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Summary 25 

 26 

1. Seasonal variation in environmental conditions is ubiquitous and can affect the 27 

spread of infectious diseases. Understanding seasonal patterns of disease 28 

incidence can help to identify mechanisms, such as the demography of hosts and 29 

vectors, which influence parasite transmission dynamics.  30 

2. We examined seasonal variation in Plasmodium infection in a blue tit Cyanistes 31 

caeruleus population over three years using sensitive molecular diagnostic 32 

techniques, in light of Beaudoin et al.’s (1971) model of seasonal variation in 33 

avian malaria prevalence in temperate areas. This model predicts a within-year 34 

bimodal  pattern of spring and autumn peaks with a winter absence of infection 35 

3. Avian malaria infections were mostly Plasmodium (24.4%) with occasional 36 

Haemoproteus infections (0.8%). Statistical non-linear smoothing techniques 37 

applied to longitudinal presence/absence data revealed marked temporal variation 38 

in Plasmodium prevalence, which apparently showed a within-year bimodal 39 

pattern similar to Beaudoin et al.’s model. However, of the two Plasmodium 40 

morphospecies accounting for most infections, in only (Plasmodium 41 

circumflexum) did seasonal patterns support Beaudoin et al.’s model. On closer 42 

examination there was also considerable age structure in infection: Beaudoin et 43 

al.’s seasonal pattern was observed only in first year and not older birds. 44 

Plasmodium relictum prevalence was less seasonally variable.  45 

4. For these two Plasmodium morphospecies, we reject Beaudoin et al.’s model as it 46 

does not survive closer scrutiny of the complexities of seasonal variation among 47 
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Plasmodium morphospecies and host age classes. Studies of host-parasite 48 

interactions should consider seasonal variation whenever possible. We discuss the 49 

ecological and evolutionary implications of seasonal variation in disease 50 

prevalence. 51 

 52 

 53 

Introduction 54 

 55 

The prevalence of many infectious diseases varies markedly through time, from short-56 

term seasonal fluctuations to complex population dynamics (Altizer, Dobson, Hosseini et 57 

al., 2006; Dietz, 1976; Greenman, Kamo & Boots, 2004). The dynamics of vector-borne 58 

diseases are particularly likely to vary with environmental conditions, as vectors are 59 

sensitive to climatic conditions (Aron & May, 1982; Hess, Randolph, Arneberg et al., 60 

2001). For example, human malaria Plasmodium spp. shows marked seasonality in 61 

transmission, largely due to the sensitivity of the mosquito vectors to climate (Childs, 62 

Cattadori, Suwonkerd et al., 2006; Hay, Myers, Burke et al., 2000).  63 

 64 

Host demography might play a greater role in the transmission dynamics of avian as 65 

compared to human malaria, as the temporally discrete breeding and migratory periods of 66 

avian hosts give rise to seasonally regular fluctuations in host abundance and the 67 

proportion of susceptible individuals in the host population, due to the relatively 68 

synchronous recruitment of immunologically naïve juveniles to the host population and 69 

the arrival of migrant birds (and their parasites) to the wider bird community (White, 70 
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Grenfell, Hendry et al., 1996). In addition, there may also be a reduction in herd 71 

immunity that exposes older individuals to an increased risk of infection, resulting in the 72 

epidemic spread of previously rare parasite genotypes (Altizer et al., 2006; White et al., 73 

1996). Revealing the environmental and demographic drivers that contribute to seasonal 74 

disease dynamics aids the understanding of disease epidemiology (Pascual & Dobson, 75 

2005).  76 

 77 

In tropical climates, avian malaria occurs year-round (Valkiūnas, 2005), whereas studies 78 

in temperate regions report consistent seasonal variation: a peak in prevalence during 79 

spring or the breeding season, followed by a decline during winter (Applegate, 1971; 80 

Beaudoin, Applegate, David et al., 1971; Kucera, 1981; Schrader, Walters, James et al., 81 

2003; Weatherhead & Bennett, 1991), although some studies have found higher 82 

prevalence of some haematozoa in winter (Hatchwell, Wood, Anwar et al., 2000). 83 

Beaudoin et al. (1971) proposed a model to explain patterns of seasonal variation with 84 

reference to the transmission requirements and life cycle of avian malaria parasites: a 85 

peak in malaria prevalence is supposed to occur in late summer and autumn, when vector 86 

populations (Cranston, Ramsdale, Snow et al., 1987; Marshall, 1938) and the proportion 87 

of immunologically naïve juveniles in the host population are high. Prevalence then drops 88 

in winter as vector activity wanes and malaria parasites disappear from the blood, but not 89 

necessarily body tissues, followed by a spring relapse of infection prior to the breeding 90 

season. 91 

 92 
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The development of molecular tools for diagnosis of avian malaria infection based on 93 

mitochondrial cytochrome-b lineage variation (Bensch, Stjernman, Hasselquist et al., 94 

