349 research outputs found

    OMA orthology in 2021: website overhaul, conserved isoforms, ancestral gene order and more

    Get PDF
    OMA is an established resource to elucidate evolutionary relationships among genes from currently 2326 genomes covering all domains of life. OMA provides pairwise and groupwise orthologs, functional annotations, local and global gene order conservation (synteny) information, among many other functions. This update paper describes the reorganisation of the database into gene-, group- and genome-centric pages. Other new and improved features are detailed, such as reporting of the evolutionarily best conserved isoforms of alternatively spliced genes, the inferred local order of ancestral genes, phylogenetic profiling, better cross-references, fast genome mapping, semantic data sharing via RDF, as well as a special coronavirus OMA with 119 viruses from the Nidovirales order, including SARS-CoV-2, the agent of the COVID-19 pandemic. We conclude with improvements to the documentation of the resource through primers, tutorials and short videos. OMA is accessible at https://omabrowser.org

    Prebiotic Effects of Wheat Arabinoxylan Related to the Increase in Bifidobacteria, Roseburia and Bacteroides/Prevotella in Diet-Induced Obese Mice

    Get PDF
    BACKGROUND: Alterations in the composition of gut microbiota--known as dysbiosis--has been proposed to contribute to the development of obesity, thereby supporting the potential interest of nutrients targeting the gut with beneficial effect for host adiposity. We test the ability of a specific concentrate of water-extractable high molecular weight arabinoxylans (AX) from wheat to modulate both the gut microbiota and lipid metabolism in high-fat (HF) diet-induced obese mice. METHODOLOGY/PRINCIPAL FINDINGS: Mice were fed either a control diet (CT) or a HF diet, or a HF diet supplemented with AX (10% w/w) during 4 weeks. AX supplementation restored the number of bacteria that were decreased upon HF feeding, i.e. Bacteroides-Prevotella spp. and Roseburia spp. Importantly, AX treatment markedly increased caecal bifidobacteria content, in particular Bifidobacterium animalis lactis. This effect was accompanied by improvement of gut barrier function and by a lower circulating inflammatory marker. Interestingly, rumenic acid (C18:2 c9,t11) was increased in white adipose tissue due to AX treatment, suggesting the influence of gut bacterial metabolism on host tissue. In parallel, AX treatment decreased adipocyte size and HF diet-induced expression of genes mediating differentiation, fatty acid uptake, fatty acid oxidation and inflammation, and decreased a key lipogenic enzyme activity in the subcutaneous adipose tissue. Furthermore, AX treatment significantly decreased HF-induced adiposity, body weight gain, serum and hepatic cholesterol accumulation and insulin resistance. Correlation analysis reveals that Roseburia spp. and Bacteroides/Prevotella levels inversely correlate with these host metabolic parameters. CONCLUSIONS/SIGNIFICANCE: Supplementation of a concentrate of water-extractable high molecular weight AX in the diet counteracted HF-induced gut dysbiosis together with an improvement of obesity and lipid-lowering effects. We postulate that hypocholesterolemic, anti-inflammatory and anti-obesity effects are related to changes in gut microbiota. These data support a role for wheat AX as interesting nutrients with prebiotic properties related to obesity prevention

    A programmed cell death pathway in the malaria parasite Plasmodium falciparum has general features of mammalian apoptosis but is mediated by clan CA cysteine proteases

