17,561 research outputs found

    Changes in seed dispersal processes and the potential for between-patch connectivity for an arid land daisy

    Get PDF
    Dispersal is a major and critical process in population biology that has been particularly challenging to study. Animals can have major roles in seed dispersal even in species that do not appear specifically adapted to animal-aided dispersal. This can occur by two processes: direct movement of diaspores by animals and modification of landscape characteristics by animals in ways that greatly influence dispersal. We exploited the production of large, persistent dispersal structures (seed heads, henceforth) by Erodiophyllum elderi (Asteraceae), a daisy from arid Australia, to further understand secondary dispersal. Seed head dispersal on and off animal tracks in eight E. elderi patches was monitored for 9.5 months by periodically recording the location of marked seed heads. Sites were located inside a reserve that excludes sheep but not kangaroos, and in a nearby area with both kangaroos and sheep. The distance moved and likelihood of seed head movement was higher in areas with sheep, and especially along animal tracks. There was clear evidence that seed heads were channeled down animal tracks during large rainfall events. Seed head dispersal away from patches occurred to a limited extent via their physical contact with sheep and potentially via wind dispersal. Thus, the advantages of this study system allowed us to demonstrate the two postulated effects of herbivores on dispersal via direct movement of seed heads, and two distinct indirect effects through landscape modification by herbivores from the creation of animal tracks and the denudation of vegetation.Louise M. Emmerson, José M. Facelli, Peter Chesson, Hugh Possingham, and Jemery R. Da

    A fiber-optic current sensor for aerospace applications

    Get PDF
    A robust, accurate, broad-band, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low and high voltage 60 Hz terrestrial power systems and in 400 Hz aircraft systems. It is intrinsically electromagnetic interference (EMI) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a novel fiber-optic temperature sensor embedded in the sensing head. The technology contained in the sensor is examined and the results of precision tests conducted at various temperatures within the wide operating range are given. The results of early EMI tests are also given

    Fiber-optic sensors for aerospace electrical measurements: An update

    Get PDF
    Fiber-optic sensors are being developed for electrical current, voltage, and power measurements in aerospace applications. These sensors are presently designed to cover ac frequencies from 60 Hz to 20 kHz. The current sensor, based on the Faraday effect in optical fiber, is in advanced development after some initial testing. Concentration is on packaging methods and ways to maintain consistent sensitivity with changes in temperature. The voltage sensor, utilizing the Pockels effect in a crystal, has excelled in temperature tests. This paper reports on the development of these sensors, the results of evaluation, improvements now in progress, and the future direction of the work

    Effectiveness Of Alternative Heuristic Algorithms For Identifying Indicative Minimum Requirements For Conservation Reserves

    Get PDF
    We compared the results of 30 heuristic reserve selection algorithms on the same large data set. Twelve of the algorithms were for presence-absence representation goals, designed to find a set of sites to represent all the land types in the study region at least once. Eighteen algorithms were intended to represent a minimum percentage of the total area of each land type. We varied the rules of the algorithms systematically to find the influence of individual rules or sequences of rules on efficiency of representation. Rankings of the algorithms according to relative numbers or areas of selected sites needed to achieve a specified representation target varied between the full data set and a subset and so appear to be data-dependent. We also ran optimizing algorithms to indicate the degree of suboptimality of the heuristics. For the presence-absence problems, the optimizing algorithms had the advantage of guaranteeing an optimal solution but had much longer running times than the heuristics. They showed that the solutions from good heuristics were 5-10% larger than optimal. The optimizing algorithms failed to solve the proportional area problems, although heuristics solved them quickly. Both heuristics and optimizing algorithms have important roles to play in conservation planning. The choice of method will depend on the size of data sets, the representation goal, the required time for analysis, and the importance of a guaranteed optimal solution

    Two new ultracool benchmark systems from WISE+2MASS

    Get PDF
    We have used the Two-Micron All-Sky Survey and the Wide-field Infrared Survey Explorer to look for ultracool dwarfs that are part of multiple systems containing main-sequence stars. We cross-matched L dwarf candidates from the surveys with Hipparcos and Gliese stars, finding two new systems. The first system, G255-34AB, is an L2 dwarf companion to a K8 star, at a distance of 36 pc. We estimate its bolometric luminosity as log L/L-circle dot = -3.78 +/- 0.045 and T-eff = 2080 +/- 260 K. The second system, GJ499ABC, is a triple, with an L5 dwarf as a companion to a binary with an M4 and K5 star. These two new systems bring the number of L dwarf plus main-sequence star multiple systems to 24, which we discuss. We consider the binary fraction for L dwarfs and main-sequence stars, and further assess possible unresolved multiplicity within the full companion sample. This analysis shows that some of the L dwarfs in this sample might actually be unresolved binaries themselves, since their M-J appears to be brighter than the expected for their spectral types.Peer reviewe

    Synthesis of new chiral organosulfur donors with hydrogen bonding functionality and their first charge transfer salts

    Get PDF
    The syntheses of a range of enantiopure organosulfur donors with hydrogen bonding groups are described including TTF related materials with two, four, six and eight hydroxyl groups and multiple stereogenic centres and a pair of chiral N-substituted BEDT-TTF acetamides. Three charge transfer salts of enantiopure poly-hydroxy-substituted donors are reported, including a 4:1 salt with the meso stereoisomer of the dinuclear [Fe2(oxalate)5 ]4- anion in which both cation and anion have chiral components linked together by hydrogen bonding, and a semiconducting salt with triiodide

    CTMC calculations of electron capture and ionization in collisions of multiply charged ions with elliptical Rydberg atoms

    Get PDF
    We have performed classical trajectory Monte Carlo (CTMC) studies of electron capture and ionization in multiply charged (Q=8) ion-Rydberg atom collisions at intermediate impact velocities. Impact parallel to the minor and to the major axis, respectively, of the initial Kepler electron ellipse has been investigated. The important role of the initial electron momentum distribution found for singly charged ion impact is strongly disminished for higher projectile charge, while the initial spatial distribution remains important for all values of Q studied.Comment: 3 pages, 5 figure
    corecore