19 research outputs found

    A survey of RNA viruses in mosquitoes from Mozambique reveals novel genetic lineages of flaviviruses and phenuiviruses, as well as frequent flavivirus-like viral DNA forms in Mansonia

    Get PDF
    Background: Mosquito-borne diseases involving arboviruses represent expanding threats to sub-Saharan Africa imposing as considerable burden to human and veterinary public health. In Mozambique over one hundred species of potential arbovirus mosquito vectors have been identified, although their precise role in maintaining such viruses in circulation in the country remains to be elucidated. The aim of this study was to screen for the presence of flaviviruses, alphaviruses and bunyaviruses in mosquitoes from different regions of Mozambique. Results: Our survey analyzed 14,519 mosquitoes, and the results obtained revealed genetically distinct insect-specific flaviviruses, detected in multiple species of mosquitoes from different genera. In addition, smaller flavivirus-like NS5 sequences, frequently detected in Mansonia seemed to correspond to defective viral sequences, present as viral DNA forms. Furthermore, three lineages of putative members of the Phenuiviridae family were also detected, two of which apparently corresponding to novel viral genetic lineages. Conclusion: This study reports for the first-time novel insect-specific flaviviruses and novel phenuiviruses, as well as frequent flavivirus-like viral DNA forms in several widely known vector species. This unique work represents recent investigation of virus screening conducted in mosquitoes from Mozambique and an important contribution to inform the establishment of a vector control program for arbovirus in the country and in the region.publishersversionpublishe

    implication for assessing the risk of arbovirus outbreaks

    Get PDF
    Funding Information: This work was also supported by the U.S. Centers for Disease Control and Prevention through a cooperative agreement number 5NU14GH001237-03-00. The views expressed in this written publication do not necessarily reflect the official policies of the U.S. Department of Health and Human Services. European Foundation Initiative into Neglected Tropical Disease also supported this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank all community leaders, household heads staff from the provincial health directorates, staff from the Medical Entomology Laboratory from the National Institute of Health, staff from National Malaria Control Programme, and staff from the Laboratório de Transmissores de Hematozoários of the Oswaldo Cruz Institute for their support during field work, laboratory testing and identification of Aedes spp. We also thank José Feriano Américo who produced the maps of this work. Ours special thanks goes to Professor J. Dereck Charlwood who revised the English grammar and typos of the entire manuscript. Consent for publication Our manuscript does not present any individual person's data. Publisher Copyright: © 2018 Abílio et al. http://creativecommons.org/licenses/by/4.0/.Background: Aedes-borne arboviruses have emerged as an important public health problem worldwide and, in Mozambique, the number of cases and its geographical spread have been growing. However, information on the occurrence, distribution and ecology of Aedes aegypti and Ae. albopictus mosquitoes remain poorly known in the country. Methods: Between March and April 2016, a cross-sectional study was conducted in 32 districts in Mozambique to determine the distribution and breeding sites of Ae. aegypti and Ae. albopictus. Larvae and pupae were collected from a total of 2,807 water-holding containers using pipette, dipper, funnel and sweeping procedures, depending on the container type and location. Both outdoor and indoor water-holding containers were inspected. The immature forms were reared to adults and the identifications of the mosquito species was carried out with a stereomicroscope using a taxonomic key. Results: Aedes aegypti was found in every district sampled, while Ae. albopictus was only found in Moatize district, situated in Tete Province in the central part of the country. Six hundred and twenty-eight of 2,807 (22.4%) containers were positive for Ae. aegypti but only one (0.03%) was positive for Ae. albopictus. The Container Index (CI) of Aedes was highest in densely populated suburban areas of the central region (260/604; 43.0%), followed by suburban areas in northern areas (228/617; 36.9%) whilst the lowest proportion was found in urbanized southern areas (140/1586; 8.8%). The highest CI of Aedes was found in used tires (448/1268; 35.3%), cement tanks (20/62; 32.3%) and drums (21/95; 22.1%). Conclusion: Data from our study showed that Ae. aegypti is present nation-wide, since it occurred in every sampled district, whilst Ae. albopictus had a limited distribution. Therefore, the risk of transmission of dengue and chikungunya is likely to have been underestimated in Mozambique. This study highlights the need for the establishment of a national entomological surveillance program for Aedes spp. in Mozambique in order to gain a better understanding about vector bionomics and to support the development of informed effective vector control strategies.publishersversionpublishe

    Morphological and Molecular Characterization Using Genitalia and CoxI Barcode Sequence Analysis of Afrotropical Mosquitoes with Arbovirus Vector Potential

