
 1

The NCBO OBOF to OWL Mapping
Dilvan	 A.	 Moreira1,2,*,	 Christopher	 J.	 Mungall3,	 Nigam	 H.	 Shah1,	 Stuart	 Aitken4,	 John-‐Day	
Richter3,	 Timothy	 Redmond1	 and	 Mark	 A.	 Musen1	
1Stanford	 Center	 for	 Biomedical	 Informatics	 Research,	 Stanford	 University,	 251	 Campus	 drive,	 MSOB,	 Stanford,	 CA.	
2University	 of	 São	 Paulo,	 SCC-‐ICMC-‐USP	 400	 Trabalhador	 Sancarlense,	 São	 Carlos,	 Brazil.	
3Lawrence	 Berkeley	 National	 Laboratory,	 1	 Cyclotron	 Road	 MS64R0121,	 Berkeley,	 CA.	
4Centre	 for	 Intelligent	 Systems	 and	 their	 Applications,	 The	 University	 of	 Edinburgh,	 11	 Crichton	 Street,	 Edinburgh,	
UK.	
	

ABSTRACT
Two of the most significant formats for biomedical ontologies
are the Open Biomedical Ontologies Format (OBOF) and the
Web Ontology Language (OWL). To make it possible to
translate ontologies between these two representation for-
mats, the National Center for Biomedical Ontology (NCBO)
has developed a mapping between the OBOF and OWL
formats as well as inter-conversion software. The goal was
to allow the sharing of tools, ontologies, and associated data
between the OBOF and Semantic Web communities.
 OBOF does not have a formal grammar, so the NCBO had
to capture its intended semantics to map it to OWL.
 This official NCBO mapping was used to make all OBO
Foundry ontologies available in OWL.
Availability: This mapping functionality can be embedded
into OBO-Edit and Protégé-OWL ontology editors. This soft-
ware is available at:
http://bioontology.org/wiki/index.php/OboInOwl:Main_Page

1 INTRODUCTION
With the explosion of ontologies used to drive work in e-

commerce, e-science, and many other application areas, the World
Wide Web Consortium (W3C) initiated a standards process that
led to the recommendation of OWL (McGuinness and Harmelen,
2004), the Web Ontology Language. There is now a significant
interest in using the life sciences domain as a “focus” for W3C
semantic web activity (Ruttenberg et al., 2007). In this light, bio-
logical data described using OBOF (Open Biomedical Ontologies
Format) ontologies are a prime resource, and there is great interest
from the Semantic Web community to access both the ontologies
and the data that have been described (annotated) using these on-
tologies.

 On the other hand, the bio-ontology community needs to lever-
age the rapid progress that is being made in Semantic Web tech-
nologies, especially with OWL. As a result, there is a strong inter-
est in a mapping between the OBOF and OWL.

OBOF is a tag-based format, and its specification can be found
online (http://www.geneontology.org /GO.format.obo-1_2.shtml).
For the NCBO mapping, we used OBOF Version 1.2 and OWL
Version 1.0 (sublanguage OWL-DL). Ontology files in OBOF 1.2
consist of a header, a set of terms, and a set of relationships.

*To whom correspondence should be addressed (dilvan@gmail.com).

Performing a translation between any formats, when there is
some ambiguity involved (as it is the case with OBOF), presents
interpretation problems, and the first practical barrier is obtaining a
parser that works as intended by the developers of the format. The
most reliable solution, to guarantee accurate parsing, is to use a
parser written specifically to work with OBOF, this meant using
the parser that is built into OBO-Edit (Day-Richter et al, 2007), the
most used editor for OBOF ontologies. OBO-Edit is open source
software, so its parser can be reused without restrictions. For OWL
the parser built into Protégé (Noy et al, 2003) was used in our
tools. The conversion problem is then confined to establish a cor-
respondence between OBOF constructs and OWL constructs. Our
conversion software uses the respective OBO-Edit API and Pro-
tégé OWL API to carry out the actual transformation from OBOF
to OWL format and vice-versa. This implementation was written in
Java 1.5. In addition, an alternative implementation was written as
an XML Style Sheet Transform (XSLT) to convert OBO-XML to
OWL.

