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INPUT DESCRIPTION FOR JAMESON'S THREE-DIMENSTONAL
TRANSONIC ATRFOTL ANALYSIS PROGRAM
By Perry A. Newman and Ruby.i..Davis

Langley Research Center

SUMMARY

This paper describes the input parameters for a computer program which
has been developed by Antony Jameson of the Courant Institute of Mathematical
Sciences, New York University under NASA Grant NGR-33-016-167. References
1l and 2 describe the method and give several sample results; however, a user's
manual (ref. 3), is not yet available. A version of the program which was
successfully demonstrated on the CDC system here at NASA Langley 1s available
as Langley Program A4231. This paper gives a description of the input
parameters and a listing of input data cards and some output results for
a sample case. It should enable one to use this program until a final version
with its formal user's manual is available.

A brief description of the program and type of problems it will handle is
given in the computer program sbstract which is reproduced as Figure Al of
Appendix A. Further details concerning the method are given in references 1
and 2. An overlay diagram and a list of subroutine names and functions are
given as Figures A2 and A3 respectively.

Computer storage and time reguirements for a three-dimensional problem
limit what can reasonably be done on present computers. Therefore, in
practice, this 3-D program does not have the flexibility (with respect to
grid size, number of grid halvings, and multiple case runs) of similar
2-D analysis programs (refs. 4-7) which are based on the full nonlinear
potential formulation. In this program, the potential function G is a
large three-dimensional array which, in essence, determines both the central
memory storage and the computaticnal time. Typical runs, at the dimensions
stored on the data cell, require (a) 15-30 minutes CPU time on & CDC 6600
{using & run compiler) to reach a convergence criterion of about 10-> and
(b) 322K (base 8) central memory storage. These runs would start on a
coarse grid {64 x 8 x 16) and be halved only once. Iterations take very
close to 8 times ss long on the resulting fine grid (128 x 16 x 32).

The maximum values guoted here and on the following pages are those cons1stent
with the date cell dimensioning and one halving of the grid; these, of

course, can be changed somewhat. In practice there is little advantage in
using the multlple case capability; thus it is recommended that single cases

- be run.



INFUT DESCRIPTION

Read Number Description and Comments
Order Cards
1 1 TITLE. = Descriptive title of case or sequence;

Format (8A10)
Appears on Varian Plots and beginning-
of output.,

2 1 DESC. - = Description for card in Read Order 3
Format (8A10).

3 1 FNX, FNY, FNZ, FPLOT
Format (8E10.T7)

Note: A number of quantities are read in
as floating-point numbers and converted
to integers within the program.

FNX. - Number of computational grid points in
"chordwise direction" from downstrean
infinity, around the leading edge and
back to downstream infinity on coarsest
mesh.  Maximum is 64 (128 with no grid
halving ).

FNY. - HNumber of computaticnal grid points in
"normal direction" from sirfoil surface
to infinity on coarsest mesh. Maximum is

8 (16 with no grid halving).

FNZ. - Bumber of computational grid points in
"spenwise direction" from infinity,
across the wing span and to infinity on
coarsest mesh. Maximum is 16 (32 with no
grid halving).

FPLOT. =~ Plot trigger. Selects type of plot for
chordwise surface pressure coefficients.
FPIOT = 0. Printer plots, one at each
spanvise grid plane section with CP
versus the computational grid chordwise
variable.



Read Number Description and Comments

Srder  Cerds 'FPIOT = 1. Vardan plots (from THREED).
These are superimposed plots, . with all
span sectlons shown on two figures, an
upper surface and a lower surface plot
of CP wversus physical space chord-
wige variable.

FPIOT = 2. Varian plots (from THREED)
as above plus section plots (from GRAPH),
These latter plots, one per section,
give upper and lower surface CP versus
Physical space chordwise variable.

Defeaults to zero

L 1 DESC. - Description for card in Read Order 5
Format (8410).

5 1 card FIT, COVO, P10, P20, P30, BETAO, STRIPO, FHALF
for each _ Format (8E10.T7)}
computational
grid. Maximum FIT. =  Maximum number of iterations on
essentially 2, ... this gird, called MIT in program.

dimensioned 3. COVO. =~ Convergence criterion on the maximum

change in reduced velocity potential
(G) from one iteration cycle to the
next on this grid, .