2000; Fallon, Ricklefs, Swanson et al., 2003; Hellgren, Waldenström & Bensch, 2004; 95 

Waldenström, Bensch, Hasselquist et al., 2004) allows avian malaria infections to be 96 

examined in more detail than is possible using traditional light microscopy techniques 97 

(Waldenström et al., 2004). Estimates of diversity of around 200 species using 98 

microscopy (Valkiūnas, 2005) may mask diversity to the order of 10,000 species as 99 

revealed by molecular approaches (Bensch, Pérez-Tris, Waldenström et al., 2004): most 100 

ecological studies of malaria do not consider this diversity, a potentially important source 101 

of variation in host-parasite interactions. Established parasitological techniques remain 102 

important for identifying groups of lineages that are morphologically similar, a likely 103 

indicator of similar parasite ecology (Valkiūnas, 2005). Here, we examine seasonal 104 

variation in avian malaria infection in a woodland population of blue tits Cyanistes 105 

caeruleus L., 1758, to test Beaudoin et al.’s (1971) model. We report marked seasonal 106 

patterns of variation in infection that vary between parasite morphospecies and with host 107 

age, based on screening more than 800 samples over three years. 108 

 109 

 110 

Methods 111 

 112 

Host-parasite system 113 

Avian malaria, caused by Plasmodium and Haemoproteus spp. (sensu Pérez-Tris, 114 

Hasselquist, Hellgren et al., 2005; see Valkiūnas, Anwar, Atkinson et al., 2005 for an 115 
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alternative view), is a globally distributed vector-borne disease (Beadell, Ishtiaq, Covas et 116 

al., 2006; Valkiūnas, 2005). Plasmodium is transmitted primarily by mosquitoes 117 

(Culicidae), and Haemoproteus by biting midges (Ceratopogonidae) and louse flies 118 

(Hippoboscidae); parasite transmission is therefore dependent on vector activity, between 119 

spring and autumn in temperate areas (Valkiūnas, 2005). Blue tits (Paridae) are small 120 

passerine birds that take readily to nestboxes, laying eggs in spring with the peak of 121 

broods hatching (in the south of England) in late April-early May. Chicks fledge 16-18 122 

days later, with the last chicks fledging in early June (Perrins, 1979).  123 

 124 

In the present study, we take 15th June as a biologically meaningful start to the sampling 125 

year, because of (i) the addition to the population of many newly fledged young by this 126 

time (all nestling tits had fledged by 15th June), (ii) the age transition from first year 127 

(previous year’s nestlings) to older adults that occurs at this time, and (iii) the timing of 128 

feather moult in blue tits, in mid to late summer. It is also difficult to catch blue tits at our 129 

study site during late June and early July using mist-nets at artificial food stations, 130 

resulting in a natural break in sampling at the beginning of our sampling year on 15th 131 

June. Therefore, figures in this paper show the year’s sampling beginning in summer, 132 

with date shown by calendar month for clarity.  133 

 134 

Sampling and molecular diagnosis of infection 135 

Blood samples of <20µL were taken, under licence, by brachial or jugular venepuncture 136 

from blue tits in Wytham Woods, a ca. 380ha woodland in Oxfordshire, UK (51°47’ N, 137 

1°20’W) between May 2003 and June 2005. Birds were captured at nest boxes while 138 
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feeding nestlings, and using mist nets at feeding stations approximately weekly at other 139 

times of the year. Sex was determined by plumage characteristics or, during the breeding 140 

season, on the presence/absence of a brood patch (Svensson, 1992). Blood samples were 141 

stored in Queen’s lysis buffer (Seutin, White & Boag, 1991), and DNA extracted using a 142 

DNeasy extraction kit (Qiagen, CA, USA). One sample from each individual is analysed 143 

here, giving a total of 816 sampled individuals. 144 

 145 

The presence/quality of extracted DNA was assessed by electrophoresing 2µl of the 146 

extract on a 2% agarose gel containing ethidium bromide, and visualising under UV light. 147 

Samples were then screened for the presence of Plasmodium and Haemoproteus using the 148 

nested PCR method of Waldenström et al. (2004), amplifying a 478bp fragment of the 149 

mitochondrial cytochrome-b gene. PCR reactions were performed in 25µl volumes, in 150 

two separate rounds. First-round primers were HaemNF (5-́151 

CATATATTAAGAGAATTATGGAG -3´) and HaemNR2 (5´-152 

AGAGGTGTAGCATATCTATCTAC-3´): each reaction contained contained 2µl of 153 

genomic DNA, 0.125mM each dNTP, 0.2µM each primer, 3mM MgCl2 and 0.25 units of 154 

Platinum Taq polymerase (Invitrogen, CA, USA) with the accompanying PCR buffer at 155 

1x final concentration. The thermal profile consisted of a 2 minute 94°C enzyme 156 

activation step, followed by 20 cycles of 94°C for 30 sec, 50°C for 30 sec, and 72°C for 157 

