131 research outputs found

    Autoimmune central diabetes insipidus in a patient with ureaplasma urealyticum infection and review on new triggers of immune response

    Get PDF
    Diabetes insipidus is a disease in which large volumes of dilute urine (polyuria) are excreted due to vasopressin (AVP) deficiency [central diabetes insipidus (CDI)] or to AVP resistance (nephrogenic diabetes insipidus). In the majority of patients, the occurrence of CDI is related to the destruction or degeneration of neurons of the hypothalamic supraoptic and paraventricular nuclei. The most common and well recognized causes include local inflammatory or autoimmune diseases, vascular disorders, Langerhans cell histiocytosis (LCH), sarcoidosis, tumors such as germinoma/craniopharyngioma or metastases, traumatic brain injuries, intracranial surgery, and midline cerebral and cranial malformations. Here we have the opportunity to describe an unusual case of female patient who developed autoimmune CDI following ureaplasma urealyticum infection and to review the literature on this uncommon feature. Moreover, we also discussed the potential mechanisms by which ureaplasma urealyticum might favor the development of autoimmune CDI

    Combined Modifications of Mexiletine Pharmacophores for New Lead Blockers of Nav1.4 Channels

    Get PDF
    AbstractPreviously identified potent and/or use-dependent mexiletine (Mex) analogs were used as template for the rational design of new Nav-channel blockers. The effects of the novel analogs were tested on sodium currents of native myofibers. Data and molecular modeling show that increasing basicity and optimal alkyl chain length enhance use-dependent block. This was demonstrated by replacing the amino group with a more basic guanidine one while maintaining a proper distance between positive charge and aromatic ring (Me13) or with homologs having the chirality center nearby the amino group or the aromatic ring. Accordingly, a phenyl group on the asymmetric center in the homologated alkyl chain (Me12), leads to a further increase of use-dependent behavior versus the phenyl Mex derivative Me4. A fluorine atom in paraposition and one ortho-methyl group on the xylyloxy ring (Me15) increase potency and stereoselectivity versus Me4. Charge delocalization and greater flexibility of Me15 may increase its affinity for Tyr residues influencing steric drug interaction with the primary Phe residue of the binding site. Me12 and Me15 show limited selectivity against Nav-isoforms, possibly due to the highly conserved binding site on Nav. To our knowledge, the new compounds are the most potent Mex-like Nav blockers obtained to date and deserve further investigation

    Protein kinase C theta (PKCθ) modulates the ClC-1 chloride channel activity and skeletal muscle phenotype: a biophysical and gene expression study in mouse models lacking the PKCθ

    Get PDF
    In skeletal muscle, the resting chloride conductance (gCl), due to the ClC-1 chloride channel, controls the sarcolemma electrical stability. Indeed, loss-of-function mutations in ClC-1 gene are responsible of myotonia congenita. The ClC-1 channel can be phosphorylated and inactivated by protein kinases C (PKC), but the relative contribution of each PKC isoforms is unknown. Here, we investigated on the role of PKCθ in the regulation of ClC-1 channel expression and activity in fast- and slow-twitch muscles of mouse models lacking PKCθ. Electrophysiological studies showed an increase of gCl in the PKCθ-null mice with respect to wild type. Muscle excitability was reduced accordingly. However, the expression of the ClC-1 channel, evaluated by qRT-PCR, was not modified in PKCθ-null muscles suggesting that PKCθ affects the ClC-1 activity. Pharmacological studies demonstrated that although PKCθ appreciably modulates gCl, other isoforms are still active and concur to this role. The modification of gCl in PKCθ-null muscles has caused adaptation of the expression of phenotype-specific genes, such as calcineurin and myocyte enhancer factor-2, supporting the role of PKCθ also in the settings of muscle phenotype. Importantly, the lack of PKCθ has prevented the aging-related reduction of gCl, suggesting that its modulation may represent a new strategy to contrast the aging process

    A long-term treatment with taurine prevents cardiac dysfunction in mdx mice

    Get PDF
    Taurine is an amino acid abundantly present in heart and skeletal muscle. Duchenne muscular dystrophy (DMD) is a genetic disorder in which the absence of dystrophin leads to skeletal muscle wasting and heart failure. An altered taurine metabolism has been described in dystrophic animals and short-term taurine administration exerts promising amelioration of early muscular alterations in the mdx mouse model of DMD. To reinforce the therapeutic and nutraceutical taurine potential in DMD, we evaluated the effects of a long-term treatment on cardiac and skeletal muscle function of mdx mice in a later disease stage. Taurine was administered in drinking water (1 g/kg/day) to wt and mdx mice for 6 months, starting at 6 months of age. Ultrasonography evaluation of heart and hind limb was performed, in parallel with in vivo and ex vivo functional tests and biochemical, histological and gene expression analyses. 12-month-old mdx mice showed a significant worsening of left ventricular function parameters (shortening fraction, ejection fraction, stroke volume), which were significantly counteracted by the taurine treatment. In parallel, histologic signs of damage were reduced by taurine along with the expression of proinflammatory myocardial IL-6. Interestingly, no effects were observed on hind limb volume and percentage of vascularization or on in vivo and ex vivo muscle functional parameters, suggesting a tissue-specific action of taurine in relation to the disease phase. A trend toward increase in taurine was found in heart and quadriceps from treated animals, paralleled by a slight decrease in mdx mice plasma. Our study provides evidences that taurine can prevent late heart dysfunction in mdx mice, further corroborating the interest on this amino acid toward clinical trials

