225 research outputs found

    The contribution of meteorological parameters and the COVID-19 partial lockdown on air quality in Rio de Janeiro, Brazil

    Get PDF
    This study evaluated the pollutant levels (NO2, SO2, CO, and O3), air quality index (AQI) and the influence of meteorological variables and coronavirus disease (COVID-19) pandemic on the air quality in Rio de Janeiro. The data set used comprises periods before (March-April, 2019) and during pandemic (March-April, 2020). According to the AQI results, on most days, the air quality was ranked as “good”. Brazilian air quality standards for SO2, O3, and NO2 were not exceeded in any of the monitoring stations during partial lockdown, while CO exceeded in all periods in one site due to industrial emission. Comparing both periods, descriptive statistics for the meteorological parameters presented no differences, which suggests similar conditions. However, when evaluated week by week in 2020, weather conditions presented some differences that probably affected pollutant concentrations. The correlations between O3 and NO2 and some meteorological parameters indicate that variations in both favored ozone formation, since it is a photochemical process favored by temperature and solar radiation and that, in Rio de Janeiro, low NO2 concentrations lead to increased O3. The improvements on air quality during the partial lockdown may be attributed mainly to a reduction on emission sources rather than weather conditions.Campus Lima Centr

    Unprecedented study of the broadband emission of Mrk 421 during flaring activity in March 2010

    Get PDF
    Context. Because of its proximity, Mrk 421 is one of the best sources on which to study the nature of BL Lac objects. Its proximity allows us to characterize its broadband spectral energy distribution (SED). Aims. The goal is to better understand the mechanisms responsible for the broadband emission and the temporal evolution of Mrk 421. These mechanisms may also apply to more distant blazars that cannot be studied with the same level of detail. Methods. A flare occurring in March 2010 was observed for 13 consecutive days (from MJD 55 265 to MJD 55 277) with unprecedented wavelength coverage from radio to very high energy (VHE; E> 100 GeV) γ-rays with MAGIC, VERITAS, Whipple, Fermi-LAT, MAXI, RXTE, Swift, GASP-WEBT, and several optical and radio telescopes. We modeled the day-scale SEDs with one-zone and two-zone synchrotron self-Compton (SSC) models, investigated the physical parameters, and evaluated whether the observed broadband SED variability can be associated with variations in the relativistic particle population. Results. The activity of Mrk 421 initially was high and then slowly decreased during the 13-day period. The flux variability was remarkable at the X-ray and VHE bands, but it was minor or not significant at the other bands. The variability in optical polarization was also minor. These observations revealed an almost linear correlation between the X-ray flux at the 2–10 keV band and the VHE γ-ray flux above 200 GeV, consistent with the γ-rays being produced by inverse-Compton scattering in the Klein-Nishina regime in the framework of SSC models. The one-zone SSC model can describe the SED of each day for the 13 consecutive days reasonably well, which once more shows the success of this standard theoretical scenario to describe the SEDs of VHE BL Lacs such as Mrk 421. This flaring activity is also very well described by a two-zone SSC model, where one zone is responsible for the quiescent emission, while the other smaller zone, which is spatially separated from the first, contributes to the daily variable emission occurring at X-rays and VHE γ-rays. The second blob is assumed to have a smaller volume and a narrow electron energy distribution with 3 × 104<γ< 6 × 105, where γ is the Lorentz factor of the electrons. Such a two-zone scenario would naturally lead to the correlated variability at the X-ray and VHE bands without variability at the optical/UV band, as well as to shorter timescales for the variability at the X-ray and VHE bands with respect to the variability at the other bands. Conclusions. Both the one-zone and the two-zone SSC models can describe the daily SEDs via the variation of only four or five model parameters, under the hypothesis that the variability is associated mostly with the underlying particle population. This shows that the particle acceleration and cooling mechanism that produces the radiating particles might be the main mechanism responsible for the broadband SED variations during the flaring episodes in blazars. The two-zone SSC model provides a better agreement with the observed SED at the narrow peaks of the low- and high-energy bumps during the highest activity, although the reported one-zone SSC model could be further improved by varying the parameters related to the emitting region itself (δ, B and R), in addition to the parameters related to the particle population.Fil: Aleksic, J.. IFAE; EspañaFil: Ansoldi, S.. Università di Udine; ItaliaFil: Antonelli, L. A.. INAF National Institute for Astrophysics; ItaliaFil: Antoranz, P.. Università di Siena; ItaliaFil: Babic, A.. University of Rijeka; CroaciaFil: Bangale, P.. Max-Planck-Institut für Physik; AlemaniaFil: Barres de Almeida, U.. Max-Planck-Institut für Physik; AlemaniaFil: Barrio, J. A.. Universidad Complutense de Madrid; EspañaFil: Becerra Gonzalez, J.. Inst. de Astrofísica de Canarias; EspañaFil: Bednarek, W.. University of Łódź,; PoloniaFil: Bernardini, E.. Deutsches Elektronen-Synchrotron (DESY); AlemaniaFil: Biasuzzi, B.. Università di Udine; ItaliaFil: Biland, A.. ETH Zurich; SuizaFil: Blanch, O.. IFAE; EspañaFil: Boller, A.. ETH Zurich; SuizaFil: Bonnefoy, S.. Universidad Complutense de Madrid; EspañaFil: Bonnoli, G.. INAF National Institute for Astrophysics ; ItaliaFil: Borracci, F.. Max-Planck-Institut für Physik; AlemaniaFil: Bretz, T.. Universität Würzburg ; AlemaniaFil: Carmona, E.. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas ; EspañaFil: Carosi, A.. INAF National Institute for Astrophysics; ItaliaFil: Colin, P.. Max-Planck-Institut für Physik; AlemaniaFil: Colombo, E.. Inst. de Astrofísica de Canarias; EspañaFil: Contreras, J. L.. Universidad Complutense; EspañaFil: Cortina, J.. IFAE; EspañaFil: Covino, S.. INAF National Institute for Astrophysics; ItaliaFil: Da Vela, P.. Università di Siena; ItaliaFil: Dazzi, F.. Max-Planck-Institut für Physik; AlemaniaFil: Pichel, Ana Carolina. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Rovero, Adrian Carlos. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: The Veritas Collaboration.Fil: The MAGIC Collaboration

