346 research outputs found
Targeting Serotonin Transporters in the Treatment of Juvenile and Adolescent Depression
Depression is a serious public health concern. Many patients are not effectively treated, but in children and adolescents this problem is compounded by limited pharmaceutical options. Currently, the Food and Drug Administration approves only two antidepressants for use in these young populations. Both are selective serotonin reuptake inhibitors (SSRIs). Compounding matters further, they are therapeutically less efficacious in children and adolescents than in adults. Here, we review clinical and preclinical literature describing the antidepressant efficacy of SSRIs in juveniles and adolescents. Since the high-affinity serotonin transporter (SERT) is the primary target of SSRIs, we then synthesize these reports with studies of SERT expression/function during juvenile and adolescent periods. Preclinical literature reveals some striking parallels with clinical studies, primary among them is that, like humans, juvenile and adolescent rodents show reduced antidepressant-like responses to SSRIs. These findings underscore the utility of preclinical assays designed to screen drugs for antidepressant efficacy across ages. There is general agreement that SERT expression/function is lower in juveniles and adolescents than in adults. It is well established that chronic SSRI treatment decreases SERT expression/function in adults, but strikingly, SERT expression/function in adolescents is increased following chronic treatment with SSRIs. Finally, we discuss a putative role for organic cation transporters and/or plasma membrane monoamine transporter in serotonergic homeostasis in juveniles and adolescents. Taken together, fundamental differences in SERT, and putatively in other transporters capable of serotonin clearance, may provide a mechanistic basis for the relative inefficiency of SSRIs to treat pediatric depression, relative to adults
Shift invariant preduals of ℓ<sub>1</sub>(ℤ)
The Banach space ℓ<sub>1</sub>(ℤ) admits many non-isomorphic preduals, for
example, C(K) for any compact countable space K, along with many more
exotic Banach spaces. In this paper, we impose an extra condition: the predual
must make the bilateral shift on ℓ<sub>1</sub>(ℤ) weak<sup>*</sup>-continuous. This is
equivalent to making the natural convolution multiplication on ℓ<sub>1</sub>(ℤ)
separately weak*-continuous and so turning ℓ<sub>1</sub>(ℤ) into a dual Banach
algebra. We call such preduals <i>shift-invariant</i>. It is known that the
only shift-invariant predual arising from the standard duality between C<sub>0</sub>(K)
(for countable locally compact K) and ℓ<sub>1</sub>(ℤ) is c<sub>0</sub>(ℤ). We provide
an explicit construction of an uncountable family of distinct preduals which do
make the bilateral shift weak<sup>*</sup>-continuous. Using Szlenk index arguments, we
show that merely as Banach spaces, these are all isomorphic to c<sub>0</sub>. We then
build some theory to study such preduals, showing that they arise from certain
semigroup compactifications of ℤ. This allows us to produce a large number
of other examples, including non-isometric preduals, and preduals which are not
Banach space isomorphic to c<sub>0</sub>
{VeSTA} : a Tool to Verify the Correct Integration of a Component in a Composite Timed System
International audienceVesta is a push-button tool for checking the correct integration of a component in an environment, for component-based timed systems. By correct integration, we mean that the local properties of the component are preserved when this component is merged into an environment. This correctness is checked by means of a so-called divergencesensitive and stability-respecting timed tau-simulation, ensuring the preservation of all linear timed properties expressed in the logical formalism Mitl (Metric Interval Temporal Logic), as well as strong non-zenoness and deadlock-freedom. The development of the tool was guided by the architecture of the Open-Kronos tool. This allows, as additional feature, an easy connection of the models considered in Vesta to the Open- Caesar verification platform, and to the Open-Kronos tool
Parametric LTL on Markov Chains
This paper is concerned with the verification of finite Markov chains against
parametrized LTL (pLTL) formulas. In pLTL, the until-modality is equipped with
a bound that contains variables; e.g., asserts that
holds within time steps, where is a variable on natural
numbers. The central problem studied in this paper is to determine the set of
parameter valuations for which the probability to
satisfy pLTL-formula in a Markov chain meets a given threshold , where is a comparison on reals and a probability. As for pLTL
determining the emptiness of is undecidable, we consider
several logic fragments. We consider parametric reachability properties, a
sub-logic of pLTL restricted to next and , parametric B\"uchi
properties and finally, a maximal subclass of pLTL for which emptiness of is decidable.Comment: TCS Track B 201
Ontogeny of NET expression and antidepressant-like response to desipramine in wild-type and SERT mutant mice
Abstract word count: 250 Introduction word count: 74
LTL Parameter Synthesis of Parametric Timed Automata
The parameter synthesis problem for parametric timed automata is undecidable
in general even for very simple reachability properties. In this paper we
introduce restrictions on parameter valuations under which the parameter
synthesis problem is decidable for LTL properties. The investigated bounded
integer parameter synthesis problem could be solved using an explicit
enumeration of all possible parameter valuations. We propose an alternative
symbolic zone-based method for this problem which results in a faster
computation. Our technique extends the ideas of the automata-based approach to
LTL model checking of timed automata. To justify the usefulness of our
approach, we provide experimental evaluation and compare our method with
explicit enumeration technique.Comment: 23 pages, extended versio
The Mechanism of Tuning of The Mole Cricket Singing Burrow
1.