    Contractile efficiency of dystrophic mdx mouse muscle: In vivo and ex vivo assessment of adaptation to exercise of functional end points

    Get PDF
    Progressive weakness is a typical feature of Duchenne muscular dystrophy (DMD) patients and is exacerbated in the benign mdx mouse model by in vivo treadmill exercise. We hypothesized a different threshold for functional adaptation of mdx muscles in response to the duration of the exercise protocol. In vivo weakness was confirmed by grip strength after 4, 8 and 12 weeks of exercise in mdx mice. Torque measurements revealed that exercise-related weakness in mdx mice correlated with the duration of the protocol, while wild-type (wt) mice were stronger. Twitch and tetanic forces of isolated diaphragm and extensor digitorum longus (EDL) muscles, were lower in mdx compared to wt mice. In mdx, both muscle types exhibited greater weakness after a single exercise bout, but only in EDL after a long exercise protocol. As opposite to wt muscles, mdx EDL ones did not show any exercise-induced adaptations against eccentric contraction force drop. qRT-PCR analysis confirmed the maladaptation of genes involved in metabolic and structural remodeling, while damage-related genes remained significantly upregulated and angiogenesis impaired. Phosphorylated AMP kinase level increased only in exercised wt muscle. The severe histopathology and the high levels of muscular TGF-β1 and of plasma matrix metalloproteinase-9 confirmed the persistence of muscle damage in mdx mice. Then, dystrophic muscles showed a partial degree of functional adaptation to chronic exercise, although not sufficient to overcome weakness nor signs of damage. The improved understanding of the complex mechanisms underlying maladaptation of dystrophic muscle paves the way to a better managment of DMD patients

    Statin-induced myotoxicity is exacerbated by aging: A biophysical and molecular biology study in rats treated with atorvastatin

    Get PDF
    Statin-induced skeletal muscle damage in rats is associated to the reduction of the resting sarcolemmal chloride conductance (gCl) and ClC-1 chloride channel expression. These drugs also affect the ClC-1 regulation by increasing protein kinase C (PKC) activity, which phosphorylate and close the channel. Also the intracellular resting calcium (restCa) level is increased. Similar alterations are observed in skeletal muscles of aged rats, suggesting a higher risk of statin myotoxicity. To verify this hypothesis, we performed a 4–5-weeks atorvastatin treatment of 24-months-old rats to evaluate the ClC-1 channel function by the two-intracellular microelectrodes technique as well as transcript and protein expression of different genes sensitive to statins by quantitative real-time-PCR and western blot analysis. The restCa was measured using FURA-2 imaging, and histological analysis of muscle sections was performed. The results show a marked reduction of resting gCl, in agreement with the reduced ClC-1 mRNA and protein expression in atorvastatin-treated aged rats, with respect to treated adult animals. The observed changes in myocyte-enhancer factor-2 (MEF2) expression may be involved in ClC-1 expression changes. The activity of PKC was also increased and further modulate the gCl in treated aged rats. In parallel, a marked reduction of the expression of glycolytic and mitochondrial enzymes demonstrates an impairment of muscle metabolism. No worsening of restCa or histological features was found in statin-treated aged animals. These findings suggest that a strong reduction of gCl and alteration of muscle metabolism coupled to muscle atrophy may contribute to the increased risk of statin-induced myopathy in the elderly