We have to note the exception that OBOF instances (Instance
stanzas) and certain tags (is_anonymous, transitive_over,
is_reflexive, is_anti_symmetric, builtin and
is_metadata_tag) are not mapped into OWL in this mapping.
These constructs will not be fully specified in OBOF until its next
release.

2 MAPPING BASIC ONTOLOGY CONSTRUCTS
It is possible to establish direct one-to-one correspondences from

the two basic ontology constructs in OBOF, Terms and Relations,
to OWL:

Terms: OBOF terms are mapped into OWL classes (owl:Class).
Child terms (declared using the is_a relationship tag) use the sub-
classes (rdfs:SubClassOf) relationship. An example is shown in
Table 1: The OWL representation equates the OBOF term to a
Named Class in OWL using necessary conditions to define the
class.

The OBOF tags intersection_of and union_of allow the crea-
tion of compositional terms in OBOF based on intersection or un-
ion conditions respectively (using necessary and sufficient condi-
tions). In OWL, Defined Classes represent compositional objects.
Compositional terms in OBOF are mapped using Defined Classes
in OWL.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nature Precedings

https://core.ac.uk/display/288902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

D.A. Moreira et al.

2

Relations: As shown in Table 1, the hierarchical relationships
among OBOF terms have a natural mapping to OWL constructs.
The OBOF is_a tag is mapped to the rdf:subClassOf predicate (as
it represents a subclass relationship). All other OBOF relationship
definitions ([Typedef]), such as part_of or develops_from, are
mapped directly into OWL object properties
(owl:ObjectProperties). These definitions may have additional
declarations about the inverse relationship and about transitivity
that are also mapped into OWL constructs.

Table 1. OBOF terms are mapped directly into OWL Named-Classes

OBOF OWL
[Term]

id: SO:0000042

name: pseudogene_attr

is_a: SO:0000733

<owl:Class rdf:ID="#SO_0000042">

 <rdfs:label

 rdf:datatype="&xsd;string">

 pseudogene_attr

 </rdfs:label>

 <rdfs:subClassOf

 rdf:resource="#SO_0000733"/>

</owl:Class>

Relationships between OBOF terms are encoded by the OBOF

relationship tag at the term (class) level. For example, if a given
OBOF file states that “nerve terminal (GO:0043679) is part_of
neuron projection (GO:0043005)”, the equivalent OWL represen-
tation should state that all cell structures (individuals) of the class
“nerve terminal” are part_of some structure of the class “neuron
projection”. In order to achieve the correct semantics intended in
the OBOF format, the relationship definitions are translated to all-
some quantifications over individuals in OWL and are encoded
using the owl:Restriction construct, on a certain property (rela-
tion), with an owl:someValuesFrom quantification, as shown in
Table 2.

Table 2. Mapping OBOF relationships

OBOF
relationship: part_of GO:0000087

OWL
<rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="#part_of"/>

 </owl:onProperty>

 <owl:someValuesFrom>

 <owl:Class rdf:ID="GO_0000087"/>

 </owl:someValuesFrom>

 </owl:Restriction>

</rdfs:subClassOf>

Mapping OBOF relationships as all-some quantifications over properties of individu-
als in OWL.

3 UNIQUE IDENTIFIERS
Both the OWL and OBOF representations require a unique iden-

tifier (ID) for the entities in the ontology. The OBO foundry rec-
ommends that the term identifier be in bipartite form, with an ID-

space and a ‘local’ identifier (typically numeric) separated by the
colon character – for example, GO:0008045. The resulting ID
would be unique among all OBOF ontologies. In OWL, the unique
identifiers are always Uniform Resource Identifiers (URIs). These
IDs are completely independent of the name(s) associated with
these entities.

