261 research outputs found

    Low-lying GT(+) strength in Co-64 studied via the Ni-64(d,He-2)Co-64 reaction

    Get PDF
    The Ni-64(d,He-2)Co-64 reaction was studied at the AGOR cyclotron of KVI, Groningen, with the Big-Bite Spectrometer and the EuroSuperNova detector using a 171-MeV deuteron beam. An energy resolution of about 110 keV was achieved. In addition to the J(pi) = 1(+) ground state, several other 1(+) states could be identified in Co-64 and the strengths of the corresponding Gamow-Teller transitions were determined. The obtained strength distribution was compared with theoretical predictions and former (n,p) experimental results and displayed a good agreement. Due to the good energy resolution, detailed spectroscopic information was obtained, which supplements the data base needed for network calculations for supernova scenarios

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Strong fragmentation of low-energy electromagnetic excitation strength in 117^{117}Sn

    Full text link
    Results of nuclear resonance fluorescence experiments on 117^{117}Sn are reported. More than 50 γ\gamma transitions with Eγ<4E_{\gamma} < 4 MeV were detected indicating a strong fragmentation of the electromagnetic excitation strength. For the first time microscopic calculations making use of a complete configuration space for low-lying states are performed in heavy odd-mass spherical nuclei. The theoretical predictions are in good agreement with the data. It is concluded that although the E1 transitions are the strongest ones also M1 and E2 decays contribute substantially to the observed spectra. In contrast to the neighboring even 116124^{116-124}Sn, in 117^{117}Sn the 11^- component of the two-phonon [21+31][2^+_1 \otimes 3^-_1] quintuplet built on top of the 1/2+^+ ground state is proved to be strongly fragmented.Comment: 4 pages, 3 figure

    Search for the electric dipole excitations to the 3s1/2[21+31]3s_{1/2} \otimes [2^{+}_{1} \otimes 3^{-}_{1}] multiplet in 117^{117}Sn

    Full text link
    The odd-mass 117^{117}Sn nucleus was investigated in nuclear resonance fluorescence experiments up to an endpoint energy of the incident photon spectrum of 4.1 MeV at the bremsstrahlung facility of the Stuttgart University. More than 50 mainly hitherto unknown levels were found. From the measurement of the scattering cross sections model independent absolute electric dipole excitation strengths were extracted. The measured angular distributions suggested the spins of 11 excited levels. Quasi-particle phonon model calculations including a complete configuration space were performed for the first time for a heavy odd-mass spherical nucleus. These calculations give a clear insight in the fragmentation and distribution of the E1E1, M1M1, and E2E2 excitation strength in the low energy region. It is proven that the 11^{-} component of the two-phonon [21+31][2^{+}_{1} \otimes 3^{-}_{1}] quintuplet built on top of the 1/2+1/2^{+} ground state is strongly fragmented. The theoretical calculations are consistent with the experimental data.Comment: 10 pages, 5 figure

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km(2) resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km(2) pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10 degrees C (mean = 3.0 +/- 2.1 degrees C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 +/- 2.3 degrees C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 +/- 2.3 degrees C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.Peer reviewe