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Functional network resilience to pathology in presymptomatic genetic frontotemporal dementia

    Get PDF
    © 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)The presymptomatic phase of neurodegenerative diseases are characterized by structural brain changes without significant clinical features. We set out to investigate the contribution of functional network resilience to preserved cognition in presymptomatic genetic frontotemporal dementia. We studied 172 people from families carrying genetic abnormalities in C9orf72, MAPT, or PGRN. Networks were extracted from functional MRI data and assessed using graph theoretical analysis. We found that despite loss of both brain volume and functional connections, there is maintenance of an efficient topological organization of the brain's functional network in the years leading up to the estimated age of frontotemporal dementia symptom onset. After this point, functional network efficiency declines markedly. Reduction in connectedness was most marked in highly connected hub regions. Measures of topological efficiency of the brain's functional network and organization predicted cognitive dysfunction in domains related to symptomatic frontotemporal dementia and connectivity correlated with brain volume loss in frontotemporal dementia. We propose that maintaining the efficient organization of the brain's functional network supports cognitive health even as atrophy and connectivity decline presymptomatically.This work was funded by the UK Medical Research Council, the Italian Ministry of Health, and the Canadian Institutes of Health Research as part of a Centres of Excellence in Neurodegeneration grant [grant number CoEN015]. JBR was supported by the Wellcome Trust [grant number 103838]. JBR, RB, TR, and SJ were supported by the NIHR Cambridge Biomedical Research Centre and Medical Research Council [grant number G1100464]. The Dementia Research Centre at UCL is supported by Alzheimer's Research UK, Brain Research Trust, and The Wolfson Foundation, NIHR Queen Square Dementia Biomedical Research Unit, NIHR UCL/H Biomedical Research Centre and Dementia Platforms UK. JDR is supported by an MRC Clinician Scientist Fellowship [grant number MR/M008525/1] and has received funding from the NIHR Rare Disease Translational Research Collaboration [grant number BRC149/NS/MH]. MM is supported by the Canadian Institutes of Health Research, Department of Medicine at Sunnybrook Health Sciences Centre and the University of Toronto, and the Sunnybrook Research Institute. RL is supported by Réseau de médecine génétique appliquée, Fonds de recherche du Québec—Santé [grant number FRQS]. FT is supported by the Italian Ministry of Health. DG is supported by the Fondazione Monzino and Italian Ministry of Health, Ricerca Corrente. SS is supported by Cassa di Risparmio di Firenze [grant number CRF 2013/0199] and the Ministry of Health [grant number RF-2010-2319722]. JvS is supported by The Netherlands Organisation for Health Research and Development Memorable grant [grant number 733050103] and Netherlands Alzheimer Foundation Memorable grant [grant number 733050103].info:eu-repo/semantics/publishedVersio