    Get PDF
    Funding Information: Eddyson Montalvo-Sabino was recipient of a grant from “Programa Nacional de Becas y Crédito Educativo” (PRONABEC), 2019—Beca Generacion del Bicentenario, from the “Ministerio de Educación” of Peru. A.P. Abilio was a recipient of a grant from Wellcome Trust (Grant WT087546MA) through SACIDS RVF and NPHI-Phase-II from the National Institute for Health of Mozambique through a cooperative agreement number [5NU14GH001237-03-00]. Marietjie Venter was a recipient of a sub-award from the Global Disease Detection Program, US-CDC award 5U19GH000571-02 with the NICD and University of Pretoria that funded vector surveillance in South Africa (2012–2015) and by the Cooperative Agreement Number (5 NU2GGH001874-02-00) with the University of Pretoria (2014–2017). Milehna M. Guarido received a studentship through this grant. A.P.G. Almeida has been a recipient of the Visiting Professor Programme by the University of Pretoria for the work in South Africa. This work received financial support from the Global Health and Tropical Medicine Center (GHTM|IHMT|NOVA), which is funded through FCT contract UID/Multi/04413/2013, Portugal. The findings and conclusions expressed in this manuscript are those of the author(s) and do not necessarily represent the official position of the funding agencies. Publisher Copyright: © 2022 by the authors.Potential arboviral Afrotropical mosquito vectors are underrepresented in public databases of CoxI barcode sequences. Furthermore, available CoxI sequences for many species are often not associated with voucher specimens to match the corresponding fine morphological characterization of specimens. Hence, this study focused on the characterization of Culicine mosquitoes from South Africa, Mozambique, and Angola and their classification using a complementary approach including a morphological analysis of specimens’ genitalia and phylogenetic study based on the analysis of CoxI barcode sequences using maximum likelihood and Bayesian phylogenetic inference methods, alongside Median-Joining Network and PCOORD analyses. Overall, 800 mosquitoes (652 males and 148 females) from 67 species, were analyzed. Genitalia from 663 specimens allowed the identification of 55 species of 10 genera. A total of 247 CoxI partial gene sequences corresponding to 65 species were obtained, 11 of which (Aedes capensis, Ae. mucidus, Culex andersoni, Cx. telesilla, Cx. inconspicuosus, Eretmapodites subsimplicipes, Er. quinquevittatus, Ficalbia uniformis, Mimomyia hispida, Uranotaenia alboabdominalis, and Ur. mashonaensis) are, to the best of our knowledge, provided here for the first time. The presence of Cx. pipiens ecotypes molestus and pipiens and their hybrids, as well as Cx. infula, is newly reported in the Afrotropical region. The rates of correct sequence identification using BOLD and BLASTn (≥95% identity) were 64% and 53%, respectively. Phylogenetic analysis revealed that, except for subgenus Eumelanomyia of Culex, there was support for tribes Aedini, Culicini, Ficalbiini, and Mansoniini. A divergence >2% was observed in conspecific sequences, e.g., Aedeomyia africana, Ae. cumminsii, Ae. unilineatus, Ae. metallicus, Ae. furcifer, Ae. caballus, and Mansonia uniformis. Conversely, sequences from groups and species complexes, namely, Ae. simpsoni, Ae. mcintoshi, Cx. bitaeniorhynchus, Cx. simpsoni, and Cx. pipiens were insufficiently separated. A contribution has been made to the barcode library of Afrotropical mosquitoes with associated genitalia morphological identifications.publishersversionpublishe

    Contribution of Cx. quinquefasciatus in Mediterranean populations

    Get PDF
    Background: Mosquitoes of the Culex pipiens complex are cosmopolitan, and important vectors of neglected tropical diseases, such as arbovirosis and lymphatic filariasis. Among the complex taxa, Cx. pipiens (with two forms pipiens and molestus) and Cx. quinquefasciatus are the most ubiquitous mosquitoes in temperate and tropical regions respectively. Mosquitoes of this taxa lack of morphological differences between females, but have frank behavioral and physiological differences and have different trophic preferences that influence their vectorial status. Hybridization may change the vectorial capacity of these mosquitoes, increasing vector efficiency and medical importance of resulting hybrids. Methods: Culex pipiens s.l. from 35 distinct populations were investigated by the study of mtDNA, symbiotic bacterium Wolbachia pipientis, nuclear DNA and flanking region of microsatellite CQ11 polymorphism using PCR with diagnostic primers, RFLP analysis and sequencing. Results: Six different mitochondrial haplotypes were revealed by sequencing of the cytochrome oxidase subunit I (COI) gene and three different Wolbachia (wPip) groups were identified. A strong association was observed between COI haplotypes/groups, wPip groups and taxa; haplogroup A and infection with wPipII appear to be typical for Cx. pipiens form pipiens, haplotype D and infection with wPipIV for form molestus, while haplogroup E, characteristic of Cx. quinquefasciatus, were correlated with wPipI and found in Cx. pipiens sl. from coastal regions of Southern Europe and Mediterranean region. Analysis of microsatellite locus and nuclear DNA revealed hybrids between Cx. pipiens form pipiens and form molestus, as well as between Cx. pipiens and Cx. quinquefasciatus, in Mediterranean populations, as opposed to Northern Europe. Phylogenetic analysis of COI sequences yielded a tree topology that supported the RFLP analysis with significant bootstrap values for haplotype D and haplogroup E. Conclusions: Molecular identification provides the first evidence of the presence of hybrids between Cx. quinquefasciatus and Cx. pipiens as well as cytoplasmic introgression of Cx. quinquefasciatus into Cx. pipiens as a result of hybridization events in coastal regions of Southern Europe and Mediterranean region. Together with observed hybrids between pipiens and molestus forms, these findings point to the presence of hybrids in these areas, with consequent higher potential for disease transmission.publishersversionpublishe