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.Additional co-authors: Brett R. Scheffers, Koenraad Van Meerbeek, Peter Aartsma, Otar Abdalaze, Mehdi Abedi, Rien Aerts, Negar Ahmadian, Antje Ahrends, Juha M. Alatalo, Jake M. Alexander, Camille Nina Allonsius, Jan Altman, Christof Ammann, Christian Andres, Christopher Andrews, Jonas Ardö, Nicola Arriga, Alberto Arzac, Valeria Aschero, Rafael L. Assis, Jakob Johann Assmann, Maaike Y. Bader, Khadijeh Bahalkeh, Peter Barančok, Isabel C. Barrio, Agustina Barros, Matti Barthel, Edmund W. Basham, Marijn Bauters, Manuele Bazzichetto, Luca Belelli Marchesini, Michael C. Bell, Juan C. Benavides, José Luis Benito Alonso, Bernd J. Berauer, Jarle W. Bjerke, Robert G. Björk, Mats P. Björkman, Katrin Björnsdóttir, Benjamin Blonder, Pascal Boeckx, Julia Boike, Stef Bokhorst, Bárbara N. S. Brum, Josef Brůna, Nina Buchmann, Pauline Buysse, José Luís Camargo, Otávio C. Campoe, Onur Candan, Rafaella Canessa, Nicoletta Cannone, Michele Carbognani, Jofre Carnicer, Angélica Casanova-Katny, Simone Cesarz, Bogdan Chojnicki, Philippe Choler, Steven L. Chown, Edgar F. Cifuentes, Marek Čiliak, Tamara Contador, Peter Convey, Elisabeth J. Cooper, Edoardo Cremonese, Salvatore R. Curasi, Robin Curtis, Maurizio Cutini, C. Johan Dahlberg, Gergana N. Daskalova, Miguel Angel de Pablo, Stefano Della Chiesa, Jürgen Dengler, Bart Deronde, Patrice Descombes, Valter Di Cecco, Michele Di Musciano, Jan Dick, Romina D. Dimarco, Jiri Dolezal, Ellen Dorrepaal, Jiří Dušek, Nico Eisenhauer, Lars Eklundh, Todd E. Erickson, Brigitta Erschbamer, Werner Eugster, Robert M. Ewers, Dan A. Exton, Nicolas Fanin, Fatih Fazlioglu, Iris Feigenwinter, Giuseppe Fenu, Olga Ferlian, M. Rosa Fernández Calzado, Eduardo Fernández-Pascual, Manfred Finckh, Rebecca Finger Higgens, T'ai G. W. Forte, Erika C. Freeman, Esther R. Frei, Eduardo Fuentes-Lillo, Rafael A. García, María B. García, Charly Géron, Mana Gharun, Dany Ghosn, Khatuna Gigauri, Anne Gobin, Ignacio Goded, Mathias Goeckede, Felix Gottschall, Keith Goulding, Sanne Govaert, Bente Jessen Graae, Sarah Greenwood, Caroline Greiser, Achim Grelle, Benoit Guénard, Mauro Guglielmin, Joannès Guillemot, Peter Haase, Sylvia Haider, Aud H. Halbritter, Maroof Hamid, Albin Hammerle, Arndt Hampe, Siri V. Haugum, Lucia Hederová, Bernard Heinesch, Carole Helfter, Daniel Hepenstrick, Maximiliane Herberich, Mathias Herbst, Luise Hermanutz, David S. Hik, Raúl Hoffrén, Jürgen Homeier, Lukas Hörtnagl, Toke T. Høye, Filip Hrbacek, Kristoffer Hylander, Hiroki Iwata, Marcin Antoni Jackowicz-Korczynski, Hervé Jactel, Järvi Järveoja, Szymon Jastrzębowski, Anke Jentsch, Juan J. Jiménez, Ingibjörg S. Jónsdóttir, Tommaso Jucker, Radoslaw Juszczak, Róbert Kanka, Vít Kašpar, George Kazakis, Julia Kelly, Anzar A. Khuroo, Leif Klemedtsson, Marcin Klisz, Natascha Kljun, Alexander Knohl, Johannes Kobler, Jozef Kollár, Martyna M. Kotowska, Bence Kovács, Juergen Kreyling, Andrea Lamprecht, Simone I. Lang, Christian Larson, Keith Larson, Kamil Laska, Guerric le Maire, Rachel I. Leihy, Luc Lens, Bengt Liljebladh, Annalea Lohila, Juan Lorite, Benjamin Loubet, Joshua Lynn, Martin Macek, Roy Mackenzie, Enzo Magliulo, Regine Maier, Francesco Malfasi, František Máliš, Matěj Man, Giovanni Manca, Antonio Manco, Tanguy Manise, Paraskevi Manolaki, Felipe Marciniak, Radim Matula, Ana Clara Mazzolari, Sergiy Medinets, Volodymyr Medinets, Camille Meeussen, Sonia