45 sec, ending with an elongation step of 72°C for 10 min. In the second PCR round, 158 

primers HaemF (5’-ATGGTGCTTTCGATATATGCATG-3’) and HaemR2 were used 159 

(5’-GCATTATCTGGATGTGATAATGGT-3’): the composition of the PCR reactions 160 

was as above, except that 0.4µM of each primer and 0.5 units of Platinum Taq 161 
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Polymerase were used, and 2µl of the PCR product from the first round was used as 162 

template instead of genomic DNA. The thermal profile for the second round PCR was the 163 

same as for the first round, with the number of cycles increased from 20 to 35.  164 

 165 

2-8µl of PCR products from the second round were run on 2% agarose gels stained with 166 

ethidium bromide and visualised under UV light.  Samples containing bands of 450-167 

600bp in size were prepared for sequencing using a Qiagen MinElute 96 UF PCR 168 

purification kit and a QiaVac multiwell vacuum manifold. The purified PCR fragments 169 

were then sequenced directly by dye terminator cycle sequencing (Big Dye v3.1), and 170 

loaded on an ABI PRISM 310 automated sequencer (Applied Biosystems, CA, USA). 171 

Sequences were edited in Sequencher v. 4.2 (GeneCodes Corp., MI, USA), and aligned in 172 

ClustalX (Jeanmougin, Thompson, Gouy et al., 1998). Sequences corresponding to 173 

Plasmodium or Haemoproteus from known alignments were scored as positive for avian 174 

malaria. Sequences corresponding to Leucocytozoon sequences were scored as negative 175 

for the purposes of this study; while a study of the seasonal variation in Leucocytozoon 176 

prevalence would certainly be of interest, the PCR test is not designed to amplify DNA 177 

from these parasites, and is thus less efficient, particularly when either Haemoproteus or 178 

Plasmodium are also present. Where possible, avian malaria sequences were further 179 

characterised to the lineage level, with exact matches named as per existing lineages in 180 

GenBank, whilst sequences differing by one or more base pairs from those in GenBank 181 

were assigned new names. We report a new lineage, pBLUTI3 (now assigned GenBank 182 

accession number DQ991069). Mixed infections were present at a low rate (ca. 2% in 183 

2004-5, S.C.L. Knowles et al. unpubl.) and are not considered here. 184 
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 185 

Statistical analysis 186 

Examining only linear changes of parasite prevalence through time can mask complex 187 

oscillations in disease prevalence (Pascual & Dobson, 2005), so we employed a statistical 188 

approach that seeks the best linear or non-linear fit to prevalence data. Seasonal variation 189 

in the prevalence of malaria infection was examined using generalized additive modelling 190 

(GAM), essentially a generalized linear model (GLZ) in which a smoothed function of a 191 

covariate (sample date) can be considered alongside conventional linear predictors and 192 

their interactions (Hastie, 1990). The smoothed term uses a cyclic spline for continuity 193 

between the end and beginning of each year. More complex functions are penalised such 194 

that a linear function would be retained if more parsimonious, with smoothing parameters 195 

selected by penalized likelihood maximization via generalized cross validation (Wood, 196 

2004). We incorporated a smoothed function of sampling date as a model term while 197 

examining associations between malaria infection and linear functions of sampling date, 198 

year, host age, and sex (and their interactions), using binomial errors and a logit link. This 199 

starting model was optimised by the backward stepwise elimination of non-significant 200 

terms, beginning with higher-order interactions. Interactions between conventional 201 

factors were considered, but as those involving smoothed date cannot be incorporated 202 

into GAMs, potential interactions between the smoothed date term and any retained linear 203 

terms were examined by constructing GAMs subsetted by the retained term (e.g. age, see 204 

Results). In order to compare seasonal patterns of prevalence between Plasmodium 205 

morphospecies, we tested the factorial interaction between season (four three-month 206 

periods beginning 15th June) and parasite species. In all models, terms were retained if 207 
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their removal caused a significant change (P<0.05) in model deviance. Means are 208 

presented ±1 standard error. 209 

 210 

 211 

Results 212 

 213 

Samples collected between autumn 2003 and summer 2005 from 816 individual blue tits  214 

were screened for avian malaria infection. The prevalence of avian malaria infection 215 

across the study period was 25.6%, comprising 24.4% Plasmodium and 0.8% 216 

Haemoproteus (the latter genus is excluded from analyses due to low prevalence and the 217 

potential for different seasonal patterns due to different vector ecologies: Valkiūnas, 218 

2005). A total of 11 cytochrome-b lineages were identified: eight Plasmodium and three 219 

Haemoproteus spp. (Table 1). Some Plasmodium lineages have been matched to 220 

morphological species known from light microscopy (Hellgren, Križanauskiene, 221 

Valkiūnas et al., 2007; Palinauskas, Kosarev, Shapoval et al., 2007; Valkiūnas, 222 

Zehtindjiev, Hellgren et al., 2007): we therefore analyse the seasonal pattern of 223 

