19,335 research outputs found
Towards the Distributed Burning Regime in Turbulent Premixed Flames
Three-dimensional numerical simulations of canonical statistically-steady
statistically-planar turbulent flames have been used in an attempt to produce
distributed burning in lean methane and hydrogen flames. Dilatation across the
flame means that extremely large Karlovitz numbers are required; even at the
extreme levels of turbulence studied (up to a Karlovitz number of 8767)
distributed burning was only achieved in the hydrogen case. In this case,
turbulence was found to broaden the reaction zone visually by around an order
of magnitude, and thermodiffusive effects (typically present for lean hydrogen
flames) were not observed. In the preheat zone, the species compositions differ
considerably from those of one-dimensional flames based a number of different
transport models (mixture-averaged, unity Lewis number, and a turbulent eddy
viscosity model). The behaviour is a characteristic of turbulence dominating
non-unity Lewis number species transport, and the distinct limit is again
attributed to dilatation and its effect on the turbulence. Peak local reaction
rates are found to be lower in the distributed case than in the lower Karlovitz
cases but higher than in the laminar flame, which is attributed to effects that
arise from the modified fuel-temperature distribution that results from
turbulent mixing dominating low Lewis number thermodiffusive effects. Finally,
approaches to achieve distributed burning at realisable conditions are
discussed; factors that increase the likelihood of realising distributed
burning are higher pressure, lower equivalence ratio, higher Lewis number, and
lower reactant temperature
A spectral deferred correction strategy for low Mach number reacting flows subject to electric fields
We propose an algorithm for low Mach number reacting flows subjected to
electric field that includes the chemical production and transport of charged
species. This work is an extension of a multi-implicit spectral deferred
correction (MISDC) algorithm designed to advance the conservation equations in
time at scales associated with advective transport. The fast and nontrivial
interactions of electrons with the electric field are treated implicitly using
a Jacobian-Free Newton Krylov approach for which a preconditioning strategy is
developed. Within the MISDC framework, this enables a close and stable coupling
of diffusion, reactions and dielectric relaxation terms with advective
transport and is shown to exhibit second-order convergence in space and time.
The algorithm is then applied to a series of steady and unsteady problems to
demonstrate its capability and stability. Although developed in a
one-dimensional case, the algorithmic ingredients are carefully designed to be
amenable to multidimensional applications
AAA gunnermodel based on observer theory
The Luenberger observer theory is used to develop a predictive model of a gunner's tracking response in antiaircraft artillery systems. This model is composed of an observer, a feedback controller and a remnant element. An important feature of the model is that the structure is simple, hence a computer simulation requires only a short execution time. A parameter identification program based on the least squares curve fitting method and the Gauss Newton gradient algorithm is developed to determine the parameter values of the gunner model. Thus, a systematic procedure exists for identifying model parameters for a given antiaircraft tracking task. Model predictions of tracking errors are compared with human tracking data obtained from manned simulation experiments. Model predictions are in excellent agreement with the empirical data for several flyby and maneuvering target trajectories
Voices and Thoughts in Psychosis: An Introduction
This is the final version. Available from Springer Verlag via the DOI in this record.In this introduction we present the orthodox account of auditory verbal hallucinations (AVHs), a number of worries for this account, and some potential responses open to its proponents. With some problems still remaining, we then introduce the problems presented by the phenomenon of thought insertion, in particular the question of how different it is supposed to be from AVHs. We then mention two ways in which theorists have adopted different approaches to voices and thoughts in psychosis, and then present the motivation and composition of this special issue.The two authors of this introduction were supported by a Wellcome Trust Strategic Award (WT098455MA)
Moon Trek: An Interactive Web Portal for Current and Future Lunar Missions
NASA's Moon Trek (https://moontrek.jpl.nasa.gov) is the successor to and replacement for NASA's Lunar Mapping and Modeling Portal (LMMP). Released in 2017, Moon Trek features a new interface with improved ways to access, visualize, and analyze data. Moon Trek provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped lunar data products from past and current lunar missions
Recommended from our members
Interferon-alpha-induced deficits in novel object recognition are rescued by chronic exercise
The anti-viral drug interferon-alpha (IFN-alpha) is widely-known to induce psychiatric and cognitive effects in patients. Previous work has shown that physical exercise can have a positive effect against brain insult. We investigated the effects of a clinically-comparable treatment regime of IFN-alpha on cognitive function in male Wistar rats and assessed the impact of chronic treadmill running on the deficits generated by IFN-alpha. We found that IFN-alpha induced significant impairments in performance on both spatial novelty and object novelty recognition. Chronic forced exercise did not protect against IFN-alpha-induced learning deficits in reactivity to spatial change, but did restore the capacity for novel object recognition in IFN-alpha-treated animals
Randomized Revenue Monotone Mechanisms for Online Advertising
Online advertising is the main source of revenue for many Internet firms. A
central component of online advertising is the underlying mechanism that
selects and prices the winning ads for a given ad slot. In this paper we study
designing a mechanism for the Combinatorial Auction with Identical Items (CAII)
in which we are interested in selling identical items to a group of bidders
each demanding a certain number of items between and . CAII generalizes
important online advertising scenarios such as image-text and video-pod
auctions [GK14]. In image-text auction we want to fill an advertising slot on a
publisher's web page with either text-ads or a single image-ad and in
video-pod auction we want to fill an advertising break of seconds with
video-ads of possibly different durations.
Our goal is to design truthful mechanisms that satisfy Revenue Monotonicity
(RM). RM is a natural constraint which states that the revenue of a mechanism
should not decrease if the number of participants increases or if a participant
increases her bid.
[GK14] showed that no deterministic RM mechanism can attain PoRM of less than
for CAII, i.e., no deterministic mechanism can attain more than
fraction of the maximum social welfare. [GK14] also design a
mechanism with PoRM of for CAII.
In this paper, we seek to overcome the impossibility result of [GK14] for
deterministic mechanisms by using the power of randomization. We show that by
using randomization, one can attain a constant PoRM. In particular, we design a
randomized RM mechanism with PoRM of for CAII
STEM Engagement with NASA's Solar System Treks Portals for Lunar and Planetary Mapping and Modeling
This presentation will provide an overview of the uses and capabilities of NASA's Solar System Treks family of online mapping and modeling portals. While also designed to support mission planning and scientific research, this presentation will focus on the Science, Technology, Engineering, and Math (STEM) engagement and public outreach capabilities of these web based suites of data visualization and analysis tools
Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors
We demonstrate position and energy-resolved phonon-mediated detection of particle interactions in a silicon substrate instrumented with an array of microwave kinetic inductance detectors (MKIDs). The relative magnitude and delay of the signal received in each sensor allow the location of the interaction to be determined with ≲ 1mm resolution at 30 keV. Using this position information, variations in the detector response with position can be removed, and an energy resolution of σ_E = 0.55 keV at 30 keV was measured. Since MKIDs can be fabricated from a single deposited film and are naturally multiplexed in the frequency domain, this technology can be extended to provide highly pixelized athermal phonon sensors for ∼1 kg scale detector elements. Such high-resolution, massive particle detectors would be applicable to rare-event searches such as the direct detection of dark matter, neutrinoless double-beta decay, or coherent neutrino-nucleus scattering
- …