    Get PDF
    Several recent discoveries of the hallmark features of programmed cell death (PCD) in Plasmodium falciparum have presented the possibility of revealing novel targets for antimalarial therapy. Using a combination of cell-based assays, flow cytometry and fluorescence microscopy, we detected features including mitochondrial dysregulation, activation of cysteine proteases and in situ DNA fragmentation in parasites induced with chloroquine (CQ) and staurosporine (ST). The use of the pan-caspase inhibitor, z-Val-Ala-Asp-fmk (zVAD), and the mitochondria outer membrane permeabilization (MOMP) inhibitor, 4-hydroxy-tamoxifen, enabled the characterization of a novel CQ-induced pathway linking cysteine protease activation to downstream mitochondrial dysregulation, amplified protease activity and DNA fragmentation. The PCD features were observed only at high (μM) concentrations of CQ. The use of a new synthetic coumarin-labeled chloroquine (CM-CQ) showed that these features may be associated with concentration-dependent differences in drug localization. By further using cysteine protease inhibitors z-Asp-Glu-Val-Asp-fmk (zDEVD), z-Phe-Ala-fmk (zFA), z-Phe-Phe-fmk (zFF), z-Leu-Leu-Leu-fmk (zLLL), E64d and CA-074, we were able to implicate clan CA cysteine proteases in CQ-mediated PCD. Finally, CQ induction of two CQ-resistant parasite strains, 7G8 and K1, reveals the existence of PCD features in these parasites, the extent of which was less than 3D7. The use of the chemoreversal agent verapamil implicates the parasite digestive vacuole in mediating CQ-induced PCD

    How a slow-ovipositing parasitoid can succed as a biological control agent of the invasive mealybug Phenacoccus peruvianus: implications for future classical and conservation biological control programs

