1,200 research outputs found

    Stoat trap tunnel location : GIS predictive modelling to identify the best tunnel location : a thesis submitted in fulfillment of the requirements for the degree of Master of Philosophy in Geographic Information Systems in Massey University

    Get PDF
    Stoats are recognised as one of the biggest threats to New Zealand's threatened species. They are difficult to control because of their biological characteristics. Currently trapping is the most common type of control technique that has a proven success rate. Research studies have shown that some traps catch more stoats than others. However the reason for this is not well documented. The effectiveness of a trap set is difficult to determine because not all trap locations are the same and not all people have the same ability to select the best location for a trap. This study uses GIS to spatially analyse stoat capture data from a control operation on Secretary Island in conjunction with commonly available vegetation, habitat, diet and home range spatial data to see if there are consistent patterns that could be used as variables in a model that would predict the best place to locate a stoat trap tunnel. The model would then be tested against a similar dataset from Resolution Island. The Department of Conservation supplied the stoat capture data from the control operations on both islands. Standard spatial analysis techniques were used to generate surfaces that combined the capture data with the vegetation, habitat, diet and home range surfaces to produce predictive surfaces. The key finding from the research was that it is possible to produce a predictive model, although one was not created because the spatial datasets were not of a high enough resolution to provide conclusive evidence that could be confidently used as a variable in a model. The spatial analysis also indicated that stoats on both islands were caught mainly in the warmer northwestern parts of the islands although the study could not determine why there was a preference for these areas. In rugged terrain like that found on both islands the location of the track network will influence where the majority of stoats will be caught

    The NCBO OBOF to OWL Mapping

    Get PDF
    Two of the most significant formats for biomedical ontologies are the Open Biomedical Ontologies Format (OBOF) and the Web Ontology Language (OWL). To make it possible to translate ontologies between these two representation formats, the National Center for Biomedical Ontology (NCBO) has developed a mapping between the OBOF and OWL formats as well as inter-conversion software. The goal was to allow the sharing of tools, ontologies, and associated data between the OBOF and Semantic Web communities.

OBOF does not have a formal grammar, so the NCBO had to capture its intended semantics to map it to OWL.

This official NCBO mapping was used to make all OBO Foundry ontologies available in OWL. 

Availability: This mapping functionality can be embedded into OBO-Edit and Protégé-OWL ontology editors. This software is available at: http://bioontology.org/wiki/index.php/OboInOwl:Main_Pag

    Physical activity is prospectively associated with adolescent nonalcoholic fatty liver disease

    Get PDF
    Objectives: The aim of the present study was to assess whether objectively measured physical activity at mean ages 12 and 14 years are prospectively associated with ultrasound scan liver fat and stiffness (alanine aminotransferase, aspartate aminotransferase [AST], and [gamma]-glutamyl transferase [GGT]) assessed at mean age 17.8 years. Methods: Participants were from the Avon Longitudinal Study of Parents and Children. Total physical activity (counts per minute) and minutes of moderate to vigorous physical activity (MVPA) were measured using ActiGraph accelerometers at mean ages 12 and 14 years. Results: Greater total physical activity and MVPA at ages 12 and 14 years were associated with lower odds of liver fat and lower GGT levels at mean age 17.8 years, such as per 15-minute increase in daily MVPA at age 12 years, the confounder adjusted odds ratio of liver fat was 0.47 (95% confidence interval [CI] 0.27–0.84). Associations attenuated after additional adjustment for fat mass as a potential confounder (eg, per 15-minute increase in daily MVPA at age 12 years, the odds ratio of liver fat attenuated to 0.65 [95% CI 0.35–1.21]) or a potential mediator (eg, per 15-minute increase in daily MVPA at age 12 years the odds ratio of liver fat attenuated to 0.59 [95% CI 0.32–1.09]). Results did not further attenuate after additional adjustment for insulin resistance. There was some evidence that greater total physical activity and MVPA at age 12 years were associated with the higher AST levels. Conclusions: Adolescents who were more active in childhood have lower odds of fatty liver and lower GGT levels. These findings are likely to be, at least in part, explained by adiposity

    Weight trajectories through infancy and childhood and risk of non-alcoholic fatty liver disease in adolescence: the ALSPAC study