Merinero, Rita de Cássia Guimarães Mesquita, Katrin Meusburger, Filip J. R. Meysman, Sean T. Michaletz, Ann Milbau, Dmitry Moiseev, Pavel Moiseev, Andrea Mondoni, Ruth Monfries, Leonardo Montagnani, Mikel Moriana-Armendariz, Umberto Morra di Cella, Martin Mörsdorf, Jonathan R. Mosedale, Lena Muffler, Miriam Muñoz-Rojas, Jonathan A. Myers, Isla H. Myers-Smith, Laszlo Nagy, Marianna Nardino, Ilona Naujokaitis-Lewis, Emily Newling, Lena Nicklas, Georg Niedrist, Armin Niessner, Mats B. Nilsson, Signe Normand, Marcelo D. Nosetto, Yann Nouvellon, Martin A. Nuñez, Romà Ogaya, Jérôme Ogée, Joseph Okello, Janusz Olejnik, Jørgen Eivind Olesen, Øystein Opedal, Simone Orsenigo, Andrej Palaj, Timo Pampuch, Alexey V. Panov, Meelis Pärtel, Ada Pastor, Aníbal Pauchard, Harald Pauli, Marian Pavelka, William D. Pearse, Matthias Peichl, Loïc Pellissier, Rachel M. Penczykowski, Josep Penuelas, Matteo Petit Bon, Alessandro Petraglia, Shyam S. Phartyal, Gareth K. Phoenix, Casimiro Pio, Andrea Pitacco, Camille Pitteloud, Roman Plichta, Francesco Porro, Miguel Portillo-Estrada, Jérôme Poulenard, Rafael Poyatos, Anatoly S. Prokushkin, Radoslaw Puchalka, Mihai Pușcaș, Dajana Radujković, Krystal Randall, Amanda Ratier Backes, Sabine Remmele, Wolfram Remmers, David Renault, Anita C. Risch, Christian Rixen, Sharon A. Robinson, Bjorn J.M. Robroek, Adrian V. Rocha, Christian Rossi, Graziano Rossi, Olivier Roupsard, Alexey V. Rubtsov, Patrick Saccone, Clotilde Sagot, Jhonatan Sallo Bravo, Cinthya C. Santos, Judith M. Sarneel, Tobias Scharnweber, Jonas Schmeddes, Marius Schmidt, Thomas Scholten, Max Schuchardt, Naomi Schwartz, Tony Scott, Julia Seeber, Ana Cristina Segalin de Andrade, Tim Seipel, Philipp Semenchuk, Rebecca A. Senior, Josep M. Serra-Diaz, Piotr Sewerniak, Ankit Shekhar, Nikita V. Sidenko, Lukas Siebicke, Laura Siegwart Collier, Elizabeth Simpson, David P. Siqueira, Zuzana Sitková, Johan Six, Marko Smiljanic, Stuart W. Smith, Sarah Smith-Tripp, Ben Somers, Mia Vedel Sørensen, José João L. L. Souza, Bartolomeu Israel Souza, Arildo Souza Dias, Marko J. Spasojevic, James D. M. Speed, Fabien Spicher, Angela Stanisci, Klaus Steinbauer, Rainer Steinbrecher, Michael Steinwandter, Michael Stemkovski, Jörg G. Stephan, Christian Stiegler, Stefan Stoll, Martin Svátek, Miroslav Svoboda, Torbern Tagesson, Andrew J. Tanentzap, Franziska Tanneberger, Jean-Paul Theurillat, Haydn J. D. Thomas, Andrew D. Thomas, Katja Tielbörger, Marcello Tomaselli, Urs Albert Treier, Mario Trouillier, Pavel Dan Turtureanu, Rosamond Tutton, Vilna A. Tyystjärvi, Masahito Ueyama, Karol Ujházy, Mariana Ujházyová, Domas Uogintas, Anastasiya V. Urban, Josef Urban, Marek Urbaniak, Tudor-Mihai Ursu, Francesco Primo Vaccari, Stijn Van de Vondel, Liesbeth van den Brink, Maarten Van Geel, Vigdis Vandvik, Pieter Vangansbeke, Andrej Varlagin, G.F. Veen, Elmar Veenendaal, Susanna E. Venn, Hans Verbeeck, Erik Verbrugggen, Frank G.A. Verheijen, Luis Villar, Luca Vitale, Pascal Vittoz, Maria Vives-Ingla, Jonathan von Oppen, Josefine Walz, Runxi Wang, Yifeng Wang, Robert G. Way, Ronja E. M. Wedegärtner, Robert Weigel, Jan Wild, Matthew Wilkinson, Martin Wilmking, Lisa Wingate, Manuela Winkler, Sonja Wipf, Georg Wohlfahrt, Georgios Xenakis, Yan Yang, Zicheng Yu, Kailiang Yu, Florian Zellweger, Jian Zhang, Zhaochen Zhang, Peng Zhao, Klaudia Ziemblińska, Reiner Zimmermann, Shengwei Zong, Viacheslav I. Zyryanov, Ivan Nijs, Jonathan Leno

