107 research outputs found
Deletion of the hemopexin or heme oxygenase-2 gene aggravates brain injury following stroma-free hemoglobin-induced intracerebral hemorrhage
BACKGROUND: Following intracerebral hemorrhage (ICH), red blood cells release massive amounts of toxic heme that causes local brain injury. Hemopexin (Hpx) has the highest binding affinity to heme and participates in its transport, while heme oxygenase 2 (HO2) is the rate-limiting enzyme for the degradation of heme. Microglia are the resident macrophages in the brain; however, the significance and role of HO2 and Hpx on microglial clearance of the toxic heme (iron-protoporphyrin IX) after ICH still remain understudied. Accordingly, we postulated that global deletion of constitutive HO2 or Hpx would lead to worsening of ICH outcomes. METHODS: Intracerebral injection of stroma-free hemoglobin (SFHb) was used in our study to induce ICH. Hpx knockout (Hpx(â/â)) or HO2 knockout (HO2(â/â)) mice were injected with 10Â ÎŒL of SFHb in the striatum. After injection, behavioral/functional tests were performed, along with anatomical analyses. Iron deposition and neuronal degeneration were depicted by Perlsâ and Fluoro-Jade B staining, respectively. Immunohistochemistry with anti-ionized calcium-binding adapter protein 1 (Iba1) was used to estimate activated microglial cells around the injured site. RESULTS: This study shows that deleting Hpx or HO2 aggravated SFHb-induced brain injury. Compared to wild-type littermates, larger lesion volumes were observed in Hpx(â/â) and HO2(â/â) mice, which also bear more degenerating neurons in the peri-lesion area 24Â h postinjection. Fewer Iba1-positive microglial cells were detected at the peri-lesion area in Hpx(â/â) and HO2(â/â) mice, interestingly, which is associated with markedly increased iron-positive microglial cells. Moreover, the Iba1-positive microglial cells increased from 24 to 72Â h postinjection and were accompanied with improved neurologic deficits in Hpx(â/â) and HO2(â/â) mice. These results suggest that Iba1-positive microglial cells could engulf the extracellular SFHb and provide protective effects after ICH. We then treated cultured primary microglial cells with SFHb at low and high concentrations. The results show that microglial cells actively take up the extracellular SFHb. Of interest, we also found that iron overload in microglia significantly reduces the Iba1 expression level and resultantly inhibits microglial phagocytosis. CONCLUSIONS: This study suggests that microglial cells contribute to hemoglobin-heme clearance after ICH; however, the resultant iron overloads in microglia appear to decrease Iba1 expression and to further inhibit microglial phagocytosis
Multimodal brain age estimates relate to Alzheimer disease biomarkers and cognition in early stages: a cross-sectional observational study
BACKGROUND: Estimates of 'brain-predicted age' quantify apparent brain age compared to normative trajectories of neuroimaging features. The brain age gap (BAG) between predicted and chronological age is elevated in symptomatic Alzheimer disease (AD) but has not been well explored in presymptomatic AD. Prior studies have typically modeled BAG with structural MRI, but more recently other modalities, including functional connectivity (FC) and multimodal MRI, have been explored. METHODS: We trained three models to predict age from FC, structural (S), or multimodal MRI (S+FC) in 390 amyloid-negative cognitively normal (CN/A-) participants (18-89 years old). In independent samples of 144 CN/A-, 154 CN/A+, and 154 cognitively impaired (CI; CDR > 0) participants, we tested relationships between BAG and AD biomarkers of amyloid and tau, as well as a global cognitive composite. RESULTS: All models predicted age in the control training set, with the multimodal model outperforming the unimodal models. All three BAG estimates were significantly elevated in CI compared to controls. FC-BAG was significantly reduced in CN/A+ participants compared to CN/A-. In CI participants only, elevated S-BAG and S+FC BAG were associated with more advanced AD pathology and lower cognitive performance. CONCLUSIONS: Both FC-BAG and S-BAG are elevated in CI participants. However, FC and structural MRI also capture complementary signals. Specifically, FC-BAG may capture a unique biphasic response to presymptomatic AD pathology, while S-BAG may capture pathological progression and cognitive decline in the symptomatic stage. A multimodal age-prediction model improves sensitivity to healthy age differences. FUNDING: This work was supported by the National Institutes of Health (P01-AG026276, P01- AG03991, P30-AG066444, 5-R01-AG052550, 5-R01-AG057680, 1-R01-AG067505, 1S10RR022984-01A1, and U19-AG032438), the BrightFocus Foundation (A2022014F), and the Alzheimer's Association (SG-20-690363-DIAN)
Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC4RS) and ground-based (SOAS) observations in the Southeast US
Formation of organic nitrates (RONO2) during oxidation of biogenic volatile organic compounds (BVOCs: isoprene, monoterpenes) is a significant loss pathway for atmospheric nitrogen oxide radicals (NOx), but the chemistry of RONO2 formation and degradation remains uncertain. Here we implement a new BVOC oxidation mechanism (including updated isoprene chemistry, new monoterpene chemistry, and particle uptake of RONO2) in the GEOS-Chem global chemical transport model with ââŒââŻ25âŻâxââŻ25âŻkm2 resolution over North America. We evaluate the model using aircraft (SEAC4RS) and ground-based (SOAS) observations of NOx, BVOCs, and RONO2 from the Southeast US in summer 2013. The updated simulation successfully reproduces the concentrations of individual gas- and particle-phase RONO2 species measured during the campaigns. Gas-phase isoprene nitrates account for 25-50âŻ% of observed RONO2 in surface air, and we find that another 10âŻ% is contributed by gas-phase monoterpene nitrates. Observations in the free troposphere show an important contribution from long-lived nitrates derived from anthropogenic VOCs. During both campaigns, at least 10âŻ% of observed boundary layer RONO2 were in the particle phase. We find that aerosol uptake followed by hydrolysis to HNO3 accounts for 60âŻ% of simulated gas-phase RONO2 loss in the boundary layer. Other losses are 20âŻ% by photolysis to recycle NOx and 15âŻ% by dry deposition. RONO2 production accounts for 20âŻ% of the net regional NOx sink in the Southeast US in summer, limited by the spatial segregation between BVOC and NOx emissions. This segregation implies that RONO2 production will remain a minor sink for NOx in the Southeast US in the future even as NOx emissions continue to decline
Systematic Evaluation of Candidate Blood Markers for Detecting Ovarian Cancer
Epithelial ovarian cancer is a significant cause of mortality both in the United States and worldwide, due largely to the high proportion of cases that present at a late stage, when survival is extremely poor. Early detection of epithelial ovarian cancer, and of the serous subtype in particular, is a promising strategy for saving lives. The low prevalence of ovarian cancer makes the development of an adequately sensitive and specific test based on blood markers very challenging. We evaluated the performance of a set of candidate blood markers and combinations of these markers in detecting serous ovarian cancer.We selected 14 candidate blood markers of serous ovarian cancer for which assays were available to measure their levels in serum or plasma, based on our analysis of global gene expression data and on literature searches. We evaluated the performance of these candidate markers individually and in combination by measuring them in overlapping sets of serum (or plasma) samples from women with clinically detectable ovarian cancer and women without ovarian cancer. Based on sensitivity at high specificity, we determined that 4 of the 14 candidate markers--MUC16, WFDC2, MSLN and MMP7--warrant further evaluation in precious serum specimens collected months to years prior to clinical diagnosis to assess their utility in early detection. We also reported differences in the performance of these candidate blood markers across histological types of epithelial ovarian cancer.By systematically analyzing the performance of candidate blood markers of ovarian cancer in distinguishing women with clinically apparent ovarian cancer from women without ovarian cancer, we identified a set of serum markers with adequate performance to warrant testing for their ability to identify ovarian cancer months to years prior to clinical diagnosis. We argued for the importance of sensitivity at high specificity and of magnitude of difference in marker levels between cases and controls as performance metrics and demonstrated the importance of stratifying analyses by histological type of ovarian cancer. Also, we discussed the limitations of studies (like this one) that use samples obtained from symptomatic women to assess potential utility in detection of disease months to years prior to clinical detection
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Recommended from our members
Report on the sixth blind test of organic crystal structure prediction methods.