Plasmodium pooled across all lineages, in addition to the prevalence of the two most 224 

common parasite morphospecies which together account for 93% of avian malaria 225 

infections, namely Plasmodium relictum Grassi & Feletti, 1891 and P. circumflexum 226 

Kikuth, 1931. As the prevalence of any single lineage never exceeded 10%, the available 227 

sample sizes did not support the analysis of lineages within species. Two approximately 228 

similar peaks of pooled Plasmodium prevalence were observed in May/June and 229 

September/October, with a steep decline in infection in winter (Fig. 1).  230 
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 231 

A non-linear smoothed function of sampling date was retained as the most suitable 232 

temporal predictor of pooled Plasmodium prevalence (Table 2a). Host age was also 233 

retained in the model: over the year as a whole, prevalence was 45% higher in older birds 234 

(29.8±2.5%) compared to first-year birds (20.5±1.9%). Year, host sex and a linear date 235 

function were not retained (Table 2a). A residual plot of the final model describing 236 

seasonal variation in prevalence (Fig. 2a) shows two prevalence peaks, one in autumn and 237 

one in the breeding season in spring, with a marked drop in prevalence in winter. Similar 238 

analyses, treating the morphospecies separately, produced contrasting results: the P. 239 

circumflexum model retained a smoothed date function similar to that for pooled 240 

Plasmodium (Fig. 2b and Fig. 3), and an age effect (Table 2b); prevalence was again 241 

higher in older birds (17.1±2.1%) than first years (11.5±1.5%). P. relictum retained a 242 

weak linear date function in preference to non-linear smoothed functions, increasing 243 

gradually over the year, but with no age effect (Table 2c). Analysis of morphospecies 244 

prevalence by bimonthly periods (as in Fig. 1) retained parasite species as a model factor, 245 

reflecting a difference in overall prevalence across the year (2-way analysis of deviance: 246 

χ2=4.89, df=1, P=0.027) and significant variation between bimonthly periods (χ2=5.89, 247 

df=1, P=0.015), but no interaction term. Analysing prevalence variation by of the 248 

sampling year (seasons being four, three-month periods beginning on June 15th) also 249 

retained species as a model factor (2-way analysis of deviance: χ2=7.70, df=1, P=0.0055): 250 

importantly, the season*species interaction was retained (χ2=10.4, df=3, P=0.016), 251 

indicating different patterns of seasonal variation in prevalence, at the level of three-252 

month seasons, shown by the two Plasmodium morphospecies (Fig. 3). 253 
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 254 

We further examined the differences in seasonal variation in prevalence by constructing 255 

predicted response models, which use final models (Table 2) to predict the variation in 256 

prevalence over a hypothetical range of daily sampling dates, an approach that is useful to 257 

visualise complex non-linear variation in prevalence (Fig. 4). The predicted response 258 

models were judged to be a good reflection of observed prevalence data, because (i) 259 

bimonthly prevalence (e.g. from Fig. 1) did not deviate significantly from the predicted 260 

variation in prevalence shown in Fig. 4 (bimonthly observed vs. predicted prevalence for 261 

pooled Plasmodium, P. circumflexum, P. relictum; good ness of fit χ2 tests, df=5, 262 

P>0.90), and (ii) observed and predicted bimonthly prevalence were significantly 263 

correlated, with slopes close to unity, for pooled Plasmodium (r=1.03, P=0.01, R2=0.80) 264 

and P. circumflexum (r=1.27, P=0.006, R2=0.85). These correlations reflect the retention 265 

of smoothed date as a predictor of prevalence (Table 2), whereas no such correlation 266 

existed between observed and predicted P. relictum prevalence (r=0.36, P=0.22, 267 

R2=0.18), for which smoothed date was not retained. Predicted response models for P. 268 

relictum (Fig. 4c) are, therefore, presented merely for visual comparison with pooled 269 

Plasmodium and P. circumflexum.  270 

 271 

Comparing these plots between morphospecies reveals different seasonal patterns of 272 

prevalence (Figs. 4a-c): both pooled Plasmodium and P. circumflexum showed a clear 273 

pattern of seasonal variation including an autumn peak and an increase in prevalence 274 

early in the year. P. relictum infection (the modelling of which retained a linear function 275 

in preference to a smoothed date function, Table 2c) showed a relatively stable seasonal 276 
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pattern of prevalence, if somewhat lower in winter. This strongly suggests that seasonal 277 

variation in P. circumflexum prevalence is largely responsible for the observed seasonal 278 

variation in pooled Plasmodium prevalence. 279 

 280 

Considering subsets of these predicted prevalence models by age class showed that the 281 

seasonal pattern of pooled Plasmodium infection differs markedly by host age (Fig 4a). 282 