We defined a protocol for composing an OWL ID from an
OBOF ID. OWL requires all IDs (rdf:ID) to be well formed
URIs. As a result, there are many alphanumeric characters that
may not appear in OWL IDs. The OBOF identifier must be ma-
nipulated in order to render it as a valid URI. In this mapping, each
ontology has a base URI, and, based on it, a URI is constructed for
each term and relationship from its OBO ID:
• If the ID has a prefix, such as GO:0000001, their URI is

constructed concatenating their prefix (GO) onto their base
URI, followed by a hash (‘#’) symbol. This URI is then con-
catenated with the local part of their ID (0000001). If this
string is numeric (as is commonly the case), then the charac-
ters must be prefixed with the OBOF ID-space, followed by
an underscore. In this way, OBOF IDs of the form
GO:0000001 from an ontology that have
http://purl.org/obo/owl/ as its base URI are mapped to URIs of
the form http://purl.org/obo/owl/GO#GO_0000001.

• If the ID has no prefix (what is usually the case for relation-
ships), their URI is constructed concatenating their OBOF
default-namespace (declared in the OBOF file) onto their
base URI. This URI is then concatenated with their ID. In
this manner, IDs, such as part_of in the GO, will be
mapped to http://purl.org/obo/owl/gene_ontology#part_of, where
gene_ontology is the OBOF default-namespace for GO. If the
OBOF default-namespace is not declared, then the ID will be
mapped to the base URI’s namespace or, if the ID refers to a
relationship definition, it can be explicitly assigned to a par-
ticular namespace where this relationship is defined.

4 METADATA
 When developers create an ontology in OBOF, they describe

both formal ontological elements (i.e., the relationships among
entities) and metadata. OBOF provides a uniform mean of encod-
ing relationships holding among a set of entities, terminological
and lexical aspects of those entities (synonyms, comments, text
definitions), and information pertaining to the ontology lifecycle
(including tracking of obsolete terms and metadata for migrating
annotations forward across versions). This metadata is very useful
for human understandability and can be added to the ontology as a
whole or with individual classes in that ontology.

OWL, in and of itself, does not provide a standard way of cap-
turing this metadata. Instead, it allows ontology developers to de-
velop their own ways of capturing ontology metadata.

Any full translation from OBOF to OWL must include a mecha-
nism to accommodate such metadata elements. For that, we have
created a set of new classes and properties, a small metadata ontol-
ogy, to be used in annotation properties owl:AnnotationProperty
called oboInOwl. This metadata ontology has the URI
http://www.geneontology.org/formats/oboInOwl (conventionally
abbreviated as the XML qname oboInOwl:).

For each of the OBOF metadata elements, we have specified
corresponding elements in the oboInOwl ontology. We also make

The NCBO OBOF to OWL Mapping

3

use of two RDFS properties – rdfs:label (for names) and
rdfs:comment (for comments).

5 MAPPING EACH PART OF AN OBOF FILE
Ontology files in OBOF consist of a header and sets of terms

and relationships. The header has documentation and information
tags, such as format version and saved date, and comes first in the
file. Terms and relationships can be mixed and distributed along
the document.

OBOF Header

OBOF header constructs are mapped to OWL annotations
(owl:AnnotationProperty) in the ontology class
(owl:Ontology). OBOF tags processed by parsers are not
mapped; there is no need to tie the mapping to the way OBOF and
OWL process parsing commands, such as imports. The OBOF tag
format-version is ignored, as there is no need to map an OBOF
file to a particular OBOF version. Table 3 shows all header con-
structs.

Table 3. OBOF ontology header metadata

OBOF OWL
data-version oboInOwl:hasVersion
Date oboInOwl:hasDate
saved-by oboInOwl:savedBy
Subsetdef oboInOwl:hasSubset
Synonymtypedef oboInOwl:hasSynonymType
default-namespace oboInOwl:hasDefaultNamespace
Remark rdfs:comment
Idspace oboInOwl:hasIdSpace
format-version Ignored
auto-generated-by Ignored (Generated in each write)
Import Ignored (Processed by the parser)
default-
relationship-id-
prefix

Ignored (Processed by the parser)

id-mapping Ignored (Processed by the parser)

OBOF Terms

Entities in OBOF are referenced as Terms. Table 1 showed the
basic mapping of terms, Table 4 shows all possible constructs. This
table describes the terminological information associated with
entities in OBOF (mapped to OWL classes), their relationships
with other entities, cross-references to other ontologies, as well as
restrictions, if any, on the terms. Note that there is no semantic
difference between rdf:about and rdf:ID tags (syntactically
rdf:ID provides an additional check since the same name can
only appear once in the scope). Some OBOF tags will be fully
specified only in OBO 1.3, so they are not mapped at this time.