    Get PDF
    Background and Aims: Adiposity is a key risk factor for NAFLD. Few studies have examined prospective associations of infant and childhood adiposity with subsequent NAFLD risk. We examined associations of weight-for-height trajectories from birth to age 10 with liver outcomes in adolescence, and assessed the extent to which associations are mediated through fat mass at the time of outcome assessment.<p></p> Methods: Individual trajectories of weight and height were estimated for participants in the Avon Longitudinal Study of Parents and Children using random-effects linear-spline models. Associations of birthweight (adjusted for birth length) and weight change (adjusted for length/height change) from 0–3 months, 3 months–1 y, 1–3 y, 3–7 y, and 7–10 y with ultrasound scan (USS) determined liver fat and stiffness, and serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase (GGT) at mean age 17.8 y were assessed with linear and logistic regressions. Mediation by concurrent fat mass was assessed with adjustment for fat mass at mean age 17.8 y.<p></p> Results: Birth weight was positively associated with liver stiffness and negatively with ALT and AST. Weight change from birth to 1 y was not associated with outcomes. Weight change from 1–3 y, 3–7 y, and 7–10 y was consistently positively associated with USS and blood-based liver outcomes. Adjusting for fat mass at mean age 17.8 y attenuated associations toward the null, suggesting associations are largely mediated by concurrent body fatness.<p></p> Conclusions: Greater rates of weight-for-height change between 1 y and 10 y are consistently associated with adverse liver outcomes in adolescence. These associations are largely mediated through concurrent fatness

    Direct numerical simulation of a high-pressure hydrogen micromix combustor: flame structure and stabilisation mechanism

    Full text link
    A high-pressure hydrogen micromix combustor has been investigated using direct numerical simulation with detailed chemistry to examine the flame structure and stabilisation mechanism. The configuration of the combustor was based on the design by Schefer [1], using numerical periodicity to mimic a large square array. A precursor simulation of an opposed jet-in-crossflow was first conducted to generate appropriate partially-premixed inflow boundary conditions for the subsequent reacting simulation. The resulting flame can be described as a predominantly-lean inhomogeneously-premixed lifted jet flame. Five main zones were identified: a jet mixing region, a core flame, a peripheral flame, a recirculation zone, and combustion products. The core flame, situated over the jet mixing region, was found to burn as a thin reaction front, responsible for over 85% of the total fuel consumption. The peripheral flame shrouded the core flame, had low mean flow with high turbulence, and burned at very lean conditions (in the distributed burning regime). It was shown that turbulent premixed flame propagation was an order-of-magnitude too slow to stabilise the flame at these conditions. Stabilisation was identified to be due to ignition events resulting from turbulent mixing of fuel from the jet into mean recirculation of very lean hot products. Ignition events were found to correlate with shear-driven Kelvin-Helmholtz vortices, and increased in likelihood with streamwise distance. At the flame base, isolated events were observed, which developed into rapidly burning flame kernels that were blown downstream. Further downstream, near-simultaneous spatially-distributed ignition events were observed, which appeared more like ignition sheets. The paper concludes with a broader discussion that considers generalising from the conditions considered here

    Anthropometric and Physiological Characteristics of Elite Male Rugby Athletes

    Get PDF
    This is the first article to review the anthropometric and physiological characteristics required for elite rugby performance within both Rugby Union (RU) and Rugby League (RL). Anthropometric characteristics such as height and mass, and physiological characteristics such as speed and muscular strength, have previously been advocated as key discriminators of playing level within rugby. This review aimed to identify the key anthropometric and physiological properties required for elite performance in rugby, distinguishing between RU and RL, forwards and backs and competitive levels. There are differences between competitive standards such that, at the elite level, athletes are heaviest (RU forwards ~111 kg, backs ~93 kg; RL forwards ~103 kg, backs ~90 kg) with lowest % body fat (RU forwards ~15%, backs ~12%; RL forwards ~14%, backs ~11%), they have most fat-free mass and are strongest (Back squat: RU forwards ~176 kg, backs ~157 kg; RL forwards ~188 kg, backs ~ 168 kg; Bench press: RU forwards ~131 kg, backs ~118 kg; RL forwards ~122 kg, backs ~113 kg) and fastest (10 m: RU forwards ~1.87 s, backs ~1.77 s; 10 m RL forwards ~1.9 s, backs ~1.83 s). We also have unpublished data that indicate contemporary RU athletes have less body fat and are stronger and faster than the published data suggest. Regardless, well-developed speed, agility, lower-body power and strength characteristics are vital for elite performance, probably reflect both environmental (training, diet, etc.) and genetic factors, distinguish between competitive levels and are therefore important determinants of elite status in rugby.Published versio