The sixth blind test of organic crystal structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal and a bulky flexible molecule. This blind test has seen substantial growth in the number of participants, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and `best practices' for performing CSP calculations. All of the targets, apart from a single potentially disordered Z' = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms.The organisers and participants are very grateful to the crystallographers who supplied the candidate structures: Dr. Peter Horton (XXII), Dr. Brian Samas (XXIII), Prof. Bruce Foxman (XXIV), and Prof. Kraig Wheeler (XXV and XXVI). We are also grateful to Dr. Emma Sharp and colleagues at Johnson Matthey (Pharmorphix) for the polymorph screening of XXVI, as well as numerous colleagues at the CCDC for assistance in organising the blind test. Submission 2: We acknowledge Dr. Oliver Korb for numerous useful discussions. Submission 3: The Day group acknowledge the use of the IRIDIS High Performance Computing Facility, and associated support services at the University of Southampton, in the completion of this work. We acknowledge funding from the EPSRC (grants EP/J01110X/1 and EP/K018132/1) and the European Research Council under the European Unionâs Seventh Framework Programme (FP/2007-2013)/ERC through grant agreements n. 307358 (ERC-stG- 2012-ANGLE) and n. 321156 (ERC-AG-PE5-ROBOT). Submission 4: I am grateful to Mikhail Kuzminskii for calculations of molecular structures on Gaussian 98 program in the Institute of Organic Chemistry RAS. The Russian Foundation for Basic Research is acknowledged for financial support (14-03-01091). Submission 5: Toine Schreurs provided computer facilities and assistance. I am grateful to Matthew Habgood at AWE company for providing a travel grant. Submission 6: We would like to acknowledge support of this work by GlaxoSmithKline, Merck, and Vertex. Submission 7: The research was financially supported by the VIDI Research Program 700.10.427, which is financed by The Netherlands Organisation for Scientific Research (NWO), and the European Research Council (ERC-2010-StG, grant agreement n. 259510-KISMOL). We acknowledge the support of the Foundation for Fundamental Research on Matter (FOM). Supercomputer facilities were provided by the National Computing Facilities Foundation (NCF). Submission 8: Computer resources were provided by the Center for High Performance Computing at the University of Utah and the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grant number ACI-1053575. MBF and GIP acknowledge the support from the University of Buenos Aires and the Argentinian Research Council. Submission 9: We thank Dr. Bouke van Eijck for his valuable advice on our predicted structure of XXV. We thank the promotion office for TUT programs on advanced simulation engineering (ADSIM), the leading program for training brain information architects (BRAIN), and the information and media center (IMC) at Toyohashi University of Technology for the use of the TUT supercomputer systems and application software. We also thank the ACCMS at Kyoto University for the use of their supercomputer. In addition, we wish to thank financial supports from Conflex Corp. and Ministry of Education, Culture, Sports, Science and Technology. Submission 12: We thank Leslie Leiserowitz from the Weizmann Institute of Science and Geoffrey Hutchinson from the University of Pittsburgh for helpful discussions. We thank Adam Scovel at the Argonne Leadership Computing Facility (ALCF) for technical support. Work at Tulane University was funded by the Louisiana Board of Regents Award # LEQSF(2014-17)-RD-A-10 âToward Crystal Engineering from First Principlesâ, by the NSF award # EPS-1003897 âThe Louisiana Alliance for Simulation-Guided Materials Applications (LA-SiGMA)â, and by the Tulane Committee on Research Summer Fellowship. Work at the Technical University of Munich was supported by the Solar Technologies Go Hybrid initiative of the State of Bavaria, Germany. Computer time was provided by the Argonne Leadership Computing Facility (ALCF), which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. Submission 13: This work would not have been possible without funding from Khalifa Universityâs College of Engineering. I would like to acknowledge Prof. Robert Bennell and Prof. Bayan Sharif for supporting me in acquiring the resources needed to carry out this research. Dr. Louise Price is thanked for her guidance on the use of DMACRYS and NEIGHCRYS during the course of this research. She is also thanked for useful discussions and numerous e-mail exchanges concerning the blind test. Prof. Sarah Price is acknowledged for her support and guidance over many years and for providing access to DMACRYS and NEIGHCRYS. Submission 15: The work was supported by the United Kingdomâs Engineering and Physical Sciences Research Council (EPSRC) (EP/J003840/1, EP/J014958/1) and was made possible through access to computational resources and support from the High Performance Computing Cluster at Imperial College London. We are grateful to Professor Sarah L. Price for supplying the DMACRYS code for use within CrystalOptimizer, and to her and her research group for support with DMACRYS and feedback on CrystalPredictor and CrystalOptimizer. Submission 16: R. J. N. acknowledges financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. [EP/J017639/1]. R. J. N. and C. J. P. acknowledge use of the Archer facilities of the U.K.