All age classes show evidence of a post-breeding peak in Plasmodium in autumn, but 283 

older birds show a more marked increase in prevalence in early spring. This indicates that 284 

the age structure in seasonal variation in pooled Plasmodium prevalence between age 285 

classes (Table 2a) lies in the putative ‘spring relapse’ period. P. circumflexum showed 286 

evidence for an autumn peak in prevalence, which was most apparent in first year blue 287 

tits; notably an obvious spring relapse was absent regardless of age (Fig. 4b). As 288 

modelling of P. relictum prevalence retained a linear function in preference to a 289 

smoothed date function (Table 2c), and a poor fit was found between observed and 290 

predicted P. relictum prevalence, examining predictive models subsetted by age is not 291 

justified statistically for this morphospecies, so we may not draw conclusions from the 292 

age-subsetted model of predicted P. relictum prevalence (Fig. 4c). Only a linear date 293 

function, and not age, was not retained in the modelling of P. relictum prevalence. This 294 

linear date function, suggesting a slight increase in prevalence over the year (Table 2c), 295 

indicates that the prevalence of P. relictum is less seasonally variable than P. 296 

circumflexum.  297 

 298 

 299 
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Discussion 300 

 301 

Seasonal variation in Plasmodium prevalence in blue tits in our study population is 302 

characterised by bimodal peaks in prevalence in autumn and spring, and a marked drop in 303 

prevalence during winter. At first sight, this genus level pattern agrees with the model of 304 

Beaudoin et al. (1971) for seasonal variation in avian malaria in temperate regions. 305 

However, the two most prevalent avian Plasmodium morphospecies in our study 306 

population showed different patterns of seasonal variation in prevalence: P. circumflexum 307 

showed seasonal variation of a pattern similar to that for pooled Plasmodium, whereas P. 308 

relictum prevalence was more stable. There was also clear age structure in the seasonality 309 

of Plasmodium infection: first year birds showed a less marked spring relapse of 310 

Plasmodium than older birds. The autumn peak in Plasmodium prevalence was largely 311 

driven by P. circumflexum. As seasonal patterns vary between age classes and between 312 

different Plasmodium morphospecies, we reject Beaudoin et al.’s model as it is not robust 313 

to the underlying complexity of the blue tit-Plasmodium interaction in this population. 314 

 315 

Following the post-breeding/fledging phase in June, blue tits showed a peak in prevalence 316 

of pooled Plasmodium (and P. circumflexum) in autumn (Figs. 2, 4a&b). This October 317 

peak might result from new transmission to previously uninfected birds, rather than a 318 

relapse of previously infected birds, which could result either from a reduction in herd 319 

immunity or the addition of immunologically naïve juveniles into the population during 320 

the breeding season (Altizer et al., 2006). The October Plasmodium/P. circumflexum 321 

prevalence peak seen in first-year birds (Fig. 4b) necessarily represents new transmission, 322 
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since these birds are new recruits to the population and so cannot have been previously 323 

infected. This post-fledging period is considerable a gap in our knowledge of the ecology 324 

of tits: after fledging, they are not easily trapped, so causes of the high rates of post-325 

fledging mortality are poorly understood (Perrins, 1979). Assessing the impact of avian 326 

malaria on the survival of juveniles presents an important challenge. 327 

 328 

In winter, the prevalence of pooled Plasmodium infections and the P. circumflexum 329 

morphospecies declined dramatically in both first year and adult birds, most likely due to 330 

a cessation of transmission and decline of existing malaria parasites from the blood, with 331 

negligible blood stages surviving the winter. P. relictum was also absent in winter, but 332 

present at a stable prevalence for the rest of the year (Fig. 4c). Avian Plasmodium spp. 333 

survive the lack of transmission during the winter by remaining in host tissues 334 

(Valkiūnas, 2005); our use of sensitive PCR-based screening methods in this study 335 

suggests that Plasmodium infections were indeed absent from the blood during in 336 

November and December (Fig. 1), as these techniques can detect approximately one 337 

malaria parasite per 105 erythrocytes (Waldenström et al., 2004). It is possible that some 338 

malaria parasites are better adapted to surviving the winter than others, an idea supported 339 

by the markedly different seasonal patterns shown by P. relictum and P. circumflexum 340 

(Fig. 3).  341 

 342 

Parasite prevalence has been reported to increase prior to the breeding season in 343 

temperate wild bird populations, known as the ‘spring relapse’ (Applegate, 1971; Box, 344 

1966; Schrader et al., 2003; Valkiūnas, 2005). Experimental studies have implicated day 345 
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length and hormone levels in inducing relapse (Applegate, 1970; Valkiūnas, Bairlein, 346 

Iezhova et al., 2004). Pooled Plasmodium infection shows, and P. relictum infection 347 

suggests, a spring peak in prevalence, prior to the onset of the breeding season in mid-348 

May (Fig. 3). This may be due to relapse, or if infected birds die during the winter the 349 

spring peak may result from re-infection with newly transmitted parasites. Contrary to 350 

this latter interpretation is that vector populations are unlikely to have reached their peak 351 

until later in the year (Cranston et al., 1987; Marshall, 1938). Therefore, it is reasonable 352 

to suggest that the spring ‘relapse’ in prevalence among older birds is indeed due to a 353 

relapse of old infections rather than to new transmission. 354 

 355 

Previous studies report marked differences in the prevalence of avian malaria between 356 

first year and older birds, but the direction of this effect is not consistent in previous 357 

studies (Dale, Kruszewicz & Slagsvold, 1996; Kucera, 1979; Merilä & Andersson, 1999; 358 

