26 research outputs found

    Supporting maintenance of sugar-sweetened beverage reduction using automated versus live telephone support: Findings from a randomized control trial

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Background Although reducing sugar-sweetened beverage (SSB) intake is an important behavioral strategy to improve health, no known SSB-focused behavioral trial has examined maintenance of SSB behaviors after an initial reduction. Guided by the RE-AIM framework, this study examines 6–18 month and 0–18 month individual-level maintenance outcomes from an SSB reduction trial conducted in a medically-underserved, rural Appalachia region of Virginia. Reach and implementation indicators are also reported. Methods Following completion of a 6-month, multi-component, behavioral RCT to reduce SSB intake (SIPsmartER condition vs. comparison condition), participants were further randomized to one of three 12-month maintenance conditions. Each condition included monthly telephone calls, but varied in mode and content: 1) interactive voice response (IVR) behavior support, 2) human-delivered behavior support, or 3) IVR control condition. Assessments included the Beverage Intake Questionnaire (BEVQ-15), weight, BMI, and quality of life. Call completion rates and costs were tracked. Analysis included descriptive statistics and multilevel mixed-effects linear regression models using intent-to-treat procedures. Results Of 301 subjects enrolled in the 6-month RCT, 242 (80%) were randomized into the maintenance phase and 235 (78%) included in the analyses. SIPsmartER participants maintained significant 0–18 month decreases in SSB. For SSB, weight, BMI and quality of life, there were no significant 6–18 month changes among SIPsmartER participants, indicating post-program maintenance. The IVR-behavior participants reported greater reductions in SSB kcals/day during the 6–18 month maintenance phase, compared to the IVR control participants (− 98 SSB kcals/day, 95% CI = − 196, − 0.55, p < 0.05); yet the human-delivered behavior condition was not significantly different from either the IVR-behavior condition (27 SSB kcals/day, 95% CI = − 69, 125) or IVR control condition (− 70 SSB kcals/day, 95% CI = − 209, 64). Call completion rates were similar across maintenance conditions (4.2–4.6 out of 11 calls); however, loss to follow-up was greatest in the IVR control condition. Approximated costs of IVR and human-delivered calls were remarkably similar (i.e., 3.15/participant/monthor3.15/participant/month or 38/participant total for the 12-month maintenance phase), yet implications for scalability and sustainability differ. Conclusion Overall, SIPsmartER participants maintained improvements in SSB behaviors. Using IVR to support SSB behaviors is effective and may offer advantages as a scalable maintenance strategy for real-world systems in rural regions to address excessive SSB consumption.National Institutes of Health, National Cancer Institute (R01CA154364

    Important Role of the GLP-1 Axis for Glucose Homeostasis after Bariatric Surgery.

    Get PDF
    Bariatric surgery is widely used to treat obesity and improves type 2 diabetes beyond expectations from the degree of weight loss. Elevated post-prandial concentrations of glucagon-like peptide 1 (GLP-1), peptide YY (PYY), and insulin are widely reported, but the importance of GLP-1 in post-bariatric physiology remains debated. Here, we show that GLP-1 is a major driver of insulin secretion after bariatric surgery, as demonstrated by blocking GLP-1 receptors (GLP1Rs) post-gastrectomy in lean humans using Exendin-9 or in mice using an anti-GLP1R antibody. Transcriptomics and peptidomics analyses revealed that human and mouse enteroendocrine cells were unaltered post-surgery; instead, we found that elevated plasma GLP-1 and PYY correlated with increased nutrient delivery to the distal gut in mice. We conclude that increased GLP-1 secretion after bariatric surgery arises from rapid nutrient delivery to the distal gut and is a key driver of enhanced insulin secretion.RNA-sequencing was undertaken at the CRUK Cambridge Institute Genomics Core. Cell sorting was performed at the NIHR Cambridge BRC Cell Phenotyping Hub. PL received a Society for Endocrinology Early Career Grant. GR received an Addenbrooke’s Charitable Trust / Evelyn Trust Cambridge Clinical Research Fellowship [16-69] and a Royal College of Surgeons Research Fellowship. The work was partially funded by a project grant from the EFSD/Novo Nordisk Programme for Diabetes Research in Europe

    ARTEFACTS: How do we want to deal with the future of our one and only planet?