    Full text link
    [EN] Phenaccocus peruvianus Granara de Willink (Hemiptera: pseudococcidae) is an invasive mealybug that has become a pest of ornamental plants in Europe and has recently been detected in California, USA. In this work, we studied the tritrophic interaction among this mealybug, its main parasitoid Acerophagus n. sp. near coccois (Hymenoptera: Encyrtidae) and tending ants to disclose the success of this parasitoid controlling P. peruvianus. Acerophagus n. sp. near coccois accepted mealybugs for parasitism regardless of their size but did not hostfeed. We recorded three active defenses of P. peruvianus. Host handling time-consuming process that required more than 30 min. Tending ants, Lasius grandis (Hymenoptera: Encyrtidae), reduced the time spent by parasitoids in a patch and disrupted oviposition attempts. The low numbers of ants tending mealybugs colonies in Spain and France could explain why this parasitoid, with a long handling time, is an efficient biological control agent for P. peruvianus.Beltrà Ivars, A.; Soto Sánchez, AI.; Tena Barreda, A. (2015). How a slow-ovipositing parasitoid can succed as a biological control agent of the invasive mealybug Phenacoccus peruvianus: implications for future classical and conservation biological control programs. BioControl. 60(4):473-484. https://doi.org/10.1007/s10526-015-9663-6S473484604Arakelian G (2013) Bougainvillea mealybug (Phenacoccus peruvianus). Factsheet 2013. County of Los Angeles. Department of agricultural commissioner/weights and measures, USABartlett BR (1961) The influence of ants upon parasites, predators, and scale insects. Ann Entomol Soc Am 54:543–551Bartlett BR (1978) Pseudococcidae. In: Clausen CP (ed) Introduced parasites and predators of arthropod pests and weeds: a world review, 1st edn. Agricultural Research Service USDA, Washington, USA, pp 137–170Barzman MS, Daane KM (2001) Host-handling behaviors in parasitoids of black scale, Saissetia oleae (Homoptera: Coccidae): a case for ant-mediated evolution. J Anim Ecol 70:237–247Beltrà A, Soto A, Germain JF, Matile-Ferrero D, Mazzeo G, Pellizzari G, Russo A, Franco JC, Williams DJ (2010) The Bougainvillea mealybug Phenacoccus peruvianus, a rapid invader from South America to Europe. Entomol Hell 19:137–143Beltrà A, Garcia-Marí F, Soto A (2013a) Seasonal phenology, spatial distribution, and sampling plan for the invasive mealybug Phenacoccus peruvianus (Hemiptera: Pseudococcidae). J Econ Entomol 106:1486–1494Beltrà A, Tena A, Soto A (2013b) Fortuitous biological control of the invasive mealybug Phenacoccus peruvianus in Southern Europe. BioControl 58:309–317Beltrà A, Tena A, Soto A (2013c) Reproductive strategies and food sources used by Acerophagus n. sp. near coccois, a new successful parasitoid of the invasive mealybug Phenacoccus peruvianus. J Pest Sci 86:253–259Berlinger MJ, Golberg AM (1978) The effect of the fruit sepals on the citrus mealybug population and on its parasite. Entomol Exp Appl 24:238–243Blumstein DT, Daniel JC (2007) Quantifying behavior the JWatcher way. Sinauer Associates Inc., Sunderland, UKBoavida C, Ahounou M, Vos M, Neuenschwander P, van Alphen JJM (1995) Host stage selection and sex allocation by Gyranusoidea tebygi (Hymenoptera: Encyrtidae), a parasitoid of the mango mealybug, Rastrococcus invadens (Homoptera: Pseudococcidae). Biol Control 5:487–496Bokonon-Ganta AH, Neuenschwander P, van Alphen JJM, Vos M (1995) Host stage selection and sex allocation by Anagyrus mangicola (Hymenoptera: Encyrtidae), a parasitoid of the mango mealybug, Rastrococcus invadens (Homoptera: Pseudococcidae). Biol Control 5:479–486Bugila AAA, Franco JC, Borges da Silva E, Branco M (2014a) Defense response of native and alien mealybugs (Hemiptera: Pseudococcidae) against the solitary parasitoid Anagyrus sp. nr. pseudococci (Girault) (Hymenoptera: Encyrtidae). J Insect Behav 27:439–453Bugila AAA, Branco M, Borges da Silva E, Franco JC (2014b) Host selection behavior and specificity of the solitary parasitoid of mealybugs Anagyrus sp. nr. pseudococci (Girault) (Hymenoptera, Encyrtidae). Biocontrol Sci Techn 24:22–38Bynum EK (1937) Pseudococcobius terryi Fullaway, a Hawaiian parasite of Gray Sugarcane mealybug in the United States. J Econ Entomol 30:756–761Cadée N, van Alphen JJM (1997) Host selection and sex allocation in Leptomastidea abnormis, a parasitoid of the citrus mealybug Planococcus citri. Entomol Exp Appl 83:277–284Clausen CP (1924) The parasites of Pseudococcus maritimus (Ehrhorn) in California (Hymenoptera, Chalcidoidea). Part II. Biological studies and life histories. UC Pub Entomol 3:253–288Daane KM, Barzman MS, Caltagirone LE, Hagen KS (2000) Metaphycus anneckei and Metaphycus hageni: two discrete species parasitic on black scale, Saissetia oleae. BioControl 45:269–284Daane KM, Bentley WJ, Walton VM, Malakar-Kuenen R, Millar JC, Ingels CA, Weber EA, Gispert C (2006) New controls investigated for vine mealybug. Calif Agric 60:31–38Daane KM, Sime KR, Fallon J, Cooper ML (2007) Impacts of Argentine ants on mealybugs and their natural enemies in California’s coastal vineyards. Ecol Entomol 32:583–596De Farias AM, Hopper KR (1999) Oviposition behavior of Aphelinus asychis (Hymenoptera: Aphelinidae) and Aphidius matricariae (Hymenoptera: Aphidiidae) and defense behavior of their host Diuraphis noxia (Homoptera: Aphididae). Environ Entomol 28:858–862Dorn B, Mattiacci L, Bellotti AC, Dorn S (2001) Host specificity and comparative foraging behavior of Aenasius vexans and Acerophagus coccois, two endo-parasitoids of the cassava mealybug. Entomol Exp Appl 99:331–339Eisner T, Silberglied RE (1988) A chrysopid larva that cloaks itself in mealybug wax. Psyche 95:15–20Flanders SE (1963) Predation by parasitic Hymenoptera, the basis of ant-induced outbreaks of a host species. J Econ Entomol 56:116Foldi I (1983) Structure et fonctions des glandes tégumentaires de cochenilles Pseudococcines et de leurs secretions. Ann Soc Entomol Fr 19:155–156Foldi I (1997) Defense strategies in scale insects: phylogenetic inference and evolutionary scenarios (Hemiptera, Coccoidea). In: Grandcolas P (ed) The origin of biodiversity in insects: phylogenetic tests of evolutionary scenarios, 1st edn. Muséum National d’Histoire Naturelle, Paris, France, pp 203–230Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton, USAGonzález-Hernández H, Johnson MW, Reimer NJ (1999) Impact of Pheidole megacephala (F.) (Hymenoptera: Formicidae) on the biological control of Dysmicoccus brevipes (Cockerell) (Homoptera: Pseudococcidae). Biol Control 15:145–152Gross P (1993) Insect behavioral and morphological defenses against parasitoids. Annu Rev Entomol 38:251–273Gullan PJ (1997) Relationships with ants. In: Ben-Dov Y, Hodgson CJ (eds) Soft scale insects—their biology natural enemies and control, 1st edn. Elsevier, Amsterdam, The Netherlands, pp 351–373Gullan PJ, Kosztarab M (1997) Adaptations in scale insects. Annu Rev Entomol 42:23–50Hcidari M, Jahan M (2000) A study of ovipositional behavior of Anagyrus pseudococci a parasitoid of mealybugs. J Agric Sci Technol 2:49–53Honda JY, Luck RF (1995) Scale morphology effects on feeding behavior and biological control potential of Rhyzobius lophanthae (Coleoptera: Coccinellidae). Ann Entomol Soc Am 88:441–450Joyce AL, Hoddle MS, Bellows TS, Gonzalez D (2001) Oviposition behavior of Coccidoxenoides peregrinus, a parasitoid of Planococcus ficus. Entomol Exp Appl 98:49–57Karamaouna F (1999) Biology of the parasitoids Leptomastix epona (Walker) and Pseudaphycus flavidulus (Brèthes) and behavioural interactions with the host mealybug Pseudococcus viburni (Signoret). Ph.D. Thesis, University of London, UK, p 333Karamaouna F, Copland MJ (2000) Oviposition behavior, influence of experience on host size selection, and niche overlap of the solitary Leptomastix epona and the gregarious Pseudaphycus flavidulus, two endoparasitoids of the mealybug Pseudococcus viburni. Entomol Exp Appl 97:301–308Klotz JH, Hansen L, Pospischil R, Rust M (2008) Urban ants of North America and Europe. Cornell University Press, Ithaca, USAMailleux AC, Deneubourg JL, Detrain C (2003) Regulation of ants foraging to resource productivity. P R Soc Lond B Bio 270:1609–1616Majerus ME, Sloggett JJ, Godeau JF, Hemptinne JL (2007) Interactions between ants and aphidophagous and coccidophagous ladybirds. Popul Ecol 49:15–27Mgocheki N, Addison P (2009) Interference of ants (Hymenoptera: Formicidae) with biological control of the vine mealybug Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae). Biol Control 49:180–185Moore D (1988) Agents used for biological control of mealybugs (Pseudococcidae). Biocontrol News Inf 9:209–225Paris CI, Espadaler X (2009) Honeydew collection by the invasive garden ant Lasius neglectus versus the native ant L grandis. Arthropod Plant Interact 3:75–85Pekas A, Tena A, Aguilar A, Garcia-Marí F (2011) Spatio-temporal patterns and interactions with honeydew-producing Hemiptera of ants in a Mediterranean citrus orchard. Agric Forest Entomol 13:89–97Pennacchio F, Strand MR (2006) Evolution of developmental strategies in parasitic Hymenoptera. Annu Rev Entomol 51:233–258Pijls JW, Hofker KD, Staalduinen MJ, van Alphen JJM (1995) Interspecific host discrimination and competition in Apoanagyrus (Epidinocarsis) lopezi and A(E) diversicornis parasitoids of the cassava mealybug Phenacoccus manihoti. Ecol Entomol 20:326–332Robert Y (1987) Dispersion and migration. In: Minks AK, Harrewijn P (eds) Aphids—their biology, natural enemies and control, 1st edn. Elsevier, Amsterdam, The Netherlands, pp 299–313Sandanayaka WRM, Charles JG, Allan DJ (2009) Aspects of the reproductive biology of Pseudaphycus maculipennis (Hym: Encyrtidae), a parasitoid of obscure mealybug, Pseudococcus viburni (Hem: Pseudococcidae). Biol Control 48:30–35Sarkar D (2008) Lattice: multivariate data visualization with R. Springer, New York, USASime KR, Daane KM (2014) Rapid, non-discriminatory oviposition behaviors are favored in mealybug parasitoids when Argentine ants are present. Environ Entomol 43:995–1002Tena A, Garcia-Marí F (2008) Suitability of citricola scale Coccus pseudomagnoliarum (Hemiptera: Coccidae) as host of Metaphycus helvolus (Hymenoptera: Encyrtidae): Influence of host size and encapsulation. Biol Control 46:341–347Tena A, Hoddle CD, Hoddle MS (2013) Competition between honeydew producers in an ant–hemipteran interaction may enhance biological control of an invasive pest. Bull Entomol Res 103:714–723The R Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austriavan Driesche RG, Belloti A, Herrera CJ, Castello JA (1987a) Host preferences of two encyrtid parasitoids for the Columbian Phenacoccus spp. of cassava mealybugs. Entomol Exp Appl 43:261–266van Driesche RG, Belloti A, Herrera CJ, Castello JA (1987b) Host feeding and ovipositor insertion as sources of mortality in the mealybug Phenacoccus herreni caused by two encyrtids Epidinocarsis diversicornis and Acerophagus coccois. Entomol Exp Appl 44:97–100Vet LE, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172Völkl W, Woodring J, Fischer M, Lorenz MW, Hoffmann KH (1999) Ant-aphid mutualisms: the impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia 118:483–491Wajnberg E (1989) Analysis of variations of handling-time in Trichogramma maidis. Entomophaga 34:397–407Way MJ (1963) Mutualism between ants and honeydew-producing Homoptera. Annu Rev Entomol 8:307–344Weiss MR (2006) Defecation behavior and ecology of insects. Annu Rev Entomol 51:635–661Wyckhuys KAG, Stone L, Desneux N, Hoelmer KA, Hopper KR, Heimpel GE (2008) Parasitism of the soybean aphid Aphis glycines by Binodoxys communis: the role of aphid defensive behavior and parasitoid reproductive performance. Bull Entomol Res 98:361–370Zain-ul-Abdin, Arif MJ, Suhail A, Gogi MD, Arshad M, Wakil W, Abbas SK, Altaf A, Shaina H, Manzoor A (2012) Molecular analysis of the venom of mealybug parasitoid Aenasius bambawalei Hayat (Hymenoptera: Encyrtidae). Pak Entomol 34:189–193Zinna G (1959) Specializzazione entomoparassitica negli Encyrtidae: studio morfologico etologico e fisiologico del Leptomastix dactylopii. Howard Boll Lab agr Filippo Silvestri 18:1–14