Experimental and theoretical studies on the acoustics of the singing burrow of the mole cricket Gryllotalpa australis are reported.
2.
The burrow typically consists of a bulb about 26 mm long and 20 mm in diameter, connected through a constriction of diameter about 10 mm to a flaring horn with length about 40 mm and equivalent mouth diameter about 34 mm. The mouth geometry of the burrow differs from one species to another, and the aperture may be either single, double or even multiple. The end of the bulb opposite the horn connects to a narrow exit tunnei of diameter about 8 mm and length up to 1 m. The singing cricket positions itself close to the constriction between the bulb and the horn and produces a song with a frequency around 2.5 kHz.
3.
Measurements of sound pressure within the burrow when it is excited by an external sound source at the song frequency show a pressure minimum at the constriction and an amplitude and phase distribution that is consistent with resonance of the burrow at its second modal frequency. The burrow is approximately three-quarters of a wavelength long at this frequency. The same result is obtained when the burrow is excited by a dipole source located near the constriction.
4.
Non-parametric model calculations confirm this conclusion and also give broad agreement with the measured response curves over a frequency range from about 1.5 to 5 kHz. The calculated curves indicate an additional resonance at about 1.2 kHz associated with the first mode of the burrow—the Helmholtz or Klipsch resonance—which is apparently not utilised by the insect. This detail is consistent with earlier measurements, and is also supported by measured responses reported here that show an increase in sound pressure with decreasing frequency below 2 kHz as predicted by the model.
5.
The measured performance of the burrow is broadly consistent with the model. According to the model, the burrow geometry is close to optimal for maximal sound power radiation
Parameter-Independent Strategies for pMDPs via POMDPs
Markov Decision Processes (MDPs) are a popular class of models suitable for
solving control decision problems in probabilistic reactive systems. We
consider parametric MDPs (pMDPs) that include parameters in some of the
transition probabilities to account for stochastic uncertainties of the
environment such as noise or input disturbances.
We study pMDPs with reachability objectives where the parameter values are
unknown and impossible to measure directly during execution, but there is a
probability distribution known over the parameter values. We study for the
first time computing parameter-independent strategies that are expectation
optimal, i.e., optimize the expected reachability probability under the
probability distribution over the parameters. We present an encoding of our
problem to partially observable MDPs (POMDPs), i.e., a reduction of our problem
to computing optimal strategies in POMDPs.
We evaluate our method experimentally on several benchmarks: a motivating
(repeated) learner model; a series of benchmarks of varying configurations of a
robot moving on a grid; and a consensus protocol.Comment: Extended version of a QEST 2018 pape
Probabilistic Verification at Runtime for Self-Adaptive Systems
An effective design of effective and efficient self-adaptive systems may rely on several existing approaches. Software models and model checking techniques at run time represent one of them since they support automatic reasoning about such changes, detect harmful configurations, and potentially enable appropriate (self-)reactions. However, traditional model checking techniques and tools may not be applied as they are at run time, since they hardly meet the constraints imposed by on-the-fly analysis, in terms of execution time and memory occupation. For this reason, efficient run-time model checking represents a crucial research challenge. This paper precisely addresses this issue and focuses on probabilistic run-time model checking in which reliability models are given in terms of Discrete Time Markov Chains which are verified at run-time against a set of requirements expressed as logical formulae. In particular, the paper discusses the use of probabilistic model checking at run-time for self-adaptive systems by surveying and comparing the existing approaches divided in two categories: state-elimination algorithms and algebra-based algorithms. The discussion is supported by a realistic example and by empirical experiments
Noncommutative Figa-Talamanca-Herz algebras for Schur multipliers
We introduce a noncommutative analogue of the Fig\'a-Talamanca-Herz algebra
on the natural predual of the operator space of
completely bounded Schur multipliers on Schatten space . We determine the
isometric Schur multipliers and prove that the space of bounded
Schur multipliers on Schatten space is the closure in the weak operator
topology of the span of isometric multipliers.Comment: 24 pages; corrected typo
- …