E

P10. - Subsonic point relaxation facﬁor on
this grid; must be <2., Typically
1.6 on coarse grid.

P20, - Bupersonic point relaxation factor;
must be < 1.. Should use 1.0 for
stability on all grids. '

P30, - Circulation relaxation factor. May
© be > 1.0, : :

'BETAO. =~ Stabilization factor used at super-
sonic points in finite difference
_operator if BETAC > 0. Most needed
vhen M_ >1l., many cases operate satis-
factorily with BETAO= 0. Convergence
is slowed but stability enhanced when
BETAQ >0,



Read Humber - Description and Comments
Qrder Cards

STRIPO. - Line relaxation control. Computational
X-Y planes are relaxed by horizontal
lines (YSWEEP) in central strip, verti-
cal lines (XSWEEP) in outer strips.
STRIPO specifies the fraction of compu-
tational plane included in central
strip: 0. < STRIPOL 1%, where STRIPO=1.
gives all horizontal line relaxation.

FHALF. -  (rid halving trigger.
|FHALF| > 1. read another card (Read
Order 5 format) containing computation-
al parameters to be used on grid with
mesh size halved in all directions.
| FHALF|< 1. must appear on finest grid
card (last one read). Calculation pro-
ceeds automatically through the sequence
of computational grids.

6 1 DESC. - Description for card in Read Order 7
Format (8410).
7 1 FMACH, YA, AL, CDO

Format (8E10.7)

FMACH. -  Freestream Mach number.

YA. -  Yaw angle (in degrees).

AL. - Angle of attack (in degrees) measured
in plane normal to leading edge, not in
plane containing freestream direction.

CIo, - Drag coefficient due to skin friction

(CD FRICTION on output). This input
nunber is added to the drag coefficlent
cbtained by integrating the surface
pressures (CD FORM on output).

Read Orders 8 through 19 are used to specify the wing geometry (in physical
space, of course). One can define the wing at up to 1l span stations. A
set of airfoil coordinates must be read in at the first station. It need not
be read in at other stations, if one is chenging only combinations of the
following three airfoil section parameters: chord, thickness ratio or

angle of attack (twist). The wing shape at intermediate span positions
‘l.e., the computational grid planes for example) is obtained by linear
interpolation in the spanwise direction in the physical space,

5



Read Number

Qrder Cards

Description and Comments

A multiple run capability for the .same wing geometry at several flow conditions
is available and controlled by the parameter FNC in Read Order 9. One does
not have to re-read the wing gecometry to use 1t. The following description
of Read Orders & through 19 is that: required for a single case.

.
t

Read Orders & and 9 are read only once: 10 and 11 are read FNC (see 9) times;
12 through 1T (19 if non-symmetric airfoil section) must be read at first
section and may be required at other sectionms, depending on the wing gecmetry,

8 1
9 1
10. 1
1l 1

FNC

FRC. -

DESC- -

Z8(K), CHO

CHORD., =
-~ THICK. =

Description for card in Read-Ordér )

Format (8410), ¢

*

{
Format (8E10.T)

Number of span stations at which the
wing is described or specified. Maximum
is 1l. Must be at least 2 for a
single case or the first of a sequence.
If FNC < 2. geometric wing data is
assumed tc be the same as in previous
case and calculation hegins for the new
flow conditions reading no further
input cards.

Description for cards in Read Order 11
Format (8A10).

RD, THICK, AL, FSEC

Format (8E10.7)

Spanvise coordinate of the wing section
being specified. It is in the same
units as CHORD. These stations are
ordered from tip-to-tip, in ascending
algebraic order of 28(K).

Section chord length, The chord of
the airfoll coordinates to be read in
(or already reed in at the prior
station) will be scaled to this
value.

Section thickness ratioc relative to

that of the airfoil coordinates to be
read in (or slready read in at the

>



Read Number
Order Cards

FSEC.

12 1 DESC.

Description and Comment

prior station). Note, this is a ratio
of thickneszs/chord ratios. The thick-
ness of the airfoll coordinates will
be scaled with this value.

Section angle of attack or twist
(in degrees). Airfoil coordinates will
be rotated through this angle.

Section airfoll coordinate trigger.
FSEC = 0. Do not read airfoil coor-
dinetes. Last set of sirfoil coordin-
ates read will be used at this section.
They mey be scaled by any combination
of CHORD, THICK, or AL read aebove,
Skip Reed Orders 12 through 19 for
this section.

