127,339 research outputs found
Multibody Interplanetary Swingby Trajectories /MIST-1/
Computer program incorporates new isolation procedure to determine interplanetary trajectories which utilize a maximum of three flybys. Program also computes singe planet flybys and direct transfer trajectories. The three principle systems employed in MIST-1 use as their fundamental plane the mean plane of the earth's orbit around the sun
Integrity bases for local invariants of composite quantum systems
Unitary group branchings appropriate to the calculation of local invariants
of density matrices of composite quantum systems are formulated using the
method of -function plethysms. From this, the generating function for the
number of invariants at each degree in the density matrix can be computed. For
the case of two two-level systems the generating function is . Factorisation of such series leads
in principle to the identification of an integrity basis of algebraically
independent invariants. This note replaces Appendix B of our paper\cite{us} J
Phys {\bf A33} (2000) 1895-1914 (\texttt{quant-ph/0001076}) which is incorrect.Comment: Latex, 4 pages, correcting Appendix B of quant-ph/0001076 Error in
corrected and conclusions modified accordingl
Umbilical disconnect actuator
Contamination of sensitive equipment when squibs are fired is prevented by O-rings which retain the debris of squib discharge within the disconnect device
Daze fasteners
A daze fastener system for connecting two or more structural elements wherein the structural elements and fastener parts have substantially different coefficient of thermal expansion physical property characteristics is employed in this invention. By providing frusto-conical abutting surfaces between the structural elements and fastener parts any differences in thermal expansion/contraction between the parts is translated to sliding motion and avoids deleterious thermal stresses in the connection. An essential feature for isotropic homogeneous material connections is that at least two sets of mating surfaces are required wherein each set of mating surfaces have line element extensions that pass through a common point
Input description for Jameson's three-dimensional transonic airfoil analysis program
The input parameters are presented for a computer program which performs calculations for inviscid isentropic transonic flow over three dimensional airfoils with straight leading edges. The free stream Mach number is restricted only by the isentropic assumption. Weak shock waves are automatically located where they occur in the flow. The finite difference form of the full equation for the velocity potential is solved by the method of relaxation, after the flow exterior to the airfoil is mapped to the upper half plane
Evolution of the 2D surface structure of a silicon pitch grating under argon ion bombardement: experiment and modeling
Global synchronization algorithms for the Intel iPSC/860
In a distributed memory multicomputer that has no global clock, global processor synchronization can only be achieved through software. Global synchronization algorithms are used in tridiagonal systems solvers, CFD codes, sequence comparison algorithms, and sorting algorithms. They are also useful for event simulation, debugging, and for solving mutual exclusion problems. For the Intel iPSC/860 in particular, global synchronization can be used to ensure the most effective use of the communication network for operations such as the shift, where each processor in a one-dimensional array or ring concurrently sends a message to its right (or left) neighbor. Three global synchronization algorithms are considered for the iPSC/860: the gysnc() primitive provided by Intel, the PICL primitive sync0(), and a new recursive doubling synchronization (RDS) algorithm. The performance of these algorithms is compared to the performance predicted by communication models of both the long and forced message protocols. Measurements of the cost of shift operations preceded by global synchronization show that the RDS algorithm always synchronizes the nodes more precisely and costs only slightly more than the other two algorithms
Stress concentrations around voids in three dimensions : The roots of failure
Funding This work forms part of a NERC New Investigator award for DH (NE/I001743/1), which is gratefully acknowledged. Acknowledgments The authors would like to acknowledge the reviewers, Elizabeth Ritz and Phillip Resor. Their reviews were very constructive, both helping to improve the manuscripts consistency and highlighting a number of errors in the initial submission. The authors would also like to thank Lydia Jagger's keen eye and patience, she helped greatly in removing a number of grammatical errors from the initial draft.Peer reviewedPublisher PD
Influence of Resonances on the Noise Performance of SQUID Susceptometers
Scanning Superconducting Quantum Interference Device (SQUID) Susceptometry simultaneously images the local magnetic fields and susceptibilities above a sample with sub-micron spatial resolution. Further development of this technique requires a thorough understanding of the current, voltage, and flux ( IVΦ ) characteristics of scanning SQUID susceptometers. These sensors often have striking anomalies in their current–voltage characteristics, which we believe to be due to electromagnetic resonances. The effect of these resonances on the performance of these SQUIDs is unknown. To explore the origin and impact of the resonances, we develop a model that qualitatively reproduces the experimentally-determined IVΦ characteristics of our scanning SQUID susceptometers. We use this model to calculate the noise characteristics of SQUIDs of different designs. We find that the calculated ultimate flux noise is better in susceptometers with damping resistors that diminish the resonances than in susceptometers without damping resistors. Such calculations will enable the optimization of the signal-to-noise characteristics of scanning SQUID susceptometers
Variability of GRB Afterglows Due to Interstellar Turbulence
Gamma-Ray Burst (GRB) afterglows are commonly interpreted as synchrotron
emission from a relativistic blast wave produced by a point explosion in an
ambient medium, plausibly the interstellar medium of galaxies. We calculate the
amplitude of flux fluctuations in the lightcurve of afterglows due to
inhomogeneities in the surrounding medium. Such inhomogeneities are an
inevitable consequence of interstellar turbulence, but could also be generated
by variability and anisotropy in a precursor wind from the GRB progenitor.
Detection of their properties could provide important clues about the
environments of GRB sources. We apply our calculations to GRB990510, where an
rms scatter of 2% was observed for the optical flux fluctuations on the 0.1--2
hour timescale during the first day of the afterglow, consistent with it being
entirely due to photometric noise (Stanek et al. 1999). The resulting upper
limits on the density fluctuations on scales of 20-200 AU around the source of
GRB990510, are lower than the inferred fluctuation amplitude on similar scales
in the Galactic interstellar medium. Hourly monitoring of future optical
afterglows might therefore reveal fractional flux fluctuations at the level of
a few percent.Comment: 18 pages, submitted to Ap
- …
