400 research outputs found

    Susceptibility of Anopheles gambiae and Anopheles stephensi to tropical isolates of Plasmodium falciparum

    Get PDF
    Background: The susceptibility of anopheline mosquito species to Plasmodium infection is known to be variable with some mosquitoes more permissive to infection than others. Little work, however, has been carried out investigating the susceptibility of major malaria vectors to geographically diverse tropical isolates of Plasmodium falciparum aside from examining the possibility of infection extending its range from tropical regions into more temperate zones. Methods: This study investigates the susceptibility of two major tropical mosquito hosts (Anopheles gambiae and Anopheles stephensi) to P. falciparum isolates of different tropical geographical origins. Cultured parasite isolates were fed via membrane feeders simultaneously to both mosquito species and the resulting mosquito infections were compared. Results: Infection prevalence was variable with African parasites equally successful in both mosquito species, Thai parasites significantly more successful in An. stephensi, and PNG parasites largely unsuccessful in both species. Conclusion: Infection success of P. falciparum was variable according to geographical origin of both the parasite and the mosquito. Data presented raise the possibility that local adaptation of tropical parasites and mosquitoes has a role to play in limiting gene flow between allopatric parasite populations

    Seasonal variation in Plasmodium prevalence in a population of blue tits Cyanistes caeruleus

    Get PDF
    1. Seasonal variation in environmental conditions is ubiquitous and can affect the spread of infectious diseases. Understanding seasonal patterns of disease incidence can help to identify mechanisms, such as the demography of hosts and vectors, which influence parasite transmission dynamics. 2. We examined seasonal variation in Plasmodium infection in a blue tit Cyanistes caeruleus population over 3 years using sensitive molecular diagnostic techniques, in light of Beaudoin et al.'s (1971; Journal of Wildlife Diseases, 7, 5–13) model of seasonal variation in avian malaria prevalence in temperate areas. This model predicts a within-year bimodal pattern of spring and autumn peaks with a winter absence of infection. 3. Avian malaria infections were mostly Plasmodium (24·4%) with occasional Haemoproteus infections (0·8%). Statistical nonlinear smoothing techniques applied to longitudinal presence/absence data revealed marked temporal variation in Plasmodium prevalence, which apparently showed a within-year bimodal pattern similar to Beaudoin et al.'s model. However, of the two Plasmodium morphospecies accounting for most infections, only the seasonal pattern of Plasmodium circumflexum supported Beaudoin et al.'s model. On closer examination there was also considerable age structure in infection: Beaudoin et al.'s seasonal pattern was observed only in first year and not older birds. Plasmodium relictum prevalence was less seasonally variable. 4. For these two Plasmodium morphospecies, we reject Beaudoin et al.'s model as it does not survive closer scrutiny of the complexities of seasonal variation among Plasmodium morphospecies and host age classes. Studies of host–parasite interactions should consider seasonal variation whenever possible. We discuss the ecological and evolutionary implications of seasonal variation in disease prevalence

    Homology blocks of Plasmodium falciparum var genes and clinically distinct forms of severe malaria in a local population

    Full text link
    Abstract Background The primary target of the human immune response to the malaria parasite Plasmodium falciparum, P. falciparum erythrocyte membrane protein 1 (PfEMP1), is encoded by the members of the hyper-diverse var gene family. The parasite exhibits antigenic variation via mutually exclusive expression (switching) of the ~60 var genes within its genome. It is thought that different variants exhibit different host endothelial binding preferences that in turn result in different manifestations of disease. Results Var sequences comprise ancient sequence fragments, termed homology blocks (HBs), that recombine at exceedingly high rates. We use HBs to define distinct var types within a local population. We then reanalyze a dataset that contains clinical and var expression data to investigate whether the HBs allow for a description of sequence diversity corresponding to biological function, such that it improves our ability to predict disease phenotype from parasite genetics. We find that even a generic set of HBs, which are defined for a small number of non-local parasites: capture the majority of local sequence diversity; improve our ability to predict disease severity from parasite genetics; and reveal a previously hypothesized yet previously unobserved parasite genetic basis for two forms of severe disease. We find that the expression rates of some HBs correlate more strongly with severe disease phenotypes than the expression rates of classic var DBLα tag types, and principal components of HB expression rate profiles further improve genotype-phenotype models. More specifically, within the large Kenyan dataset that is the focus of this study, we observe that HB expression differs significantly for severe versus mild disease, and for rosetting versus impaired consciousness associated severe disease. The analysis of a second much smaller dataset from Mali suggests that these HB-phenotype associations are consistent across geographically distant populations, since we find evidence suggesting that the same HB-phenotype associations characterize this population as well. Conclusions The distinction between rosetting versus impaired consciousness associated var genes has not been described previously, and it could have important implications for monitoring, intervention and diagnosis. Moreover, our results have the potential to illuminate the molecular mechanisms underlying the complex spectrum of severe disease phenotypes associated with malaria—an important objective given that only about 1% of P. falciparum infections result in severe disease.http://deepblue.lib.umich.edu/bitstream/2027.42/112650/1/12866_2013_Article_2116.pd