FSEC = 1. Read a new set of airfoil
coordinates which will be used at thigs

station and perhaps at other stations.
They may be scaled by any combination
of CHORD, THICK, or AL read above
for this section.

At first stetion (K = 1) FSEC is
ignored; one must supply Read Orders
12 through 17.

Description for cards in Read Order 13
Format (8410).

13 1 FSYM, FNU, FNL

FSIM.

Format (8EL0.T)
Airfoil symmetry trigger.

FSYM > 1. Symmetric airfoil.

Read in only upper surface airfoil
coordinates, ordered leading edge
to trailing edge.

FSYM <1. FKNon-symmetric airfoil,
Read in upper and lower surface
airfoil coordinates, respectively,
each set ordered leading edge to
treiling edge. Note that leading.



Read Number Description and Comments
Order Cards

edge points are
included in both sets.

FNU, -  Number of coordinates read in for
upper surface of airfoil.

FNL. =  Number of coordinates read in for
lower surface of airfoil.

14 1 DESC. - Description for cards in Read Order 15
Format (8Al0).

15 1 TRL, SLT, XSING, YSING ~
Format (8E10.7) !

TRL. - Included angle of tralllng edge of
‘ airfoil (in degrees).
1
SLT. - Slope of airfoil mean camber line at
trailing edge.

XSING. X coordinate of the origin of the
mapping referenced to the airfoil
leading edge. Recommend spproximately

X(LE) + 1/2 leading edge radius.

ISTNG. - Y coordinate of the origin of the
mapping referenced to the airfoil
leading edge. Recommend epproximately
Y(LE).

16 1 DESC.

Description for cards in Read Order 17
Format (8A10).

17 FNU XP(I), YP(I)
’ Format (8EL0.7)
XP(I}). - X coordinate of airfoil upper surface,
ordered leading edge to trailing edge.

YP(I). = Y coordinate of airfoil upper surface.
ordered leading edge to trailing edge.
Note that there is only one pair of
coordinates per card,

If sirfoil section is not symmetric (FSYM<l,) the airfoil lower surface
coordinates must be read here. For symmetric airfoil (FSYM>1.), skip the
two Read Orders 18 and 19. !



Read Number

Order Cards Description and Comments
18 1 DESC. -~ Description for cards in Read Order 19
Format (8A10).
19 FNL VAL, DUM - Format (8E10.7)
VAL, - X coordinate of airfoil lower surface,

ordered leading edge to trailing edge.

DUM. =~ Y coordinate of airfoil lower surface,
ordered leading edge to trailing edge.
Note that there is only one pair of
coordinates per card.

Read Orders 10 through 19 complete the input for one span station. As
indicated above Read Order 8, at least Read Orders 10 and 11 must be repeated
for the remaining FNC-1 sections when ¥NC > 2.

The above Read Orders complete the input for a computational case or a

sequence of cases if obtained by having FNC < 2. Additional cases requiring
different input are obtained by repeating the sbove Read Orders. Recommend that
cases be run one at & time.

The program terminates by reading the first three Read Orders with FNX<1.;
that is, last three cards for a normal stop should be:

1 1 TITLE. - End of Calculstion
2 1 . DESC. - Description for card in Read Order 3
3 1 O o o s s

SAMPLE CASE

A simple wing, shown in Figure 1, is used here for the sample casej more
realistic wing shepes are considered in references 1 and 2. This wing has
& rectangular planform of aspect ratio 32/9 with a NACA 634006 airfoil section
(ref.8) et all span stations. The free stream, at Mach number .9, is at 2°
incidence and 0° yaw with respect to the wing. Note that the freestream
direction is consistently indicated by a large opeh arrow on the figures.

Figure 2 depicts how the wing section Planes are transformed from
physical space to computational space for the present sample case. In
Figure 3, a portion of the equally spaced computational grid in the wing
section plane is plotted in physical space. This plot, however, was obtained



from & geparsaste program,: supplled by J. D. Keller of NASA Langley Research
Center.

Appendix B is a llstlng of the; input cards for the sample case, Read
Order notations on the right side identify these cards with the lnput
description of the last section. .