Table 4. Term information

OBOF OWL
[Term] owl:Class
Id rdf:ID / rdf:about
Name rdfs:label
Comment rdfs:comment
is_a rdfs:subClassOf
is_anonymous To be fully specified in OBO 1.3
alt_id oboInOwl:hasAlternateID
Namespace oboInOwl:hasOBONamespace
Def oboInOwl:hasDefinition
Comment rdfs:comment
Subset oboInOwl:hasSubset
Synonym oboInOwl:hasSynonym

oboInOwl:hasExactSynonym (scope=EXACT)

oboInOwl:hasNarrowSynonym

(scope=NARROW)

oboInOwl:hasBroadSynonym (scope=BROAD)

oboI-

nOwl:hasRelatedSynonym(scope=RELATED)
Xref oboInOwl:hasDbXref
intersetion_of owl:intersectionOf
union_of owl:unionOf
Disjoint_from owl:disjointFrom
Relationship owl:restriction
Builtin To be fully specified in OBO 1.3

OBOF Relationships

Table 2 showed the mapping of OBOF relationships. Table 5
shows the OBOF constructs that describe logical properties of
relationships showing their correspondent in OWL. They are used
for reasoning over an ontology. Some OBOF tags will be fully
specified only in OBO 1.3, so they are not mapped at this time.

Table 5. Relationship information

OBOF OWL
is_a rdfs:subPropertyOf
Range rdfs:range
Domain rdfs:domain
is_symmetric owl:SymmetricProperty
is_anti_symmetric To be fully specified in OBO 1.3
is_transitive owl:TransitiveProperty
inverse_of owl:inverseOf
transitive_over To be fully specified in OBO 1.3
is_cyclic oboInOwl:isCyclic

(AnnotationProperty)
is_reflexive To be fully specified in OBO 1.3
is_symmetric owl:SymmetricProperty
is_metadata_tag To be fully specified in OBO 1.3

OBOF Obsolete entities

Obsolete terms and relationships can have tags with information
about direct substitutes, replace_by, or similar concepts, con-
sider (Table 6).

D.A. Moreira et al.

4

Table 6. Obsolete terms and relationships

OBOF keyword OWL annotation
property

OWL type

replaced_by oboInOwl:replacedBy xsd:string
Consider oboInOwl:consider xsd:string

More complex mapping examples

Table 7 shows a more complex example of mapping: a composi-
tional term from the Sequence Ontology (Eilbeck et al, 2005) in
OBOF is mapped to a Defined Class in OWL based on intersec-
tion, as the two constructs are semantically equivalent.

Table 7. A more complex example of the mapping of OBOF terms to OWL
Classes

OBOF
[Term]

id: SO:0000111

name: transposable_element_gene

def: "A gene encoded … yeast." [SO:ke]

intersection_of: SO:0000704 ! gene

intersection_of: part_of SO:0000101 !t…

OWL
<owl:Class rdf:ID="SO_0000111">

 <rdfs:label rdf:datatype="&xsd;string">

 transposable_element_gene

 </rdfs:label>

 <oboInOwl:hasDefinition>

 A gene encoded … yeast.