    Differences in estimates of size distribution of beryllium powder materials using phase contrast microscopy, scanning electron microscopy, and liquid suspension counter techniques

    Get PDF
    Accurate characterization of the physicochemical properties of aerosols generated for inhalation toxicology studies is essential for obtaining meaningful results. Great emphasis must also be placed on characterizing particle properties of materials as administered in inhalation studies. Thus, research is needed to identify a suite of techniques capable of characterizing the multiple particle properties (i.e., size, mass, surface area, number) of a material that may influence toxicity. The purpose of this study was to characterize the morphology and investigate the size distribution of a model toxicant, beryllium. Beryllium metal, oxides, and alloy particles were aerodynamically size-separated using an aerosol cyclone, imaged dry using scanning electron microscopy (SEM), then characterized using phase contrast microscopy (PCM), a liquid suspension particle counter (LPC), and computer-controlled SEM (CCSEM). Beryllium metal powder was compact with smaller sub-micrometer size particles attached to the surface of larger particles, whereas the beryllium oxides and alloy particles were clusters of primary particles. As expected, the geometric mean (GM) diameter of metal powder determined using PCM decreased with aerodynamic size, but when suspended in liquid for LPC or CCSEM analysis, the GM diameter decreased by a factor of two (p < 0.001). This observation suggested that the smaller submicrometer size particles attached to the surface of larger particles and/or particle agglomerates detach in liquid, thereby shifting the particle size distribution downward. The GM diameters of the oxide materials were similar regardless of sizing technique, but observed differences were generally significant (p < 0.001). For oxides, aerodynamic cluster size will dictate deposition in the lung, but primary particle size may influence biological activity. The GM diameter of alloy particles determined using PCM became smaller with decreasing aerodynamic size fraction; however, when suspended in liquid for CCSEM and LPC analyses, GM particle size decreased by a factor of two (p < 0.001) suggesting that alloy particles detach in liquid. Detachment of particles in liquid could have significance for the expected versus actual size (and number) distribution of aerosol delivered to an exposure subject. Thus, a suite of complimentary analytical techniques may be necessary for estimating size distribution. Consideration should be given to thoroughly understanding the influence of any liquid vehicle which may alter the expected aerosol size distribution

    Confronting Standard Models of Proto--Planetary Disks With New Mid--Infrared Sizes from the Keck Interferometer

    Get PDF
    We present near and mid-infrared interferometric observations made with the Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the IRTF of 11 well known young stellar objects, several observed for the first time in these spectral and spatial resolution regimes. With AU-level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inner rim and mid-infrared disk emission. We find a high degree of correlation between the stellar luminosity and the mid-infrared disk sizes after using near-infrared data to remove the contribution from the inner rim. We then use a semi-analytical physical model to also find that the very widely used "star + inner dust rim + flared disk" class of models strongly fails to reproduce the SED and spatially-resolved mid-infrared data simultaneously; specifically a more compact source of mid-infrared emission is required than results from the standard flared disk model. We explore the viability of a modification to the model whereby a second dust rim containing smaller dust grains is added, and find that the two-rim model leads to significantly improved fits in most cases. This complexity is largely missed when carrying out SED modelling alone, although detailed silicate feature fitting by McClure et al. 2013 recently came to a similar conclusion. As has been suggested recently by Menu et al. 2015, the difficulty in predicting mid-infrared sizes from the SED alone might hint at "transition disk"-like gaps in the inner AU; however, the relatively high correlation found in our mid-infrared disk size vs. stellar luminosity relation favors layered disk morphologies and points to missing disk model ingredients instead
    • …
    corecore