Appendix C is & collection of figures which show some typical output
results for the sample case. Note that FPLOT was 2 in the input {Appendix B)
so there are iwo types of plots: those from THREED end those from GRAPH.

The bottom line of printing is common to all plots and containsd the
NASA LRC computer process number, date and time of run. Another line common
to all plots contains the freestream Mach number (M), yaw angle {YAW),
and incidence angle (ALF). Figures Cl, C2, and C3 show the plots obtained
from subroutine THREED. The first shows interpolsted airfoil sections at
each of the spanwise computational planes for the fine grid. (For this
sample case, all sections are identical.) This plot serves to locate the
CP origins on the second and third plots, where curves for all sections
are superimposed but shifted with respect toc one ancther. Figure C2 shows
the chordwise distributiors of (negative) surface pressure coefficient on
the upper surface of the wing at all spanwise computational planes of the fine
grid, whereas Figure C3 gives that for the wing lower surface. The sharp
dovnward breaks in the curves {at about 50-60% chord) are shock waves, On
these plots L/D, CL end CD are for the entire wing; CL is the inviscid
lift coefficient, CD is the drag coefficient (composed of that obtained from
integrating the inviscid pressures plus that read in as input (CD0O) due to
skin friction, and L/D is the ratio CL/CD. A set of plots like these is
cbtained on each grid refinement; for the sample case there were two grids so
two sets were obtalned.

Figures Ch and C5 are typical of the plots obtained from subroutine
GRAPH. In these, the chordwise distribution of surface pressure coefficient
for both the upper and lower wing surfaces is shown on one figure, &
separate figure for each spanwise computational plane. The value of Z,
shown on the next to last line at the bottom of the plot, is the spanwise
coordinate in the physical plane (See Fig. 1) and thus identifies tHe
section location. The values of CL and CD shown on these plots are the
inviscid section lift and drag coefficients, respectively. Figure Cb
is for the root section (Z = 0.0) while Figure C5 is for the tip station
(z = 160.0). The 1long tick mark on the ordinate is the sonic value of
pressure coefficient. A set of plots (one for each spanwise station) is
obtained for each grid refinement. !

Figures C6, CT, and C8 are charts which show the local Mach number
(multiplied by 100) in various computational planes. TFigure C6 is at the
root section of the wing (Z = 0.0); minus signs on it denote the lower half
plane. A solid line outlines that portion of computational grid shown in
Figure 3. The supersonic bubbles on both upper and lower wing surfaces sare



clearly visible. Figures C7 and C8 show the Mach charts in the wing plane
at the upper and lower surfaces, respectively. The wing planform (in the
computational plane) is outlined on each figure end again the supersonic
bubbles on both surfaces of the wing are clearly visible. One set of these

charts is made on each grid refinement. Those for the fine grid of the sample
case have been given in figures C7 and C8.
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Figure 2.= Physical and computational coordinate systems
in wing section planes for sample case.
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Figure 3.- Fortion of wing section computational grid plotted in physical space.
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APPENDIX A - Langley Computer Program A4231

NASA-I.-;ANGLE'Y RESEARCH CENTER

LUIE ]

LAR

DL T PROGHAR NO

AL231

COMPUTER PROGRAM ABSTRACT
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gubgonle flow
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DATES 08 8 REVISION CODE TIME AND COST FOR DEVEL OPMENT
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APPENDIX A - Langley Computer Program A4231

GEOM reads geometric definition of wing

COORD sets up stretched parabolic and spanwise coordinates
SURF interpolates mapped wing surface at computational mesh polnts
ESTIM computes initial estimate of reduced potential

REFIN halves computational mesh size

INTPL interpolates using Taylor series

SPLIF performs cubic spline fit

MI{FLO solves mixed-flow equations (rotated difference scheme)
YSWEEP relaxes horizontal lines, sweeping in y-direction
XSWEEP relaxes vertical lines, sweeping in x-direction

VELO calculates surface velocity

FORCF caleculates section force coefflcients

CPLOT generates printer plots of (P at equal computational intervals
TOTFCR calculates total force coefficlents

CHARTZ generates Mach number chart in plane of wing section
CHARTY generates Mach number chart in plane of wing planform
GRAPH genergtes Varian plots

THREED generates three-dimensional plots

PLOT * moves pen (call CALPLT)

SYMBOL * plots symbols (call NOTATE)

AXIS * draws axes {call AXES)

LINE * plots arrays

* expedient modifications were made so that NYU plotting subroutines were
compatible with NASA LRC CDC system.