 </oboInOwl:hasDefinition>

 <owl:equivalentClass>

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collection">

 <owl:Class rdf:ID="SO_0000704"/>

 <owl:Restriction>

 <owl:someValuesFrom>

 <owl:Class rdf:ID="SO_0000101"/>

 </owl:someValuesFrom>

 <owl:onProperty>

 <owl:ObjectProperty

 rdf:about="#part_of"/>

 </owl:onProperty>

 </owl:Restriction>

 </owl:intersectionOf>

 </owl:Class>

 </owl:equivalentClass>

</owl:Class>

 Table 8 shows how is_a relationships are mapped to OWL sub-
class relationships and how more complex relationships such as
part_of are mapped to owl:ObjectProperties.

Table 9 lists the classes and properties used for representing
OBOF metadata entities using the oboInOwl metadata ontology
(The asterisk denotes optional constructs).

6 RESULTS
 The NCBO mapping can only be useful if we provide a straight-
forward means for using it. We have developed software that can
be readily embedded into different work environments. The map-
ping can thus be used with software that function as:

• a command line tool, for batch processing (Moreira and
Musen, 2007),

• a Tab plug-in (Moreira and Musen, 2007) to allow Protégé-
OWL, a popular tool among the Semantic Web community,
to read and save ontologies in OBOF,

• perl and XSLT scripts, for use in web/XML applications
(http://search.cpan.org/~cmungall/go-perl),

• a Tab plug-in for Protégé-OWL that allows for viewing and
editing of lexical information, captured in the oboToOwl meta-
data, in a manner similar to OBO-Edit (Day-Richter et al.,
2007), and

• a plug-in to allow the OBO-Edit, a popular tool among the
OBO community, to read and save OBOF ontologies in
OWL.

All the software described is available online at
http://bioontology.org/wiki/index.php/OboInOwl:Main_Page. In
addition, the LSW tool is also capable of rending the oboToOwl
metadata elements for human users (available at
http://esw.w3.org/topic/LSW).

The NCBO mapping is already being widely adopted by the bio-
medical community. It was used to convert all ontologies from the
OBO Foundry to OWL. As a result the OBO Foundry ontologies
are now available in OWL format from http://purl.org/obo (for
example, the GO is available via the URL
http://purl.org/obo/owl/GO).

It is now possible to use these ontologies in OWL with other
Semantic Web technologies to integrate biomedical data from dif-
ferent sources. For instance, it is now possible to read the GO on-
tology and GO annotations (tab delimited format) into OWL (Mor-
eira et al, 2007).

In a larger scale, the W3C Health Care and Life Sciences Inter-
est Group (HCLSIG) demo (Ruttenberg, 2007) populated a RDF
data store with these OWL ontologies, together with biological
annotations relevant to neuroscience, to demonstrate the value of
semantic web technology. This database is now available online as
the Neurocommons RDF Store, where 7 OBO ontologies are inte-
grated with 10 other ontologies and data sources in one repository
(triple store) accessible using SPARQL queries.

7 CONCLUSION
The NCBO mapping is serving as an interface between the bio-

medical community and users of Semantic Web technologies.
Both communities benefit from a simple mechanism to faithfully
translate between OBOF and OWL. Now, users of OBOF ontolo-
gies are able to leverage the rapid progress that is being made in
computer science—especially in Semantic Web technologies—and
the Semantic Web community will be able to interoperate with
OBOF bio-ontologies and the data they annotate.

The NCBO OBOF to OWL Mapping

5

Table 6. Subclasses and properties

OBOF OWL
[Typedef]
id: OBO_REL:proper_part_of
name: proper_part_of
is_a: OBO_REL:part_of
def: "As for … distinct" [PMID:15892874]
inverse_of: OBO_REL:has_proper_part
is_transitive: true

<owl:ObjectProperty rdf:about="&oboRel;proper_part_of">
 <rdfs:label … >proper part of</rdfs:label>
 <rdfs:subPropertyOf rdf:resource="&oboRel;part_of"/>
 <oboInOwl:hasDefinition>
 <oboInOwl:Definition>
 <rdfs:label ... >
 As for … distinct
 </rdfs:label>
 <oboInOwl:hasDbXref>
 <oboInOwl:DbXref>
 <rdfs:label ...>
 PMID:15892874
 </rdfs:label>
 </oboInOwl:DbXref>
 </oboInOwl:hasDbXref>
 </oboInOwl:Definition>
 </oboInOwl:hasDefinition>
 <owl:inverseOf rdf:resource="&oboRel;has_part"/>
 <rdf:type rdf:resource="&owl;TransitiveProperty"/>
</owl:ObjectProperty>