Sol, Jovani & Torres, 2000, 2003; Valkiūnas, 2005). Predicted models of seasonal 359 

variation in Plasmodium prevalence between age classes in our blue tit population (Fig. 360 

4) suggest that the age structure lies in the spring relapse: pooled age classes showed an 361 

autumn peak in prevalence, but older birds had a more marked spring peak than first-362 

years (Fig. 4a). From February to the breeding season, prevalence increased steadily in 363 

first-years, but more rapidly in older birds. Although young birds breed later than older, 364 

more experienced, birds, the difference in breeding time is small (2-3 days) so is unlikely 365 

to account for the large discrepancy in relapse between age groups. Examining the age 366 

structure of infection by morphospecies revealed that the pattern seen in pooled 367 

Plasmodium prevalence was due to seasonal variation between both morphospecies and 368 
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age class: the autumn peak in pooled Plasmodium can be attributed to P. circumflexum in 369 

first years (Fig. 4b), and our data hint that the spring relapse in pooled Plasmodium may 370 

be attributable to P. relictum in older birds (Fig. 4c).  371 

  372 

The different seasonal patterns of prevalence between these two Plasmodium 373 

morphospecies suggest that P. circumflexum transmission may benefit from the post-374 

fledging peak in numbers of immunologically naïve individuals or a reduction in herd 375 

immunity. Potential spring relapses of P. relictum in older birds may represent lineages 376 

transmitted only before the eggs hatch, and so not transmitted to first years after fledging. 377 

Given that P. relictum is the most ubiquitous and least host-restricted of the avian 378 

Plasmodia, one may speculate that it has a more successful transmission strategy than P. 379 

circumflexum. This hypothesis would be supported if spring relapse in P. relictum but not 380 

P. circumflexum was confirmed by further study, as P. relictum gametocytes are more 381 

infective to vectors in spring than in autumn (Valkiūnas, 2005). The higher infectivity of 382 

P. relictum in spring coincides with the arrival of migratory bird species and precedes the 383 

increase in the host population, potentially facilitating the parasite’s spread and 384 

persistence. Such speculation requires improved knowledge of the ecology of avian 385 

malaria in resident and migrant birds at Wytham. The autumn peak in Plasmodium 386 

prevalence, particularly in P. circumflexum, coincides with a peak in the post-fledging 387 

dispersal of first year birds, presenting an opportunity for malaria parasites to disperse 388 

with their hosts; older birds, having already bred and held a territory, disperse less far 389 

than first years (Perrins, 1979). The epidemiological consequences of age-structure, both 390 

in the seasonal variation of prevalence between Plasmodium morphospecies and in 391 
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dispersal distance, are intriguing. Clearly, our understanding of the epidemiology of host-392 

parasite interactions involving avian Plasmodia would be enhanced by the study of vector 393 

specificities and the seasonal availability of compatible vectors. 394 

 395 

This study is reliant upon sensitive molecular diagnostic techniques, (Waldenström et al., 396 

2004), knowledge of the taxonomy of avian Plasmodium in relation to molecular data 397 

(Hellgren et al., 2007; Valkiūnas et al., 2007) and categorisation of hosts into first year 398 

and older birds. Without these factors, the ‘two peaks and a trough’ model of seasonal 399 

variation in avian malaria prevalence (Beaudoin et al., 1971) would have been accepted 400 

by our study, when in fact the seasonal pattern of Plasmodium variation in blue tits in our 401 

study is a complex combination of different patterns, both between Plasmodium 402 

morphospecies and (in the case of P. circumflexum) between age classes. An additional 403 

factor not considered here is that there may be marked spatial differences in the 404 

prevalence and distribution of different parasite species. Indeed, we know this to be the 405 

case for the present study population, which shows spatial variation in both the overall 406 

prevalence of malaria and in the distribution of morphospecies (Wood, Cosgrove, Wilkin 407 

et al., 2007). There are some intriguing parallels between the temporal patterns revealed 408 

here and the spatial ones described elsewhere (Wood et al., 2007): in both cases, P. 409 

relictum shows a broader distribution, while P. circumflexum shows a more clustered 410 

distribution.  411 

 412 

We found no evidence that the seasonal pattern of infection differed between years (Table 413 

2), although the possibility of annual variation in seasonal patterns is suggested by 414 
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variation in the prevalence of some avian malaria lineages between breeding seasons 415 