âs national high-performance computing service (for which access was obtained via the UKCP consortium [EP/K014560/1]). C. J. P. also acknowledges a Leadership Fellowship Grant [EP/K013688/1]. B. M. acknowledges Robinson College, Cambridge, and the Cambridge Philosophical Society for a Henslow Research Fellowship. Submission 17: The work at the University of Delaware was supported by the Army Research Office under Grant W911NF-13-1- 0387 and by the National Science Foundation Grant CHE-1152899. The work at the University of Silesia was supported by the Polish National Science Centre Grant No. DEC-2012/05/B/ST4/00086. Submission 18: We would like to thank Constantinos Pantelides, Claire Adjiman and Isaac Sugden of Imperial College for their support of our use of CrystalPredictor and CrystalOptimizer in this and Submission 19. The CSP work of the group is supported by EPSRC, though grant ESPRC EP/K039229/1, and Eli Lilly. The PhD students support: RKH by a joint UCL Max-Planck Society Magdeburg Impact studentship, REW by a UCL Impact studentship; LI by the Cambridge Crystallographic Data Centre and the M3S Centre for Doctoral Training (EPSRC EP/G036675/1). Submission 19: The potential generation work at the University of Delaware was supported by the Army Research Office under Grant W911NF-13-1-0387 and by the National Science Foundation Grant CHE-1152899. Submission 20: The work at New York University was supported, in part, by the U.S. Army Research Laboratory and the U.S. Army Research Office under contract/grant number W911NF-13-1-0387 (MET and LV) and, in part, by the Materials Research Science and Engineering Center (MRSEC) program of the National Science Foundation under Award Number DMR-1420073 (MET and ES). The work at the University of Delaware was supported by the U.S. Army Research Laboratory and the U.S. Army Research Office under contract/grant number W911NF-13-1- 0387 and by the National Science Foundation Grant CHE-1152899. Submission 21: We thank the National Science Foundation (DMR-1231586), the Government of Russian Federation (Grant No. 14.A12.31.0003), the Foreign Talents Introduction and Academic Exchange Program (No. B08040) and the Russian Science Foundation, project no. 14-43-00052, base organization Photochemistry Center of the Russian Academy of Sciences. Calculations were performed on the Rurik supercomputer at Moscow Institute of Physics and Technology. Submission 22: The computational results presented have been achieved in part using the Vienna Scientific Cluster (VSC). Submission 24: The potential generation work at the University of Delaware was supported by the Army Research Office under Grant W911NF-13-1-0387 and by the National Science Foundation Grant CHE-1152899. Submission 25: J.H. and A.T. acknowledge the support from the Deutsche Forschungsgemeinschaft under the program DFG-SPP 1807. H-Y.K., R.A.D., and R.C. acknowledge support from the Department of Energy (DOE) under Grant Nos. DE-SC0008626. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DEAC02-05CH11231. Additional computational resources were provided by the Terascale Infrastructure for Groundbreaking Research in Science and Engineering (TIGRESS) High Performance Computing Center and Visualization Laboratory at Princeton University.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1107/S2052520616007447
Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view about chromatin structure has emerged, including its interrelationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded novel mechanistic and evolutionary insights about the functional landscape of the human genome. Together, these studies are defining a path forward to pursue a more-comprehensive characterisation of human genome function
Report on the sixth blind test of organic crystal-structure prediction methods
The sixth blind test of organic crystal-structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal, and a bulky flexible molecule. This blind test has seen substantial growth in the number of submissions, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and "best practices" for performing CSP calculations. All of the targets, apart from a single potentially disordered Z` = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
Recommended from our members
Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial.
