18,817 research outputs found

    Towards the Distributed Burning Regime in Turbulent Premixed Flames

    Get PDF
    Three-dimensional numerical simulations of canonical statistically-steady statistically-planar turbulent flames have been used in an attempt to produce distributed burning in lean methane and hydrogen flames. Dilatation across the flame means that extremely large Karlovitz numbers are required; even at the extreme levels of turbulence studied (up to a Karlovitz number of 8767) distributed burning was only achieved in the hydrogen case. In this case, turbulence was found to broaden the reaction zone visually by around an order of magnitude, and thermodiffusive effects (typically present for lean hydrogen flames) were not observed. In the preheat zone, the species compositions differ considerably from those of one-dimensional flames based a number of different transport models (mixture-averaged, unity Lewis number, and a turbulent eddy viscosity model). The behaviour is a characteristic of turbulence dominating non-unity Lewis number species transport, and the distinct limit is again attributed to dilatation and its effect on the turbulence. Peak local reaction rates are found to be lower in the distributed case than in the lower Karlovitz cases but higher than in the laminar flame, which is attributed to effects that arise from the modified fuel-temperature distribution that results from turbulent mixing dominating low Lewis number thermodiffusive effects. Finally, approaches to achieve distributed burning at realisable conditions are discussed; factors that increase the likelihood of realising distributed burning are higher pressure, lower equivalence ratio, higher Lewis number, and lower reactant temperature

    A spectral deferred correction strategy for low Mach number reacting flows subject to electric fields

    Get PDF
    We propose an algorithm for low Mach number reacting flows subjected to electric field that includes the chemical production and transport of charged species. This work is an extension of a multi-implicit spectral deferred correction (MISDC) algorithm designed to advance the conservation equations in time at scales associated with advective transport. The fast and nontrivial interactions of electrons with the electric field are treated implicitly using a Jacobian-Free Newton Krylov approach for which a preconditioning strategy is developed. Within the MISDC framework, this enables a close and stable coupling of diffusion, reactions and dielectric relaxation terms with advective transport and is shown to exhibit second-order convergence in space and time. The algorithm is then applied to a series of steady and unsteady problems to demonstrate its capability and stability. Although developed in a one-dimensional case, the algorithmic ingredients are carefully designed to be amenable to multidimensional applications

    AAA gunnermodel based on observer theory

    Get PDF
    The Luenberger observer theory is used to develop a predictive model of a gunner's tracking response in antiaircraft artillery systems. This model is composed of an observer, a feedback controller and a remnant element. An important feature of the model is that the structure is simple, hence a computer simulation requires only a short execution time. A parameter identification program based on the least squares curve fitting method and the Gauss Newton gradient algorithm is developed to determine the parameter values of the gunner model. Thus, a systematic procedure exists for identifying model parameters for a given antiaircraft tracking task. Model predictions of tracking errors are compared with human tracking data obtained from manned simulation experiments. Model predictions are in excellent agreement with the empirical data for several flyby and maneuvering target trajectories

    Voices and Thoughts in Psychosis: An Introduction

    Get PDF
    This is the final version. Available from Springer Verlag via the DOI in this record.In this introduction we present the orthodox account of auditory verbal hallucinations (AVHs), a number of worries for this account, and some potential responses open to its proponents. With some problems still remaining, we then introduce the problems presented by the phenomenon of thought insertion, in particular the question of how different it is supposed to be from AVHs. We then mention two ways in which theorists have adopted different approaches to voices and thoughts in psychosis, and then present the motivation and composition of this special issue.The two authors of this introduction were supported by a Wellcome Trust Strategic Award (WT098455MA)

    Moon Trek: An Interactive Web Portal for Current and Future Lunar Missions

    Get PDF
    NASA's Moon Trek (https://moontrek.jpl.nasa.gov) is the successor to and replacement for NASA's Lunar Mapping and Modeling Portal (LMMP). Released in 2017, Moon Trek features a new interface with improved ways to access, visualize, and analyze data. Moon Trek provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped lunar data products from past and current lunar missions

    Randomized Revenue Monotone Mechanisms for Online Advertising

    Full text link
    Online advertising is the main source of revenue for many Internet firms. A central component of online advertising is the underlying mechanism that selects and prices the winning ads for a given ad slot. In this paper we study designing a mechanism for the Combinatorial Auction with Identical Items (CAII) in which we are interested in selling kk identical items to a group of bidders each demanding a certain number of items between 11 and kk. CAII generalizes important online advertising scenarios such as image-text and video-pod auctions [GK14]. In image-text auction we want to fill an advertising slot on a publisher's web page with either kk text-ads or a single image-ad and in video-pod auction we want to fill an advertising break of kk seconds with video-ads of possibly different durations. Our goal is to design truthful mechanisms that satisfy Revenue Monotonicity (RM). RM is a natural constraint which states that the revenue of a mechanism should not decrease if the number of participants increases or if a participant increases her bid. [GK14] showed that no deterministic RM mechanism can attain PoRM of less than ln(k)\ln(k) for CAII, i.e., no deterministic mechanism can attain more than 1ln(k)\frac{1}{\ln(k)} fraction of the maximum social welfare. [GK14] also design a mechanism with PoRM of O(ln2(k))O(\ln^2(k)) for CAII. In this paper, we seek to overcome the impossibility result of [GK14] for deterministic mechanisms by using the power of randomization. We show that by using randomization, one can attain a constant PoRM. In particular, we design a randomized RM mechanism with PoRM of 33 for CAII

    STEM Engagement with NASA's Solar System Treks Portals for Lunar and Planetary Mapping and Modeling

    Get PDF
    This presentation will provide an overview of the uses and capabilities of NASA's Solar System Treks family of online mapping and modeling portals. While also designed to support mission planning and scientific research, this presentation will focus on the Science, Technology, Engineering, and Math (STEM) engagement and public outreach capabilities of these web based suites of data visualization and analysis tools

    Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors

    Get PDF
    We demonstrate position and energy-resolved phonon-mediated detection of particle interactions in a silicon substrate instrumented with an array of microwave kinetic inductance detectors (MKIDs). The relative magnitude and delay of the signal received in each sensor allow the location of the interaction to be determined with ≲ 1mm resolution at 30 keV. Using this position information, variations in the detector response with position can be removed, and an energy resolution of σ_E = 0.55 keV at 30 keV was measured. Since MKIDs can be fabricated from a single deposited film and are naturally multiplexed in the frequency domain, this technology can be extended to provide highly pixelized athermal phonon sensors for ∼1 kg scale detector elements. Such high-resolution, massive particle detectors would be applicable to rare-event searches such as the direct detection of dark matter, neutrinoless double-beta decay, or coherent neutrino-nucleus scattering
    corecore