(Wood et al., 2007). Between-year fluctuations in parasite prevalence are commonly 416 

reported for vector-borne and other diseases, suggesting that more long-term data is 417 

required to examine between-year variation in avian malaria in our study population (e.g. 418 

see (Bensch, Waldenström, Jonzen et al., 2007).  There was no significant difference 419 

between the malaria prevalence of males and females throughout the year, in contrast to 420 

several field studies showing differences in parasite prevalence between the sexes of 421 

breeding wild birds (Applegate, 1971; Merilä & Andersson, 1999; Richner, Christe & 422 

Oppliger, 1995).  423 

 424 

Our data demonstrate that studies of the ecology of parasites in wild populations should 425 

take account of temporal variation within years (i.e. seasonal variation) in at least three 426 

contexts. First, overall prevalence varies both with date and with host activity, meaning 427 

that both factors must be known to make sense of any variation in prevalence, unless 428 

sampling is restricted to specific temporal and activity classes. Second, prevalence varies 429 

with host demographic factors, and the seasonal pattern differs among different host age 430 

groups. Third, the seasonal pattern of prevalence differs among malaria parasite 431 

morphospecies. Identifying the transmission periods when hosts and infective vectors 432 

meet is crucial here: the study of vector ecology would greatly enhance our understanding 433 

of the seasonality of avian malaria in our study system. Host-vector and vector-parasite 434 

associations are poorly understood at present (Boete & Paul, 2006). In a broader context, 435 

understanding the causes of seasonal variation in transmission might be attempted at a 436 

wider geographic scale (Pérez-Tris & Bensch, 2005), or in the context of how these 437 
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diseases might respond to climate change (Kovats, Campbell-Lendrum, McMichael et al., 438 

2001; Rogers & Randolph, 2000). Any study that aims to understand individual 439 

heterogeneity in infection in avian malaria should consider both temporal (this study) and 440 

spatial variation (Wood et al., 2007) as contributory factors. Continued research promises 441 

increasing understanding of the ecology of avian malaria, and the epidemiology of 442 

vector-borne disease in general. 443 

 444 

Acknowledgments 445 

The first two authors made an equal contribution to this paper. We thank Simon Griffith, 446 

Iain Barr, Louise Rowe, Joanne Chapman and numerous Wytham fieldworkers for their 447 

invaluable assistance in the field. CLC and MJW were supported by a NERC grant to 448 

KPD and BCS. Sarah Knowles, Freya Fowkes and two anonymous reviewers made 449 

valuable comments on the manuscript. 450 

 451 

 452 

Table and Figure legends 453 

 454 

Table 1.  455 

A total of 816 individual blue tits, sampled between autumn 2003 and summer 2005 were 456 

screened for avian malaria infection. Mitochondrial cytochrome-b lineages were assigned 457 

using molecular techniques (see Methods), shown in the ‘Lineage’ column; the prefix “p” 458 

denotes Plasmodium, and “h” denotes Haemoproteus. The frequency of infection of each 459 

avian malaria lineage is shown, categorised by host species.  460 
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* Mitochondrial cytochrome-b lineages previously matched to morphological species 461 

(Hellgren et al., 2007; Palinauskas et al., 2007; Valkiūnas et al., 2007).  462 

† Some sequences could not be resolved to a particular malaria lineage, but in some cases 463 

could be resolved to either Plasmodium or Haemoproteus.  464 

‡ Percentages in parentheses indicate the overall population prevalence, which do not sum 465 

to pooled prevalence due to low frequency (ca. 2%) mixed infections (S.C.L. Knowles et 466 

al. unpublished). 467 

 468 

Table 2.  469 

Final Generalized Additive Models (GAMs) are shown, examining seasonal variation in 470 

(a) pooled Plasmodium infections, (b) P. circumflexum and (c) P. relictum. In each 471 

model, a smoothed function of sample date was modelled alongside linear predictors and 472 

their interactions (linear date, host age, host sex and sampling year) using binomial errors 473 

and a logit link. Each model was optimised by the backward stepwise elimination of non-474 

significant terms, beginning with higher order interactions. Model terms were retained if 475 

their removal caused a significant change (P<0.05) in model deviance. No interactions 476 

were retained in final models. 477 

 478 

Figure 1. 479 

A total of 816 blue tits sampled between autumn 2003 and summer 2005 are analysed 480 

here. Avian malaria infection was diagnosed using molecular techniques (see Methods). 481 

Error bars represent ±1 s.e. 482 

 483 
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Figure 2. 484 

The estimated effect of the smoothed function of date on prevalence is shown, controlling 485 

for other model effects (e.g. host age, see Table 2). Generalized additive modelling 486 

(GAM) was used to incorporate potential non-linear variation in prevalence (see 487 

Methods). Note the marked peak in prevalence in October-November, a reduced 488 

prevalence in mid-winter (December-January), another peak in prevalence in early spring 489 

