger binding of SIgA to primary mesangial cells compared to binding of serum IgA. Importantly, after isolation and elution of glomeruli from a nephrectomized transplanted kidney from a patient with recurrent IgAN, we demonstrated a 120-fold accumulation of SIgA compared to IgA1 in the eluate. In conclusion, we have demonstrated that SIgA strongly binds to human mesangial cells, and is present in significant amounts in serum. Furthermore, we showed that SIgA is accumulated in the glomeruli of an IgAN patient. These data suggest an important role for SIgA in the pathogenesis of IgAN

    Regulation of Drosophila Brain Wiring by Neuropil Interactions via a Slit-Robo-RPTP Signaling Complex

    Get PDF
    The axonal wiring molecule Slit and its Round-About (Robo) receptors are conserved regulators of nerve cord patterning. Robo receptors also contribute to wiring brain circuits. Whether molecular mechanisms regulating these signals are modified to fit more complex brain wiring processes is unclear. We investigated the role of Slit and Robo receptors in wiring Drosophila higher-order brain circuits and identified differences in the cellular and molecular mechanisms of Robo/Slit function. First, we find that signaling by Robo receptors in the brain is regulated by the Receptor Protein Tyrosine Phosphatase RPTP69d. RPTP69d increases membrane availability of Robo3 without affecting its phosphorylation state. Second, we detect no midline localization of Slit during brain development. Instead, Slit is enriched in the mushroom body, a neuronal structure covering large areas of the brain. Thus, a divergent molecular mechanism regulates neuronal circuit wiring in the Drosophila brain, partly in response to signals from the mushroom body
    corecore