    Get PDF
    The European Commission’s Science and Knowledge Service, the Joint Research Centre (JRC), decided to try working hand-in-hand with leading European science centres and museums. Behind this decision was the idea that the JRC could better support EU Institutions in engaging with the European public. The fact that European Union policies are firmly based on scientific evidence is a strong message which the JRC is uniquely able to illustrate. Such a collaboration would not only provide a platform to explain the benefits of EU policies to our daily lives but also provide an opportunity for European citizens to engage by taking a more active part in the EU policy making process for the future. A PILOT PROGRAMME To test the idea, the JRC launched an experimental programme to work with science museums: a perfect partner for three compelling reasons. Firstly, they attract a large and growing number of visitors. Leading science museums in Europe have typically 500 000 visitors per year. Furthermore, they are based in large European cities and attract local visitors as well as tourists from across Europe and beyond. The second reason for working with museums is that they have mastered the art of how to communicate key elements of sophisticated arguments across to the public and making complex topics of public interest readily accessible. That is a high-value added skill and a crucial part of the valorisation of public-funded research, never to be underestimated. Finally museums are, at present, undergoing something of a renaissance. Museums today are vibrant environments offering new techniques and technologies to both inform and entertain, and attract visitors of all demographics.JRC.H.2-Knowledge Management Methodologies, Communities and Disseminatio

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Novel LC-MS/MS method for plasma vancomycin: Comparison with immunoassays and clinical impact

    Get PDF
    Accurate quantification of vancomycin in plasma is important for adequate dose-adjustment. As literature suggests between-method differences, our first objective was to develop a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for total vancomycin in human plasma and to compare frequently used immunoassays with this method. Secondly, we investigated the clinical impact of between-method quantification differences.publisher: Elsevier articletitle: Novel LC–MS/MS method for plasma vancomycin: Comparison with immunoassays and clinical impact journaltitle: Clinica Chimica Acta articlelink: http://dx.doi.org/10.1016/j.cca.2014.12.012 content_type: article copyright: Copyright © 2014 Elsevier B.V. All rights reserved.status: publishe

    Comparative analysis of cervical cytology and human papillomavirus genotyping by three different methods in a routine diagnostic setting

    No full text
    Application of Bethesda guidelines on cervical cytology involves human papillomavirus (HPV) determinations on all ASC-US and ASC-H results. We compared HPV DNA results in view of the eventual development of a cervical intraepithelial neoplasia lesion determined either on cytology or histology. A total of 214 liquid-based cytology samples were analysed. Three different HPV DNA methods were applied: the Abbott RealTime High Risk HPV test, INNO-Lipa HPV Genotyping Extra and Full Spectrum PCR HPV Amplification and Detection/Genotyping System by Lab2Lab Diagnostic Service. A comparison of these three methods showed full concordance only for 49 samples (23%), and 27 (13%) of the samples were discordant in indicating the presence of the high-risk HPV type. Out of 214 patients, 88 were selected who presented with a cervical intraepithelial neoplasia or a VAIN lesion at follow-up cytology or histology. In this group, full concordance with HPV genotyping was present only in 19 (22%) follow-up samples. Nine (10%) follow-up samples showed discordant results for the presence of a high-risk genotype between the three genotyping methods tested either by negativity for high-risk HPV by one of the methods (n=6) or by failure to genotype HPV (n=2), or by a combination of both (n=1). Moreover, discordance for the detection of HPV16 or HPV18 was observed between the three HPV DNA genotyping methods used in 9 (10%) follow-up samples. In addition, the performance of genotyping methods on 20 external quality samples was assessed, showing discordant results for HPV16 and HPV18. Major differences were found in the genotyping results according to the HPV DNA method. Our findings highlight the importance of careful interpretation of data from studies using different HPV genotyping methods and underline the need for standardization by method validation in clinical laboratories, especially in the setting of primary HPV screening

    Prelude to a panzootic: Gene flow and immunogenetic variation in northern little brown myotis vulnerable to bat white-nose syndrome

    No full text
    The fungus that causes bat white-nose syndrome (WNS) recently leaped from eastern North America to the Pacific Coast. The pathogen’s spread is associated with the genetic population structure of a host (Myotis lucifugus). To understand the fine-scale neutral and immunogenetic variation among northern populations of M. lucifugus, we sampled 1142 individuals across the species’ northern range. We used genotypes at 11 microsatellite loci to reveal the genetic structure of, and directional gene flow among, populations to predict the likely future spread of the pathogen in the northwest and to estimate effective population size (Ne). We also pyrosequenced the DRB1-like exon 2 of the class II major histocompatibility complex (MHC) in 160 individuals to explore immunogenetic selection by WNS. We identified three major neutral genetic clusters: Eastern, Montane Cordillera (and adjacent sampling areas), and Haida Gwaii, with admixture at intermediate areas and significant substructure west of the prairies. Estimates of Ne were unexpectedly low (289–16 000). Haida Gwaii may provide temporary refuge from WNS, but the western mountain ranges are not barriers to its dispersal in M. lucifugus and are unlikely to slow its spread. Our major histocompatibility complex (MHC) data suggest potential selection by WNS on the MHC, but gene duplication limited the immunogenetic analyses
    corecore