    In Vivo Approaches Reveal a Key Role for DCs in CD4+ T Cell Activation and Parasite Clearance during the Acute Phase of Experimental Blood-Stage Malaria

    Get PDF
    Dendritic cells (DCs) are phagocytes that are highly specialized for antigen presentation. Heterogeneous populations of macrophages and DCs form a phagocyte network inside the red pulp (RP) of the spleen, which is a major site for the control of blood-borne infections such as malaria. However, the dynamics of splenic DCs during Plasmodium infections are poorly understood, limiting our knowledge regarding their protective role in malaria. Here, we used in vivo experimental approaches that enabled us to deplete or visualize DCs in order to clarify these issues. To elucidate the roles of DCs and marginal zone macrophages in the protection against blood-stage malaria, we infected DTx (diphtheria toxin)-treated C57BL/6.CD11c-DTR mice, as well as C57BL/6 mice treated with low doses of clodronate liposomes (ClLip), with Plasmodium chabaudi AS (Pc) parasites. The first evidence suggesting that DCs could contribute directly to parasite clearance was an early effect of the DTx treatment, but not of the ClLip treatment, in parasitemia control. DCs were also required for CD4+ T cell responses during infection. The phagocytosis of infected red blood cells (iRBCs) by splenic DCs was analyzed by confocal intravital microscopy, as well as by flow cytometry and immunofluorescence, at three distinct phases of Pc malaria: at the first encounter, at pre-crisis concomitant with parasitemia growth and at crisis when the parasitemia decline coincides with spleen closure. In vivo and ex vivo imaging of the spleen revealed that DCs actively phagocytize iRBCs and interact with CD4+ T cells both in T cell-rich areas and in the RP. Subcapsular RP DCs were highly efficient in the recognition and capture of iRBCs during pre-crisis, while complete DC maturation was only achieved during crisis. These findings indicate that, beyond their classical role in antigen presentation, DCs also contribute to the direct elimination of iRBCs during acute Plasmodium infection.São Paulo Research Foundation grants: (2011/24038-1 [MRDL], 2009/08559-1 [HBdS], CAPES/IGC 04/ 2012 [MRDL, CET])