Table 7. OBOF metadata entities in OWL

OBOF entity description OWL class description
xref: dbxref_name “description” <oboInOwl:DbXref>

 <rdfs:label …> dbxref_name </…>
 <rdfs:comment …> description </…>
 <oboInOwl:hasURI xsd:anyuri> URI </…> *

</…>

synonym: “text” scope type [dbxref …] <oboInOwl:Synonym>
 <rdfs:label …> text </…>
 <oboInOwl:hasDbXref> DbXref </…>
 <oboInOwl:hasSynonymType> SynonymType </…> *

</…>

synonymtypedef: name description scope> <oboInOwl:SynonymType rdf:ID=”name”>
 <rdfs:label …> description </…>
 <oboInOwl:restrictedToScope> scope </…> *

</…>

subsetdef: name “description” <oboInOwl:Subset rdf:ID=”name”>
 <rdfs:comment …> description </…> *

</…>

definition: text [dbxref1 …] <oboInOwl:Definition>
 <rdfs:label…> text </…>
 <oboInOwl:hasDbXref> DbXref </…> *

</…>

idspace: idspace URI “description” <oboInOwl:IdSpace>
 <rdfs:label …> idspace </…>
 <oboInOwl:hasURI xsd:anyuri> URI </…>
 <rdfs:comment …> description </…> *

</…>

D.A. Moreira et al.

6

ACKNOWLEDGEMENTS
The authors gratefully acknowledge the support and advice from
all of our colleagues in the National Center for Biomedical Ontol-
ogy, which led to the development of this mapping, especially to
Suzanna Lewis. We also gratefully acknowledge the expertise and
input we received from the wider OBOF and OWL communities.
Finally, we are extremely appreciative to our users whose feedback
and support continues to guide our work.

Funding: NCBO is supported by a grant from the National Insti-
tutes of Health (NIH grant U54 HG004028, through the NIH
Roadmap program, M.A. Musen, PI). This work was also sup-
ported by a scholarship from CAPES-Brazil.

REFERENCES
Day-Richter J, Harris MA, Haendel M, Lewis S. (2007) OBO-Edit - An

Ontology Editor for Biologists. Bioinformatics 23(16):2198-2200.
Eilbeck, K, Lewis SE, Mungall CJ, Yandell M, Stein L et al. (2005) The

Sequence Ontology: a tool for the unification of genome annotations.
Genome Biol. 6:R44.

McGuinness D, Harmelen F (Eds) (2004) OWL Web Ontology Language
Overview. W3C Recommendation 10 February 2004.

 http://www.w3.org/TR/2004/REC-owl-features-20040210/
Moreira DA, Musen MA. (2007) OBO to OWL: A Protégé OWL Tab to

Read/Save OBO Ontologies. Bioinformatics 23(14):1868-1870.
Moreira DA, Shah NH, Musen MA. (2007) Interpretation Errors related to

the GO Annotation File Format, AMIA 2007 Symposium Proceedings,
Chicago, November 2007, pp. 538-542.

Noy NF, Crubezy M, Fergerson RW, Knublauch H, Tu SW, Vendetti J,
Musen MA. (2003) Protégé-2000: an open-source ontology-
development and knowledge-acquisition environment. AMIA Annu
Symp Proc. 2003; :953.

Ruttenberg A. (2007) Harnessing the Semantic Web to Answer Scientific
Questions: A Health Care and Life Sciences Interest Group demo.
WWW2007, Banff, Canada
http://esw.w3.org/topic/HCLS/Banff2007Demo

Ruttenberg A, Clark T, Bug W, Samwald M, Bodenreider O et al. (2007)
Advancing translational research with the Semantic Web, BMC Bioin-
formatics, 8(Suppl 3):S2.