    Association of house spraying with suppressed levels of drug resistance in Zimbabwe

    Get PDF
    BACKGROUND: Public health strategies are needed to curb antimalarial drug resistance. Theoretical argument points to an association between malaria transmission and drug resistance although field evidence remains limited. Field observations, made in Zimbabwe, on the relationship between transmission and multigenic drug resistance, typified by chloroquine, are reported here. METHODS: Periodic assessments of the therapeutic response of uncomplicated falciparum malaria to chloroquine in two selectively sprayed or unsprayed health centre catchments, from 1995 – 2003. Cross-sectional analysis of in vivo chloroquine failure events for five sites in relation to natural endemicity and spraying history. RESULTS: During selective house spraying, the chloroquine failure rate for the sprayed catchment decreased, such that, after four years, the odds of chloroquine failure were 4× lower than before start of spraying in the area (OR 0.2, 95% CI 0.07 – 0.75, p = 0.010, n = 100). Chloroquine failure odds for the sprayed area became 4× lower than contemporaneous failure odds for the unsprayed area (OR 0.2 95% CI 0.08 – 0.65, p = 0.003, n = 156), although the likelihood of failure was not significantly different for the two catchments before selective spraying started (OR 0.5, 95% CI 0.21 – 1.32; p = 0.170, n = 88). When spraying ended, in 1999, the drug failure odds for the former sprayed area increased back 4 fold by 2003 (OR 4.2, 95%CI 1.49 – 11.78, p = 0.004, n = 146). High altitude areas with naturally lower transmission exhibited a 6× lower likelihood of drug failure than low-lying areas (OR 0.16 95% CI 0.068 – 0.353, -2 log likelihood change 23.239, p < 0.001, n = 465). Compared to sites under ongoing annual spraying, areas that were last sprayed 3–7 years ago experienced a 4-fold higher probability of chloroquine failure (OR 4.1, 95%CI 1.84 – 9.14, -2 log likelihood change 13.956, p < 0.001). CONCLUSION: Reduced transmission is associated with suppressed levels of resistance to chloroquine and presumably other regimens with multigenic drug resistance. It seems the adoption of transmission control alongside combination chemotherapy is a potent strategy for the future containment of drug-resistant malaria

    Within-population variation in prevalence and lineage distribution of avian malaria in blue tits, Cyanistes caeruleus

    Get PDF
    The development of molecular genetic screening techniques for avian blood parasites has revealed many novel aspects of their ecology, including greatly elevated diversity and complex host–parasite relationships. Many previous studies of malaria in birds have treated single study populations as spatially homogeneous with respect to the likelihood of transmission of malaria to hosts, and we have very little idea whether any spatial heterogeneity influences different malaria lineages similarly. Here, we report an analysis of variation in the prevalence and cytochrome b lineage distribution of avian malaria infection with respect to environmental and host factors, and their interactions, in a single blue tit (Cyanistes caeruleus) population. Of 11 Plasmodium and Haemoproteus cytochrome b lineages found in 997 breeding individuals, the three most numerous (pSGS1, pTURDUS1 and pBT7) were considered separately, in addition to analyses of all avian malaria lineages pooled. Our analyses revealed marked spatial differences in the prevalence and distribution of these lineages, with local prevalence of malaria within the population ranging from over 60% to less than 10%. In addition, we found several more complex patterns of prevalence with respect to local landscape features, host state, parasite genotype, and their interactions. We discuss the implications of such heterogeneity in parasite infection at a local scale for the study of the ecology and evolution of infectious diseases in natural populations. The increased resolution afforded by the combination of molecular genetic and geographical information systems (GIS) tools has the potential to provide many insights into the epidemiology, evolution and ecology of these parasites in the future

    Correction: Population Genomics of the Immune Evasion (var) Genes of Plasmodium falciparum