Importance: Evidence regarding corticosteroid use for severe coronavirus disease 2019 (COVID-19) is limited. Objective: To determine whether hydrocortisone improves outcome for patients with severe COVID-19. Design, Setting, and Participants: An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin. Between March 9 and June 17, 2020, 614 adult patients with suspected or confirmed COVID-19 were enrolled and randomized within at least 1 domain following admission to an intensive care unit (ICU) for respiratory or cardiovascular organ support at 121 sites in 8 countries. Of these, 403 were randomized to open-label interventions within the corticosteroid domain. The domain was halted after results from another trial were released. Follow-up ended August 12, 2020. Interventions: The corticosteroid domain randomized participants to a fixed 7-day course of intravenous hydrocortisone (50 mg or 100 mg every 6 hours) (nâ=â143), a shock-dependent course (50 mg every 6 hours when shock was clinically evident) (nâ=â152), or no hydrocortisone (nâ=â108). Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of ICU-based respiratory or cardiovascular support) within 21 days, where patients who died were assigned -1 day. The primary analysis was a bayesian cumulative logistic model that included all patients enrolled with severe COVID-19, adjusting for age, sex, site, region, time, assignment to interventions within other domains, and domain and intervention eligibility. Superiority was defined as the posterior probability of an odds ratio greater than 1 (threshold for trial conclusion of superiority >99%). Results: After excluding 19 participants who withdrew consent, there were 384 patients (mean age, 60 years; 29% female) randomized to the fixed-dose (nâ=â137), shock-dependent (nâ=â146), and no (nâ=â101) hydrocortisone groups; 379 (99%) completed the study and were included in the analysis. The mean age for the 3 groups ranged between 59.5 and 60.4 years; most patients were male (range, 70.6%-71.5%); mean body mass index ranged between 29.7 and 30.9; and patients receiving mechanical ventilation ranged between 50.0% and 63.5%. For the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively, the median organ support-free days were 0 (IQR, -1 to 15), 0 (IQR, -1 to 13), and 0 (-1 to 11) days (composed of 30%, 26%, and 33% mortality rates and 11.5, 9.5, and 6 median organ support-free days among survivors). The median adjusted odds ratio and bayesian probability of superiority were 1.43 (95% credible interval, 0.91-2.27) and 93% for fixed-dose hydrocortisone, respectively, and were 1.22 (95% credible interval, 0.76-1.94) and 80% for shock-dependent hydrocortisone compared with no hydrocortisone. Serious adverse events were reported in 4 (3%), 5 (3%), and 1 (1%) patients in the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively. Conclusions and Relevance: Among patients with severe COVID-19, treatment with a 7-day fixed-dose course of hydrocortisone or shock-dependent dosing of hydrocortisone, compared with no hydrocortisone, resulted in 93% and 80% probabilities of superiority with regard to the odds of improvement in organ support-free days within 21 days. However, the trial was stopped early and no treatment strategy met prespecified criteria for statistical superiority, precluding definitive conclusions. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707
- âŠ