    Hyperdominance in Amazonian Forest Carbon Cycling

    Get PDF
    While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few ‘hyperdominant’ species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits. We find that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only ≈1% of Amazon tree species responsible for 50% of carbon storage and productivity. Although those species that contribute most to biomass and productivity are often abundant, species maximum size is also influential, while the identity and ranking of dominant species varies by function and by region

    Disease-related cortical thinning in presymptomatic granulin mutation carriers

    Get PDF
    © 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license.Mutations in the granulin gene (GRN) cause familial frontotemporal dementia. Understanding the structural brain changes in presymptomatic GRN carriers would enforce the use of neuroimaging biomarkers for early diagnosis and monitoring. We studied 100 presymptomatic GRN mutation carriers and 94 noncarriers from the Genetic Frontotemporal dementia initiative (GENFI), with MRI structural images. We analyzed 3T MRI structural images using the FreeSurfer pipeline to calculate the whole brain cortical thickness (CTh) for each subject. We also perform a vertex-wise general linear model to assess differences between groups in the relationship between CTh and diverse covariables as gender, age, the estimated years to onset and education. We also explored differences according to TMEM106B genotype, a possible disease modifier. Whole brain CTh did not differ between carriers and noncarriers. Both groups showed age-related cortical thinning. The group-by-age interaction analysis showed that this age-related cortical thinning was significantly greater in GRN carriers in the left superior frontal cortex. TMEM106B did not significantly influence the age-related cortical thinning. Our results validate and expand previous findings suggesting an increased CTh loss associated with age and estimated proximity to symptoms onset in GRN carriers, even before the disease onset.The authors thank all the volunteers for their participation in this study. SBE is a recipient of the Rio-Hortega post-residency grant from the Instituto de Salud Carlos III, Spain. This study was partially funded by Fundació Marató de TV3, Spain (grant no. 20143810 to RSV). The GENFI study has been supported by the Medical Research Council UK, the Italian Ministry of Health and the Canadian Institutes of Health Research as part of a Centres of Excellence in Neurodegeneration grant, as well as other individual funding to investigators. KM has received funding from an Alzheimer’s Society PhD studentship. JDR acknowledges support from the National Institute for Health Research (NIHR) Queen Square Dementia Biomedical Research Unit and the University College London Hospitals Biomedical Research Centre, the Leonard Wolfson Experimental Neurology Centre, the UK Dementia Research Institute, Alzheimer’s Research UK, the Brain Research Trust and the Wolfson Foundation. JCvS was supported by the Dioraphte Foundation grant 09-02-03-00, the Association for Frontotemporal Dementias Research Grant 2009, The Netherlands Organization for Scientific Research (NWO) grant HCMI 056-13-018, ZonMw Memorabel (Deltaplan Dementie, project number 733 051 042), Alzheimer Nederland and the Bluefield project. CG have received funding from JPND-Prefrontals VR Dnr 529-2014-7504, VR: 2015-02926, and 2018-02754, the Swedish FTD Initiative-Schörling Foundation, Alzheimer Foundation, Brain Foundation and Stockholm County Council ALF. DG has received support from the EU Joint Programme – Neurodegenerative Disease Research (JPND) and the Italian Ministry of Health (PreFrontALS) grant 733051042. JBR is funded by the Wellcome Trust (103838) and the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre. MM has received funding from a Canadian Institutes of Health Research operating grant and the Weston Brain Institute and Ontario Brain Institute. RV has received funding from the Mady Browaeys Fund for Research into Frontotemporal Dementia. EF has received funding from a CIHR grant #327387. JDR is an MRC Clinician Scientist (MR/M008525/1) and has received funding from the NIHR Rare Diseases Translational Research Collaboration (BRC149/NS/MH), the Bluefield Project and the Association for Frontotemporal Degeneration. MS was supported by a grant 779257 “Solve-RD” from the Horizon 2020 research and innovation programme.info:eu-repo/semantics/publishedVersio
    corecore