    Get PDF
    Var genes encode the major surface antigen (PfEMP1) of the blood stages of the human malaria parasite Plasmodium falciparum. Differential expression of up to 60 diverse var genes in each parasite genome underlies immune evasion. We compared the diversity of the DBLalpha domain of var genes sampled from 30 parasite isolates from a malaria endemic area of Papua New Guinea (PNG) and 59 from widespread geographic origins (global). Overall, we obtained over 8,000 quality-controlled DBLalpha sequences. Within our sampling frame, the global population had a total of 895 distinct DBLalpha "types" and negligible overlap among repertoires. This indicated that var gene diversity on a global scale is so immense that many genomes would need to be sequenced to capture its true extent. In contrast, we found a much lower diversity in PNG of 185 DBLalpha types, with an average of approximately 7% overlap among repertoires. While we identify marked geographic structuring, nearly 40% of types identified in PNG were also found in samples from different countries showing a cosmopolitan distribution for much of the diversity. We also present evidence to suggest that recombination plays a key role in maintaining the unprecedented levels of polymorphism found in these immune evasion genes. This population genomic framework provides a cost effective molecular epidemiological tool to rapidly explore the geographic diversity of var genes

    Exploring blog narratives of parental loneliness: A thematic network analysis

    Get PDF
    UK-based national surveys and international longitudinal studies have shown that around a third of parents experience chronic or persistent loneliness. There is limited research about the experience of loneliness in parenthood, however blogs authored by parents, sharing their personal experiences about loneliness offer a potential rich data source. The purpose of this study was to identify and analyse blog narratives written by parents who had experienced loneliness to increase understanding of their experiences. One hundred and ninety-six relevant blog posts were identified, of which 157 had contact details to request permission to use the blog post in the study. Twenty-two parent bloggers gave their permission. Thematic network analysis was used to open code the blogs and 4 organising themes and subthemes emerged, which centred on a global theme of disconnection. Disconnection underpinned themes relating to a sense that being a parent was overwhelming, changes in identity linked to becoming a parent, difficulties in sharing feelings of loneliness with others, and a need for social connection. Findings point to parents being unprepared for the transition to parenthood, with implications for perinatal education and support, including further opportunities for parents to connect to reduce social isolation

    Host erythrocyte polymorphisms and exposure to Plasmodium falciparum in Papua New Guinea

    Get PDF
    Contains fulltext : 69991.pdf (publisher's version ) (Open Access)BACKGROUND: The protection afforded by human erythrocyte polymorphisms against the malaria parasite, Plasmodium falciparum, has been proposed to be due to reduced ability of the parasite to invade or develop in erythrocytes. If this were the case, variable levels of parasitaemia and rates of seroconversion to infected-erythrocyte variant surface antigens (VSA) should be seen in different host genotypes. METHODS: To test this hypothesis, P. falciparum parasitaemia and anti-VSA antibody levels were measured in a cohort of 555 asymptomatic children from an area of intense malaria transmission in Papua New Guinea. Linear mixed models were used to investigate the effect of alpha+-thalassaemia, complement receptor-1 and south-east Asian ovalocytosis, as well as glucose-6-phosphate dehydrogenase deficiency and ABO blood group on parasitaemia and age-specific seroconversion to VSA. RESULTS: No host polymorphism showed a significant association with both parasite prevalence/density and age-specific seroconversion to VSA. CONCLUSION: Host erythrocyte polymorphisms commonly found in Papua New Guinea do not effect exposure to blood stage P. falciparum infection. This contrasts with data for sickle cell trait and highlights that the above-mentioned polymorphisms may confer protection against malaria via distinct mechanisms

    In vivo parasitological measures of artemisinin susceptibility

    Get PDF
    Parasite clearance data from 18,699 patients with falciparum malaria treated with an artemisinin derivative in areas of low (n=14,539), moderate (n=2077), and high (n=2083) levels of malaria transmission across the world were analyzed to determine the factors that affect clearance rates and identify a simple in vivo screening measure for artemisinin resistance. The main factor affecting parasite clearance time was parasite density on admission. Clearance rates were faster in high-transmission settings and with more effective partner drugs in artemisinin-based combination treatments (ACTs). The result of the malaria blood smear on day 3 (72 h) was a good predictor of subsequent treatment failure and provides a simple screening measure for artemisinin resistance. Artemisinin resistance is highly unlikely if the proportion of patients with parasite densities of <100,000 parasites/microL given the currently recommended 3-day ACT who have a positive smear result on day 3 is <3%; that is, for n patients the observed number with a positive smear result on day 3 does not exceed (n + 60)/24
    • …
    corecore