    “Ectomosphere”: Insects and Microorganism Interactions

    Get PDF
    This study focuses on interacting with insects and their ectosymbiont (lato sensu) microorganisms for environmentally safe plant production and protection. Some cases help compare insect-bearing, -driving, or -spreading relevant ectosymbiont microorganisms to endosymbionts’ behaviour. Ectosymbiotic bacteria can interact with insects by allowing them to improve the value of their pabula. In addition, some bacteria are essential for creating ecological niches that can host the development of pests. Insect-borne plant pathogens include bacteria, viruses, and fungi. These pathogens interact with their vectors to enhance reciprocal fitness. Knowing vector-phoront interaction could considerably increase chances for outbreak management, notably when sustained by quarantine vector ectosymbiont pathogens, such as the actual Xylella fastidiosa Mediterranean invasion episode. Insect pathogenic viruses have a close evolutionary relationship with their hosts, also being highly specific and obligate parasites. Sixteen virus families have been reported to infect insects and may be involved in the biological control of specific pests, including some economic weevils. Insects and fungi are among the most widespread organisms in nature and interact with each other, establishing symbiotic relationships ranging from mutualism to antagonism. The associations can influence the extent to which interacting organisms can exert their effects on plants and the proper management practices. Sustainable pest management also relies on entomopathogenic fungi; research on these species starts from their isolation from insect carcasses, followed by identification using conventional light or electron microscopy techniques. Thanks to the development of omics sciences, it is possible to identify entomopathogenic fungi with evolutionary histories that are less-shared with the target insect and can be proposed as pest antagonists. Many interesting omics can help detect the presence of entomopathogens in different natural matrices, such as soil or plants. The same techniques will help localize ectosymbionts, localization of recesses, or specialized morphological adaptation, greatly supporting the robust interpretation of the symbiont role. The manipulation and modulation of ectosymbionts could be a more promising way to counteract pests and borne pathogens, mitigating the impact of formulates and reducing food insecurity due to the lesser impact of direct damage and diseases. The promise has a preventive intent for more manageable and broader implications for pests, comparing what we can obtain using simpler, less-specific techniques and a less comprehensive approach to Integrated Pest Management (IPM).The present work acknowledges the support from: European Union’s Horizon 2020 research and innovation programme under Grant Agreements No. 635646-POnTE “Pest Organisms Threatening Europe”, No. 727987-XF-ACTORS “Xylella Fastidiosa Active Containment Through a multidisciplinary-Oriented Research Strategy”, Grant number 952337-MycoTWIN “Enhancing Research and Innovation Capacity of Tubitak MAM Food Institute on Management of Mycotoxigenic Fungi and Mycotoxins”, and CURE-Xf, H2020-Marie Sklodowska-Curie Actions—Research and Innovation Staff Exchange. Reference number: 634353, coordinated by CIHEAM Bari. The EU Funding Agency is not responsible for any use that may be made of the information it contains. European Union’s StopMedWaste “Innovative Sustainable technologies TO extend the shelf-life of Perishable MEDiterranean fresh fruit, vegetables and aromatic plants and to reduce WASTE” a PRIMA project ID: 1556. European Union’s Euphresco BasicS “Basic substances as an environmentally friendly alternative to synthetic pesticides for plant protection” project ID: 2020-C-353. The work was partially carried out in the framework of the National Projects: RIGENERA, granted by MASAF n. 207631, 9 May 2022, and GENFORAGRIS, granted by MASAF n. 207631, 9 May 2022; and regional projects “Laboratory network for the selection, characterisation and conservation of germplasm and for preventing the spread of economically-relevant and quarantine pests (SELGE) No. 14”, founded by the Apulia Region, PO FESR 2007–2013—Axis I, Line of intervention 1.2., Action 1.2.1; Research for Innovation (REFIN) POR Puglia 2014–2020 Project: 8C6E699D, and PON AIM, COD. AIM 1809249-Attività 1 Linea 1

    Growth hormone secretagogues modulate inflammation and fibrosis in mdx mouse model of Duchenne muscular dystrophy

    Get PDF
    IntroductionGrowth hormone secretagogues (GHSs) exert multiple actions, being able to activate GHS-receptor 1a, control inflammation and metabolism, to enhance GH/insulin-like growth factor-1 (IGF-1)-mediated myogenesis, and to inhibit angiotensin-converting enzyme. These mechanisms are of interest for potentially targeting multiple steps of pathogenic cascade in Duchenne muscular dystrophy (DMD).MethodsHere, we aimed to provide preclinical evidence for potential benefits of GHSs in DMD, via a multidisciplinary in vivo and ex vivo comparison in mdx mice, of two ad hoc synthesized compounds (EP80317 and JMV2894), with a wide but different profile. 4-week-old mdx mice were treated for 8 weeks with EP80317 or JMV2894 (320 µg/kg/d, s.c.).ResultsIn vivo, both GHSs increased mice forelimb force (recovery score, RS towards WT: 20% for EP80317 and 32% for JMV2894 at week 8). In parallel, GHSs also reduced diaphragm (DIA) and gastrocnemius (GC) ultrasound echodensity, a fibrosis-related parameter (RS: ranging between 26% and 75%). Ex vivo, both drugs ameliorated DIA isometric force and calcium-related indices (e.g., RS: 40% for tetanic force). Histological analysis highlighted a relevant reduction of fibrosis in GC and DIA muscles of treated mice, paralleled by a decrease in gene expression of TGF-β1 and Col1a1. Also, decreased levels of pro-inflammatory genes (IL-6, CD68), accompanied by an increment in Sirt-1, PGC-1α and MEF2c expression, were observed in response to treatments, suggesting an overall improvement of myofiber metabolism. No detectable transcript levels of GHS receptor-1a, nor an increase of circulating IGF-1 were found, suggesting the presence of a novel receptor-independent mechanism in skeletal muscle. Preliminary docking studies revealed a potential binding capability of JMV2894 on metalloproteases involved in extracellular matrix remodeling and cytokine production, such as ADAMTS-5 and MMP-9, overactivated in DMD.DiscussionOur results support the interest of GHSs as modulators of pathology progression in mdx mice, disclosing a direct anti-fibrotic action that may prove beneficial to contrast pathological remodeling

    Antitumorali

    No full text
    corecore