    StearoylCoA Desaturase-5: A Novel Regulator of Neuronal Cell Proliferation and Differentiation

    Get PDF
    Recent studies have demonstrated that human stearoylCoA desaturase-1 (SCD1), a Δ9-desaturase that converts saturated fatty acids (SFA) into monounsaturated fatty acids, controls the rate of lipogenesis, cell proliferation and tumorigenic capacity in cancer cells. However, the biological function of stearoylCoA desaturase-5 (SCD5), a second isoform of human SCD that is highly expressed in brain, as well as its potential role in human disease, remains unknown. In this study we report that the constitutive overexpression of human SCD5 in mouse Neuro2a cells, a widely used cell model of neuronal growth and differentiation, displayed a greater n-7 MUFA-to-SFA ratio in cell lipids compared to empty-vector transfected cells (controls). De novo synthesis of phosphatidylcholine and cholesterolesters was increased whereas phosphatidylethanolamine and triacylglycerol formation was reduced in SCD5-expressing cells with respect to their controls, suggesting a differential use of SCD5 products for lipogenic reactions. We also observed that SCD5 expression markedly accelerated the rate of cell proliferation and suppressed the induction of neurite outgrowth, a typical marker of neuronal differentiation, by retinoic acid indicating that the desaturase plays a key role in the mechanisms of cell division and differentiation. Critical signal transduction pathways that are known to modulate these processes, such epidermal growth factor receptor (EGFR)Akt/ERK and Wnt, were affected by SCD5 expression. Epidermal growth factor-induced phosphorylation of EGFR, Akt and ERK was markedly blunted in SCD5-expressing cells. Furthermore, the activity of canonical Wnt was reduced whereas the non-canonical Wnt was increased by the presence of SCD5 activity. Finally, SCD5 expression increased the secretion of recombinant Wnt5a, a non-canonical Wnt, whereas it reduced the cellular and secreted levels of canonical Wnt7b. Our data suggest that, by a coordinated modulation of key lipogenic pathways and transduction signaling cascades, SCD5 participates in the regulation of neuronal cell growth and differentiation
    corecore