    Structure of ⁷He studied with the ⁷Li(d,²He) reaction

    Get PDF
    A search for the Jπ = 1/2⁻ spin–orbit partner of the Jπ = 3/2⁻ ground state in ⁷He has been performed with the ⁷Li(d,²He) charge-exchange reaction. The results are incompatible with recent claims of such a state at very low excitation energy [Meister M et al 2002 Phys. Rev. Lett. 88 102501] but rather suggest a resonance with parameters Ex = (1.2⁺⁰.⁵₋₀.₄) MeV, Λ = (1.9⁺⁰.⁸₋₀.₄) MeV. GT strengths deduced for the transitions to the lowest states in 7He are in remarkable agreement with ab initio quantum Monte Carlo calculations

    SoilTemp: a global database of near-surface temperature

    Get PDF
    Current analyses and predictions of spatially-explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing, or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently this database contains time series from 7538 temperature sensors from 51 countries across all key biomes. The database will pave the way towards an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.Additional co-authors: Stuart W. Smith, Robert G. Björk, Lena Muffler, Simone Cesarz, Felix Gottschall, Amanda Ratier Backes, Joseph Okello, Josef Urban, Roman Plichta, Martin Svátek, Shyam S. Phartyal, Sonja Wipf, Nico Eisenhauer, Mihai Pușcaș, Pavel Dan Turtureanu, Andrej Varlagin, Romina D. Dimarco, Krystal Randall, Ellen Dorrepaal, Keith Larson, Josefine Walz, Luca Vitale, Miroslav Svoboda, Rebecca Finger Higgens, Aud H. Halbritter, Salvatore R. Curasi, Ian Klupar, Austin Koontz, William D. Pearse, Elizabeth Simpson, Michael Stemkovski, Bente Jessen Graae, Mia Vedel Sørensen, Toke T. Høye, M. Rosa Fernández Calzado, Juan Lorite, Michele Carbognani, Marcello Tomaselli, T'ai G.W. Forte, Alessandro Petraglia, Stef Haesen, Ben Somers, Koenraad Van Meerbeek, Mats P. Björkman, Kristoffer Hylander, Sonia Merinero, Mana Gharun, Nina Buchmann, Jiri Dolezal, Radim Matula, Andrew D. Thomas, Joseph J. Bailey, Dany Ghosn, George Kazakis, Miguel Angel de Pablo, Julia Kemppinen, Pekka Niittynen, Lisa Rew, Tim Seipel, Christian Larson, James D.M. Speed, Jonas Ardö, Nicoletta Cannone, Mauro Guglielmin, Francesco Malfasi, Maaike Y. Bader, Rafaella Canessa, Angela Stanisci, Juergen Kreyling, Jonas Schmeddes, Laurenz Teuber, Valeria Aschero, Marek Čiliak, František Máliš, Pallieter De Smedt, Sanne Govaert, Camille Meeussen, Pieter Vangansbeke, Khatuna Gigauri, Andrea Lamprecht, Harald Pauli, Klaus Steinbauer, Manuela Winkler, Masahito Ueyama, Martin A. Nuñez, Tudor‐Mihai Ursu, Sylvia Haider, Ronja E.M. Wedegärtner, Marko Smiljanic, Mario Trouillier, Martin Wilmking, Jan Altman, Josef Brůna, Lucia Hederová, Martin Macek, Matěj Man, Jan Wild, Pascal Vittoz, Meelis Pärtel, Peter Barančok, Róbert Kanka, Jozef Kollár, Andrej Palaj, Agustina Barros, Ana Clara Mazzolari, Marijn Bauters, Pascal Boeckx, José Luis Benito Alonso, Shengwei Zong, Valter Di Cecco, Zuzana Sitková, Katja Tielbörger, Liesbeth van den Brink, Robert Weigel, Jürgen Homeier, C. Johan Dahlberg, Sergiy Medinets, Volodymyr Medinets, Hans J. De Boeck, Miguel Portillo‐Estrada, Lore T. Verryckt, Ann Milbau, Gergana N. Daskalova, Haydn J.D. Thomas, Isla H. Myers‐Smith, Benjamin Blonder, Jörg G. Stephan, Patrice Descombes, Florian Zellweger, Esther R. Frei, Bernard Heinesch, Christopher Andrews, Jan Dick, Lukas Siebicke, Adrian Rocha, Rebecca A. Senior, Christian Rixen, Juan J. Jimenez, Julia Boike, Aníbal Pauchard, Thomas Scholten, Brett Scheffers, David Klinges, Edmund W. Basham, Jian Zhang, Zhaochen Zhang, Charly Géron, Fatih Fazlioglu, Onur Candan, Jhonatan Sallo Bravo, Filip Hrbacek, Kamil Laska, Edoardo Cremonese, Peter Haase, Fernando E. Moyano, Christian Rossi, and Ivan Nij
    corecore