FMigure A3. - Function of subroutines,
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APPENDIX B - -INPUT FOR SAMPLE CASE

3a006  AR=32/0

_RECTANGULAR WING — NACA

FRX o FPLOT - e,
A8, Be__ - e
FLT P20 STRIPO FHALF
220, [ T Ts

110 1% -~ s e —

T e0B5555 T

w101

22222 7

W33323 T AciriT T T
T aAGaE T Y-Xkad

«SERES 52

e83333 TT,ggEv? T T 7
REEL AN S

454840 1.3696
5, Teda7

7.5 147466

N
15

‘20,
25,
20.

THICK ™7 AU
TFIEOY T0. 1 T

% Symmetric wing sectlion, therefore Read Orders 18 and 19 must be omitted

17

17

(FNU
rards)

omit 18 and 19%-°

™,

10
11

1
2
3

U

e

i
o

Wing data at
first span
station

Wing dats ot
last span
station



APPENDIX C - Some Output Results For Sample Case

Note: Spanwise variable

e — is not scaled to
chordwise variable in
this plot. Instead, the
wing sections shown

here located the C
origine in the folEow1ng
plots.

Free
stream

AAMAARAARARRARAARA
|

VIEW OF WING

RECTANGULAR WING - NACR 63R006 SECTION AR=32/3
M= 900 YAW = 0.00 ALF = 2.00

L/D= 23.05 CL= .1876 CD = .0C81

LB71564 03713773 07.37.22.

Figure Cl.- View of wing showing interpclated airfeil sections on fine grid.
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. APPENDIX C - Some Qutput Resulis For Sample Case

UPPER SURFACE PRESSURE

RECTANGULAR WING - NACA 63R006.SECTION AR=32/3
M=  .900 YAW = 0.00 BALF = 2.00

/D= 23.05 CL = .187 CD = .0081

LB71564 - 09/13/73 07.37.22.

Figure C2.- Chordwise distributions of upperesurface wing pressure
coefficients at spanwise computationel planes of fine grid.
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APPENDIX C - Scme Qutput Results For Sample Case

LOWER SURFACE PRESSURE

RECTANGULAR WING - NACR 53A006 SECTION AR=32/3
M= 300 YAW = 0.00 ALF = 2.00

L/D= 23.05 CL = .1876 CD = .0081

LB71564 03/13/73 07.37.22.

Figure €3.- Chordwise distributions of lower-surface wing pressure
coefficients at spanwise computationsl planes of fine grid.
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APPENDIX ¢ - Some Output Results For Sample Case

+ upper wing surface

x lower wing surface

_
s v 10
+ t
s *
+
++7
++7 x ® +
+t M
#" x x
o
l.x x
’ll x t
W n ®
x %
+ x %
4
#

x .

]
I 3

x

1.2

<

RECTANGULAR WING - NACA 63A006 SECTLON AR=32/9
M= . .900 VYAW = 0.00 ALF = 2.00

Z= 0.00 CL =..2261 CD= .0107

LB71564  09/13/73 07.37.22.

Figure Cb.- Chordwise distributions of pressure coefficient at root
section of wing-
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1.2

APPENDIX C = Some Qutput Results For Sample Case

+ upper wing surface

% lower wing surface
fre—
+
i TR "
+ PR R +
’ x = Y ox : +
l x
x %
[ ]
x * *
*
* ¥
*
x
x
.
S

<

RECTANGULAR WING - NACA 63R006 SECTION AR=32/9
M = .900 YAW = 0.00 BARLF = 2.00

Z=- 160.00 CL = .0906 CD = .0036

LB71564 09/13/73 07.37.22.

