38 research outputs found

    The Evolution of Public Health Genomics: Exploring Its Past, Present, and Future

    Get PDF
    Public health genomics has evolved to responsibly integrate advancements in genomics into the fields of personalized medicine and public health. Appropriate, effective and sustainable integration of genomics into healthcare requires an organized approach. This paper outlines the history that led to the emergence of public health genomics as a distinguishable field. In addition, a range of activities are described that illustrate how genomics can be incorporated into public health practice. Finally, it presents the evolution of public health genomics into the new era of “precision public health.

    Healthcare System Priorities for Successful Integration of Genomics: An Australian Focus

    Get PDF
    This paper examines key considerations for the successful integration of genomic technologies into healthcare systems. All healthcare systems strive to introduce new technologies that are effective and affordable, but genomics offers particular challenges, given the rapid evolution of the technology. In this context we frame internationally relevant discussion points relating to effective and sustainable implementation of genomic testing within the strategic priority areas of the recently endorsed Australian National Health Genomics Policy Framework. The priority areas are services, data, workforce, finances, and person-centred care. In addition, we outline recommendations from a government perspective through the lens of the Australian health system, and argue that resources should be allocated not to just genomic testing alone, but across the five strategic priority areas for full effectiveness

    Genomic Testing for Human Health and Disease Across the Life Cycle: Applications and Ethical, Legal, and Social Challenges

    Get PDF
    The expanding use of genomic technologies encompasses all phases of life, from the embryo to the elderly, and even the posthumous phase. In this paper, we present the spectrum of genomic healthcare applications, and describe their scope and challenges at different stages of the life cycle. The integration of genomic technology into healthcare presents unique ethical issues that challenge traditional aspects of healthcare delivery. These challenges include the different definitions of utility as applied to genomic information; the particular characteristics of genetic data that influence how it might be protected, used and shared; and the difficulties applying existing models of informed consent, and how new consent models might be needed

    The collective impact of rare diseases in Western Australia: an estimate using a population-based cohort.

    Get PDF
    PURPOSE: It has been argued that rare diseases should be recognized as a public health priority. However, there is a shortage of epidemiological data describing the true burden of rare diseases. This study investigated hospital service use to provide a better understanding of the collective health and economic impacts of rare diseases. METHODS: Novel methodology was developed using a carefully constructed set of diagnostic codes, a selection of rare disease cohorts from hospital administrative data, and advanced data-linkage technologies. Outcomes included health-service use and hospital admission costs. RESULTS: In 2010, cohort members who were alive represented approximately 2.0% of the Western Australian population. The cohort accounted for 4.6% of people discharged from hospital and 9.9% of hospital discharges, and it had a greater average length of stay than the general population. The total cost of hospital discharges for the cohort represented 10.5% of 2010 state inpatient hospital costs. CONCLUSIONS: This population-based cohort study provides strong new evidence of a marked disparity between the proportion of the population with rare diseases and their combined health-system costs. The methodology will inform future rare-disease studies, and the evidence will guide government strategies for managing the service needs of people living with rare diseases.Genet Med advance online publication 22 September 2016Genetics in Medicine (2016); doi:10.1038/gim.2016.143

    Framing the Real: Lefèbvre and NeoRealist Cinematic Space as Practice

    Get PDF
    In 1945 Roberto Rossellini's Neo-realist Rome, Open City set in motion an approach to cinema and its representation of real life – and by extension real spaces – that was to have international significance in film theory and practice. However, the re-use of the real spaces of the city, and elsewhere, as film sets in Neo-realist film offered (and offers) more than an influential aesthetic and set of cinematic theories. Through Neo-realism, it can be argued that we gain access to a cinematic relational and multidimensional space that is not made from built sets, but by filming the built environment. On the one hand, this space allows us to "notice" the contradictions around us in our cities and, by extension, the societies that have produced those cities, while on the other, allows us to see the spatial practices operative in the production and maintenance of those contradictions. In setting out a template for understanding the spatial practices of Neo-realism through the work of Henri Lefèbvre, this paper opens its films, and those produced today in its wake, to a spatio-political reading of contemporary relevance. We will suggest that the rupturing of divisions between real spaces and the spaces of film locations, as well the blurring of the difference between real life and performed actions for the camera that underlies much of the central importance of Neo-realism, echoes the arguments of Lefèbvre with regard the social production of space. In doing so, we will suggest that film potentially had, and still has, a vital role to play in a critique of contemporary capitalist spatial practices

    Eight years after an international workshop on myotonic dystrophy patient registries: case study of a global collaboration for a rare disease.

    Get PDF
    Background Myotonic Dystrophy is the most common form of muscular dystrophy in adults, affecting an estimated 10 per 100,000 people. It is a multisystemic disorder affecting multiple generations with increasing severity. There are currently no licenced therapies to reverse, slow down or cure its symptoms. In 2009 TREAT-NMD (a global alliance with the mission of improving trial readiness for neuromuscular diseases) and the Marigold Foundation held a workshop of key opinion leaders to agree a minimal dataset for patient registries in myotonic dystrophy. Eight years after this workshop, we surveyed 22 registries collecting information on myotonic dystrophy patients to assess the proliferation and utility the dataset agreed in 2009. These registries represent over 10,000 myotonic dystrophy patients worldwide (Europe, North America, Asia and Oceania). Results The registries use a variety of data collection methods (e.g. online patient surveys or clinician led) and have a variety of budgets (from being run by volunteers to annual budgets over €200,000). All registries collect at least some of the originally agreed data items, and a number of additional items have been suggested in particular items on cognitive impact. Conclusions The community should consider how to maximise this collective resource in future therapeutic programmes

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    RD-Connect: An Integrated Platform Connecting Databases, Registries, Biobanks and Clinical Bioinformatics for Rare Disease Research

    Full text link
    Research into rare diseases is typically fragmented by data type and disease. Individual efforts often have poor interoperability and do not systematically connect data across clinical phenotype, genomic data, biomaterial availability, and research/trial data sets. Such data must be linked at both an individual-patient and whole-cohort level to enable researchers to gain a complete view of their disease and patient population of interest. Data access and authorization procedures are required to allow researchers in multiple institutions to securely compare results and gain new insights. Funded by the European Union’s Seventh Framework Programme under the International Rare Diseases Research Consortium (IRDiRC), RD-Connect is a global infrastructure project initiated in November 2012 that links genomic data with registries, biobanks, and clinical bioinformatics tools to produce a central research resource for rare diseases
    corecore