4,307 research outputs found

    A Critical Evaluation of the Capital Theory Approach to Sustainable Development

    Get PDF
    Irrigation farmers in the lower reaches of the Vaal and Riet Rivers are experiencing substantial yield reductions in certain crops and more profitable crops have been withdrawn from production, hypothesised, as a result of generally poor but especially fluctuating water quality. In this paper secondary data is used in a linear programming model to test this hypothesis by calculating the potential loss in farm level optimal returns. The model is static with a time frame of two production seasons. Linear crop-water quality production functions (Ayers & Westcot, 1983; adapted from Maas & Hoffmann, 1977) are used to calculate net returns for the eight most common crops grown. Results show optimal enterprise composition under various water quality situations. Leaching is justified financially and there is a strong motivation for a change in the current water pricing system. SALMOD (Salinity and Leaching Model for Optimal irrigation Development) is the Excel Solver model used to derive the preliminary results, but is currently being developed further in GAMS (General Algebraic Modelling System). Useful results have already been obtained on which this paper is based. The ultimate aim for SALMOD is a mathematical model using dynamic optimisation, simulation and risk modelling techniques to aid in whole farm and system level management decisions to ensure sustainable irrigation agriculture under stochastic river water quality conditions.International Development,

    Solar Neutrinos Before and After KamLAND

    Get PDF
    We use the recently reported KamLAND measurements on oscillations of reactor anti-neutrinos, together with the data of previously reported solar neutrino experiments, to show that: (1) the total 8B neutrino flux emitted by the Sun is 1.00(1.0 \pm 0.06) of the standard solar model (BP00) predicted flux, (2) the KamLAND measurements reduce the area of the globally allowed oscillation regions that must be explored in model fitting by six orders of magnitude in the Delta m^2-tan^2 theta plane, (3) LMA is now the unique oscillation solution to a CL of 4.7sigma, (4) maximal mixing is disfavored at 3.1 sigma, (5) active-sterile admixtures are constrained to sin^2 eta<0.13 at 1 sigma, (6) the observed ^8B flux that is in the form of sterile neutrinos is 0.00^{+0.09}_{-0.00} (1 sigma), of the standard solar model (BP00) predicted flux, and (7) non-standard solar models that were invented to completely avoid solar neutrino oscillations are excluded by KamLAND plus solar at 7.9 sigma . We also refine quantitative predictions for future 7Be and p-p solar neutrino experiments.Comment: Published version, includes editorial improvement

    Global Analysis with SNO: Toward the Solution of the Solar Neutrino Problem

    Full text link
    We perform a global analysis of the latest solar neutrino data including the SNO result on the CC-event rate. This result further favors the LMA solution of the solar neutrino problem. The best fit values of parameters we find are: \Delta m^2 = (4.8 - 5.0)10^{-5} eV^2, tan^2 \theta = 0.35 - 0.38, f_B = 1.08 - 1.12, and f_{hep} = 1 - 4. With respect to this best fit the LOW solution is accepted at 90% C.L.. The Vacuum oscillation solution with \Delta m^2 = 1.4 10^{-10} eV^2, gives good fit of the data provided that the boron neutrino flux is substantially smaller than the SSM flux (f_B \sim 0.5). The SMA solution is accepted only at 3\sigma level. We find that vacuum oscillations to sterile neutrino, VAC(sterile), with f_B \sim 0.5 also give rather good global fit of the data. All other sterile solutions are strongly disfavored. We check the quality of the fit by constructing the pull-off diagrams of observables. Predictions for the day-night asymmetry, spectrum distortion and NC/CC ratio at SNO are calculated. In the best fit points of the global solutions we find: A_{DN}^{CC} \approx (7 - 8)% for LMA, \sim 3% for LOW, and (2 - 3)% for SMA. It will be difficult to see the distortion of the spectrum expected for LMA as well as LOW solutions. However, future SNO spectral data can significantly affect the VAC and SMA solutions. We also calculate expectations for the BOREXINO rate.Comment: 35 pages, latex, 9 figures; results of analysis slightly changed due to different treatment of the hep neutrino flux; predictions for NC/CC ratio and Borexino rate adde

    Blaasnekstenose

    Get PDF
    No Abstract

    Report of a pilot study on the insertion of a lippes loop early in the puerperium for contraception

    Get PDF
    Click on the link to view

    Liquid-gas phase transition in finite nuclei

    Full text link
    In a finite temperature Thomas-Fermi framework, we calculate density distributions of hot nuclei enclosed in a freeze-out volume of few times the normal nuclear volume and then construct the caloric curve, with and without inclusion of radial collective flow. In both cases, the calculated specific heats CvC_v show a peaked structure signalling a liquid-gas phase transition. Without flow, the caloric curve indicates a continuous phase transition whereas with inclusion of flow, the transition is very sharp. In the latter case, the nucleus undergoes a shape change to a bubble from a diffuse sphere at the transition temperature.Comment: Proc. of 6th Int. Conf. on N-N Collisions (Gatlinburg); Nuclear Physics A (in press

    Solar Neutrino Rates, Spectrum, and its Moments : an MSW Analysis in the Light of Super-Kamiokande Results

    Get PDF
    We re-examine MSW solutions of the solar neutrino problem in a two flavor scenario taking (a) the results on total rates and the electron energy spectrum from the 1117-day SuperKamiokande (SK) data and (b) those on total rates from the Chlorine and Gallium experiments. We find that the SMA solution gives the best fit to the total rates data from the different experiments. One new feature of our analysis is the use of the moments of the SK electron spectrum in a χ2\chi^2 analysis. The best-fit to the moments is broadly in agreement with that obtained from a direct fit to the spectrum data and prefers a Δm2\Delta m^2 comparable to the SMA fit to the rates but the required mixing angle is larger. In the combined rate and spectrum analysis, apart from varying the normalization of the 8^8B flux as a free parameter and determining its best-fit value we also obtain the best-fit parameters when correlations between the rates and the spectrum data are included and the normalization of the 8^8B flux held fixed at its SSM value. We observe that the correlations between the rates and spectrum data are important and the goodness of fit worsens when these are included. In either case, the best-fit lies in the LMA region.Comment: 17 pages, 4 figure

    Puerperale tubale onderbining met plaaslike verdowing

    Get PDF
    No Abstrac

    Model Independent Information On Solar Neutrino Oscillations

    Get PDF
    We present the results of a Bayesian analysis of solar neutrino data in terms of nu_e->nu_{mu,tau} oscillations, independent from the Standard Solar Model predictions for the solar neutrino fluxes. We show that such a model independent analysis allows to constraint the values of the neutrino mixing parameters in limited regions around the usual SMA, LMA, LOW and VO regions. Furthermore, there is a strong indication in favor of large neutrino mixing and large values of Delta m^2 (LMA region). We calculate also the allowed ranges of the neutrino fluxes and we show that they are in good agreement with the Standard Solar Model prediction. In particular, the ratio of the 8B flux with its Standard Solar Model prediction is constrained in the interval [0.45,1.42] with 99.73% probability. Finally, we show that the hypothesis of no neutrino oscillations is strongly disfavored in a model independent way with respect to the hypothesis of neutrino oscillations.Comment: 40 pages, 20 figures. Added references and improved figure
    • 

    corecore