    Mosquito community composition in South Africa and some neighboring countries

    Get PDF
    Abstract Background A century of studies have described particular aspects of relatively few mosquito species in southern Africa, mostly those species involved with disease transmission, specifically malaria and arboviruses. Patterns of community composition such as mosquito abundance and species diversity are often useful measures for medical entomologists to guide broader insights and projections regarding disease dynamics and potential introduction, spread or maintenance of globally spreading pathogens. However, little research has addressed these indicators in southern Africa. Results We collected 7882 mosquitoes from net and light traps at 11 localities comprising 66 species in 8 genera. We collected an additional 8 species using supplementary collection techniques such as larval sampling, sweep-netting and indoor pyrethrum knockdown catches. Highest diversity and species richness was found in the Okavango Delta of Botswana and in South Africa’s Kruger National Park, while the lowest diversity and abundances were in the extreme southern tip of South Africa and in semi-desert Kalahari close to the South Africa border with Botswana. Species composition was more similar between proximal localities than distant ones (Linear model P-value = 0.005). Multiple arbovirus vector species were detected in all localities we surveyed (proportion of vector mosquito numbers were > 0.5 in all locations except Shingwedzi). Their proportions were highest (> 90%) in Vilankulo and Kogelberg. Conclusions Multiple known arbovirus vector species were found in all study sites, whereas anopheline human malaria vector species in only some sites. The combination of net traps and light traps effectively sampled mosquito species attracted to carbon-dioxide or light, accounting for 89% of the 74 species collected. The 11% remaining species were collected using supplementary collection techniques mentioned above. The diversity of species weas highest in savanna type habitats, whereas low diversities were found in the drier Kalahari sands regions and the southern Cape fynbos regions

    A diverse assemblage of RNA and DNA viruses found in mosquitoes collected in southern Portugal

    No full text
    This work describes the detection and partial characterization of mosquito-borne virus genomic sequences, based on the analysis of mosquitoes collected from the Spring to Fall of 2018 in the Algarve (southern Portugal). The viral survey that was carried out using multiple primer sets disclosed the presence of both RNA and DNA viral sequences in these mosquitoes, which were subsequently analysed using maximum likelihood and Bayesian phylogenetic reconstruction methods. The obtained results brought to light three lineages of insect-specific flaviviruses, a monophyletic cluster of bunyaviruses from an unassigned group within the Phenuiviridae family, as well as brevidensoviruses (Parvoviridae, Densovirinae:). The latter two groups of viruses were here described for the first time in mosquitoes from Portugal. Results relating to the tentative isolation of the putative viruses identified in C6/36 cells are also shown, and the serendipitous, although not unexpected, isolation a Negev-like Nelorpivirus from Culex laticinctcus mosquitoes is reported.Portuguese Ministry of Education and Science (FCT- Fundacao para a Ciencia e a Tecnologia, I.P.) [IF/01302/2015]FCTPortuguese Foundation for Science and Technology [UID/Multi/04413/2013

    Comparative morphological and molecular analysis confirms the presence of the West Nile virus mosquito vector, Culex univittatus, in the Iberian Peninsula

    Get PDF
    Background: Culex univittatus and Culex perexiguus mosquitoes (Diptera: Culicidae) are competent arbovirus vectors, but with unclear morphological differentiation. In Europe, and in the Iberian Peninsula in particular, the presence of either or both species is controversial. However, in order to conduct adequate surveillance for arboviruses in this region, it is crucial to clarify whether Cx. univittatus is present or not, as well as to critically assess existing differentiation tools. This study aimed to clarify this situation, by morphological and molecular phylogenetic comparison of Iberian specimens deemed as Cx. univittatus, with others of South African origin, i.e. from the type-locality region. Methods: Thus, morphological characteristics useful to distinguish both species, such as midfemur pale line, hindfemur R ratio, seta g R1 ratio, seta f shape, length of ventral arm of phalosome and number of setae on IX tergal abdominal segment, were observed. A phylogenetic analysis based on cox1 mtDNA, of which there were no sequences from Cx. univittatus yet available in the GenBank database, was performed. Results: This analysis showed that Iberian and South African specimens are morphologically similar, except for the length of the ventral arm of the phalosome, which was higher in the Iberian specimens. Although the Iberian specimens could not be accurately identified using BOLD Systems, phylogenetic analysis still grouped these closer to South African Cx. univittatus, than to Cx. perexiguus from Turkey and Pakistan, despite the observed segregation of both taxa as two individual monophyletic clusters with shared common ancestry. Conclusions: This survey demonstrates that the West Nile virus vector Cx. univittatus is present in the Iberian Peninsula.publishersversionpublishe
    corecore