(March) before the breeding season (May-June). Dotted lines about plotted functions 490 

show the Bayesian credible intervals of the model. 491 

 492 

Figure 3. 493 

Predictive models were constructed to visualise variation in prevalence with sampling 494 

date and age, for Plasmodium infection, P. circumflexum and P. relictum, each using the 495 

best non-linear smoothed function of sampling date (Table 2; P. relictum retained a linear 496 

function in modelling, but a smoothed function is used here for comparison). Their 497 

respective predicted prevalences through the year were then extrapolated from the model 498 

fitted to prevalence data (e.g. Fig. 2). Points on each graph show the pooled Plasmodium 499 

infection status of birds used in generating the predictive model, i.e. those positive (black 500 

circles) and negative (open circles) for infection. Multiple samples on a particular day are 501 

overlaid, so these points under-represent the extent of sampling. 502 

 503 

Figure 4. 504 

These plots follow the rationale in Fig. 3; predicted prevalence is shown for (a) 505 

Plasmodium infection, (b) P. circumflexum and (c) P. relictum, by age category to 506 
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illustrate the age structure in infection (Table 2): (i) age classes superimposed, (ii) all 507 

ages, (iii) first years and (iv) older birds.  Smoothed date function and host age were not 508 

retained in the modelling of P. relictum prevalence, and therefore is shown here (Fig. 3c) 509 

merely for comparison. Circles on each graph show the infection status of birds used in 510 

generating the predictive model, multiple samples on a particular day are overlaid and so 511 

under-represent the extent of sampling. Grey squares show observed mean bimonthly 512 

prevalence: predicted prevalence showed a good fit with observed prevalence data for 513 

Plasmodium (r=1.03, P=0.01, R2=0.80) and P. circumflexum (r=1.27, P=0.006, R2=0.85), 514 

but not for P. relictum (r=0.36, P=0.22, R2=0.18). Predicted prevalence is plotted only 515 

within the range of observed data. 516 

517 
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Table 1.  518 

Diversity and abundance of avian malaria in blue tits from Wytham Woods 519 

    
Lineage  GenBank no.  Morphospecies  N infected  
    
    
pSGS1 AF495571 Plasmodium relictum* 72 (8.8%) 
    

pGRW11 AY831748 Plasmodium relictum* 12 (1.5%) 
    

pBLUTI3 DQ991069 Plasmodium relictum* 1 (0.1%) 
    

  Plasmodium relictum*‡ 84 (10.3%) 
    
pTURDUS1 AF495576 Plasmodium circumflexum* 74 (9.1%) 
    

pBT7 AY393793 Plasmodium circumflexum* 38 (4.7%) 
    

pBLUTI4 DQ991070  Plasmodium circumflexum* 1 (0.1%) 
    

pBLUTI5 DQ991071 Plasmodium circumflexum* 1 (0.1%) 
    

  Plasmodium circumflexum*‡ 113 (13.8%) 
    
pBLUTI1 DQ991068 Plasmodium spp. unknown 4 (0.5%) 
    
  Unresolved Plasmodium 

lineages† 
17 (2.1%) 

    
  Pooled  Plasmodium spp. ‡ 199 (24.4%) 
    
    
hTURDUS2 DQ060772 Haemoproteus minutus* 3 (0.4%) 
    

hWW1 AF254971 Haemoproteus spp. unknown 1 (0.1%) 
    

hBLUTI1 DQ991077 Haemoproteus spp. unknown 1 (0.1%) 
    
  Unresolved Haemoproteus 

lineages† 
2 (0.2%) 

    
  Pooled Haemoproteus spp. ‡ 7 (0.8%) 
    
    
  Unresolved avian malaria† 5 (0.6%) 
    
  Pooled avian malaria ‡ 209 (25.6%) 
    
 520 
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Table 2.  1 

Generalized additive models (GAM) examining seasonal variation in the prevalence of 2 

Plasmodium infection in blue tits 3 

 4 

    
Factor  parameter estimate   Z  P 
    
    
(a) Pooled Plasmodium    
    
Age  0.45±0.17  2.66 0.0078 
 
Smoothed sample date: estimated df = 5.56, χ2 = 19.3, P < 0.013 
    
    
(b) P. circumflexum    
    
Age  0.42±0.21  2.04 0.042 
    
Smoothed sample date: estimated df = 4.91, χ2 = 16.6, P = 0.034 
    
    
(c) P. relictum    
    
Linear date 0.0052±0.0027 1.96 0.050 
    

5 
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Figure 1. 1 

Seasonal variation in the prevalence of Plasmodium infection in blue tits  2 
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Figure 2. 1 

Smoothed residual models of the seasonal variation in prevalence of (a) pooled 2 

Plasmodium and (b) P. circumflexum infection in blue tits 3 
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Figure 3. 1 

Predictive models of seasonal variation in Plasmodium infection in blue tits 2 
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Figure 4a-c 1 

Predicted prevalence of Plasmodium in blue tits 2 

 3 

(a) Pooled Plasmodium 4 
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Figure 4a-c 1 

Predicted prevalence of Plasmodium in blue tits 2 

 3 

(b) P. circumflexum 4 
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Figure 4a-c 1 

Predicted prevalence of Plasmodium in blue tits by host age and parasite morphospecies 2 

 3 

(c) P. relictum 4 
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