1,687 research outputs found

    Cosmological perturbations in f(T) gravity

    Full text link
    We investigate the cosmological perturbations in f(T) gravity. Examining the pure gravitational perturbations in the scalar sector using a diagonal vierbien, we extract the corresponding dispersion relation, which provides a constraint on the f(T) ansatzes that lead to a theory free of instabilities. Additionally, upon inclusion of the matter perturbations, we derive the fully perturbed equations of motion, and we study the growth of matter overdensities. We show that f(T) gravity with f(T) constant coincides with General Relativity, both at the background as well as at the first-order perturbation level. Applying our formalism to the power-law model we find that on large subhorizon scales (O(100 Mpc) or larger), the evolution of matter overdensity will differ from LCDM cosmology. Finally, examining the linear perturbations of the vector and tensor sectors, we find that (for the standard choice of vierbein) f(T) gravity is free of massive gravitons.Comment: 11 pages, 4 figures. Analysis of the vector and tensor sectors adde

    Holographic c-theorems and higher derivative gravity

    Full text link
    In AdS/CFT, the holographic Weyl anomaly computation relates the a-anomaly coefficient to the properties of the bulk action at the UV fixed point. This universal behavior suggests the possibility of a holographic c-theorem for the a-anomaly under flows to the IR. We prove such a c-theorem for higher curvature Lovelock gravity, where the bulk equations of motion remain second order. We also explore f(R) gravity as a toy model where higher derivatives cannot be avoided. In this case, monoticity of the flow requires an additional condition related to the higher derivative nature of the theory. This is in contrast to the case of f(R) black hole entropy, where the second law follows from application of the full Einstein equations and the null energy condition.Comment: 15 pages, revtex, references adde

    Di-(2-ethylhexyl) phthalate and autism spectrum disorders

    Get PDF
    ASDs (autism spectrum disorders) are a complex group of neurodevelopment disorders, still poorly understood, steadily rising in frequency and treatment refractory. Extensive research has been so far unable to explain the aetiology of this condition, whereas a growing body of evidence suggests the involvement of environmental factors. Phthalates, given their extensive use and their persistence, are ubiquitous environmental contaminants. They are EDs (endocrine disruptors) suspected to interfere with neurodevelopment. Therefore they represent interesting candidate risk factors for ASD pathogenesis. The aim of this study was to evaluate the levels of the primary and secondary metabolites of DEHP [di-(2-ethylhexyl) phthalate] in children with ASD. A total of 48 children with ASD (male: 36, female: 12; mean age: 11±5 years) and age- and sex-comparable 45 HCs (healthy controls; male: 25, female: 20; mean age: 12±5 years) were enrolled. A diagnostic methodology, based on the determination of urinary concentrations of DEHP metabolites by HPLC-ESI-MS (HPLC electrospray ionization MS), was applied to urine spot samples. MEHP [mono-(2-ethylhexenyl) 1,2-benzenedicarboxylate], 6-OH-MEHP [mono-(2-ethyl-6-hydroxyhexyl) 1,2-benzenedicarboxylate], 5-OH-MEHP [mono-(2-ethyl-5-hydroxyhexyl) 1,2-benzenedicarboxylate] and 5-oxo-MEHP [mono-(2-ethyl-5-oxohexyl) 1,2-benzenedicarboxylate] were measured and compared with unequivocally characterized, pure synthetic compounds (>98%) taken as standard. In ASD patients, significant increase in 5-OH-MEHP (52.1%, median 0.18) and 5-oxo-MEHP (46.0%, median 0.096) urinary concentrations were detected, with a significant positive correlation between 5-OH-MEHP and 5-oxo-MEHP (rs = 0.668, P<0.0001). The fully oxidized form 5-oxo-MEHP showed 91.1% specificity in identifying patients with ASDs. Our findings demonstrate for the first time an association between phthalates exposure and ASDs, thus suggesting a previously unrecognized role for these ubiquitous environmental contaminants in the pathogenesis of autism

    Cosmological scaling solutions in generalised Gauss-Bonnet gravity theories

    Full text link
    The conditions for the existence and stability of cosmological power-law scaling solutions are established when the Einstein-Hilbert action is modified by the inclusion of a function of the Gauss-Bonnet curvature invariant. The general form of the action that leads to such solutions is determined for the case where the universe is sourced by a barotropic perfect fluid. It is shown by employing an equivalence between the Gauss-Bonnet action and a scalar-tensor theory of gravity that the cosmological field equations can be written as a plane autonomous system. It is found that stable scaling solutions exist when the parameters of the model take appropriate values.Comment: 10 pages and 5 figure

    The Family Name as Socio-Cultural Feature and Genetic Metaphor: From Concepts to Methods

    Get PDF
    A recent workshop entitled The Family Name as Socio-Cultural Feature and Genetic Metaphor: From Concepts to Methods was held in Paris in December 2010, sponsored by the French National Centre for Scientific Research (CNRS) and by the journal Human Biology. This workshop was intended to foster a debate on questions related to the family names and to compare different multidisciplinary approaches involving geneticists, historians, geographers, sociologists and social anthropologists. This collective paper presents a collection of selected communications

    Implementation of FAIR principles in the IPCC: the WGI AR6 Atlas repository

    Get PDF
    The Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) has adopted the FAIR Guiding Principles. We present the Atlas chapter of Working Group I (WGI) as a test case. We describe the application of the FAIR principles in the Atlas, the challenges faced during its implementation, and those that remain for the future. We introduce the open source repository resulting from this process, including coding (e.g., annotated Jupyter notebooks), data provenance, and some aggregated datasets used in some figures in the Atlas chapter and its interactive companion (the Interactive Atlas), open to scrutiny by the scientific community and the general public. We describe the informal pilot review conducted on this repository to gather recommendations that led to significant improvements. Finally, a working example illustrates the re-use of the repository resources to produce customized regional information, extending the Interactive Atlas products and running the code interactively in a web browser using Jupyter notebooks.Peer reviewe

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    • …
    corecore