35 research outputs found
Superscaling analysis of the Coulomb Sum Rule in quasielastic electron-nucleus scattering
The Coulomb sum rule for inclusive quasielastic electron scattering in
C, Ca and Fe is analyzed based on scaling and superscaling
properties. Results obtained in the relativistic impulse approximation with
various descriptions of the final state interactions are shown. A comparison
with experimental data measured at Bates and Saclay is provided. The
theoretical description based on strong scalar and vector terms present in the
relativistic mean field, which has been shown to reproduce the experimental
asymmetric superscaling function, leads to results that are in fair agreement
with Bates data while it sizeably overestimates Saclay data. We find that the
Coulomb sum rule for a momentum transfer saturates to a
value close to 0.9, being very similar for the three nuclear systems
considered. This is in accordance with Bates data, which indicates that these
show no significative quenching in the longitudinal response.Comment: 22 pages, 6 figures. To be published in Phys. Lett.
Hadronic Parity Violation and Inelastic Electron-Deuteron Scattering
We compute contributions to the parity-violating (PV) inelastic
electron-deuteron scattering asymmetry arising from hadronic PV. While hadronic
PV effects can be relatively important in PV threshold electro- disintegration,
we find that they are highly suppressed at quasielastic kinematics. The
interpretation of the PV quasielastic asymmetry is, thus, largely unaffected by
hadronic PV.Comment: 27 pages, 13 figures, uses REVTeX and BibTe
Deuteron distribution in nuclei and the Levinger's factor
We compute the distribution of quasideuterons in doubly closed shell nuclei.
The ground states of O and Ca are described in coupling
using a realistic hamiltonian including the Argonne and the
Urbana IX models of two-- and three--nucleon potentials, respectively. The
nuclear wave function contains central and tensor correlations, and correlated
basis functions theory is used to evaluate the distribution of neutron-proton
pairs, having the deuteron quantum numbers, as a function of their total
momentum. By computing the number of deuteron--like pairs we are able to
extract the Levinger's factor and compare to both the available experimental
data and the predictions of the local density approximation, based on nuclear
matter estimates. The agreement with the experiments is excellent, whereas the
local density approximation is shown to sizably overestimate the Levinger's
factor in the region of the medium nuclei.Comment: 26 pages, 8 figures, typeset using REVTe
A-dependence of nuclear transparency in quasielastic A(e,e'p) at high Q^2
The A-dependence of the quasielastic A(e,e'p) reaction has been studied at
SLAC with H-2, C, Fe, and Au nuclei at momentum transfers Q^2 = 1, 3, 5, and
6.8 (GeV/c)^2. We extract the nuclear transparency T(A,Q^2), a measure of the
average probability that the struck proton escapes from the nucleus A without
interaction. Several calculations predict a significant increase in T with
momentum transfer, a phenomenon known as Color Transparency. No significant
rise within errors is seen for any of the nuclei studied.Comment: 5 pages incl. 2 figures, Caltech preprint OAP-73
The Virgo data acquisition system
International audienc
The gravitational wave detector VIRGO
International audienc
Am J Prev Med
CC999999/Intramural CDC HHS/United States2017-02-19T00:00:00Z26456878PMC531651
Phylogenomics and the rise of the angiosperms
Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5,6,7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade
Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF
The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described