Figure C5.- Chordwise distribution of pressure coefficients at
tip section of wing.
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AFPENDIX C - Some Cutput Results For Sample Case.
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Figure C6.- Mach chart at root gection of wing in computation plane.
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APPEKDIX C - Some OQutput Results For Sample Casge

0
99
91
21
az
92
92

99

Free
Stream
LOWER SUPFACE MACH MI! CHART {N WING PLANF
89 B8 @9 Ao A A A9 A% A9 A8 43 RO R% ga BT 8Y 69 49 8% A9 @n 89 89 B9 gg a9 89
.———89 89 49 89 89 B9 89 B9 89 89 a3 BT A0 gy 8y LY 8y 9 E9 A9 a9 89 89 B89 89 81 8§79
89 29 89 Ay W9 A9 BS B9 B9 BY @7 89 Z3 A2 A9 K9 B9 .89 8% 89 a9 g gy B w9 aa B9
8% &9 89 87 €9 AS 89 89 B8 AR g 89 93 8B 3d B8 Ha g8 BB AA  pa a8 B3 8% Be g9 49
89 8% A9 49 @A 4A B3 pa BB B3 @Y A7 41 8T 87 &7 W7 87 BT BT A1 gp gd 88 BE an 88
89 BT B89 @4 B3 BB BT 8T BT B6 we A5 ak A5 A6 d6 HE e A6 At Bs 24 8y BT BT gp 58
83 B9 B9 a8 8T A7 64 Ae BS RS B5 8% 85 AS B4 Bé G4 G4 BS 85 85 B° A5 BE 86 ¥ 87
- 8089 8% B8 8T 86 85 B4 84 A3 82 B 83 4 B3 63 43 w2 B2 031 53 83 84 B4 85 25 87
% 89 A9 B3 g% B4 9% @2 B2 A1 81 Bl A1 Al A1 B 6L 41 Bl 81 Bl Bl 32 BZ 62 =4 3k
L 9% B° A% A3 Be 82 31 @y Y5 19 19 T3 g 79 T8 Tu Fy T¢ T 78 7% 19 719 80 Bl B2 E&
.80 9D B9 MB 45 80 TT 17 Te T Te TH TG T6 TE To Ta T6 Tb T8 Ta 76 7% 1T TT A ag
90 %0 &3 ae 85 Te ¥ yr Yz YT Tz vz Tr 2 Tz T2 7z 32 12 12 12 12 T2 73 7 75 us
L8090 a3 Ay Bs TD LB &7 - &1 &7 &T &7 aT LT 8T &7 6T &7 4T BT BT &T &7 £T EB M g
.1 90 90 B Bk K2 €C &0 €9 59 59 £9 59 £G £9 59 59 59 59 5§ £ 59 59 60 a0 &2 9%
9% o0 8% BT 4T 68 4k 4k 4E 6 6% o6 65 4646 46 46 4b &b L6 AE  4h Lo 46 4T 47
S0 90 9C me BT {19 31 =27 23 23 24 24 24 24 24 24 24 28 24 54 Sk 3153 22 2y 19| 87
S0 97 92 89 87 ler 38 2o 3¢ 35 35 3% 34 4 34 34 34 34 e 34 25 35 e g g a7 27
3099 92 B9 87 l66 62 61 K0 59 59 59 59 59 59 Ly 59 59 59 5% S8 53  &n 61 52 es| a7
0 9% 90 8% e |77 T2 7Y T2 T 69 69 69 6% 59 &9 69 69 69 £5 &% I8 T Tl T2 77 =8
B0 =20 en g9 g l87 YA 7T ta 6 15 7S 75 TS 75 15 75 PS5 15 35 ¥S 16 LT 7T TR 8?) 88
_S¢ 87 92 9 B9 Ige BT 8y 80 8" TR T9 Y9 % TY 79 79 79 79 79 te @1 80 gt 82 Bs| s9
.90 &0 Q0 an 90 I8¢ g5 pa g7 8T 83 82 g2 BZ §2 82 82 87 A7 82 @82 ar B3 8o 85 m9f 91
G0 92 80 93 91 187 g8 AT 86 B6 8BS a5 85 B5 B85 85 bS5 GBS 85 AS A5 86 86 27 o8 a3 st
8 9% 90 91 92 |93 91 e9 se BB 88 8T 87 87 97 47 47 87 &T 8t 88 @8 .88 89 51 91| o2
9090 el 9t 93 [95 497 91 51 90 90 91 90 HY BY I B9 HI 90 90 ep Sy 9 91 g1 35] 93
37 6l 92 92 196 94 93 92 92 93 9z 92 9 91 91 gL G 9F aF g2 92 _93 73 ¢4 ap] a3
191 9% 94 197 96 95 94 94 94 94 92 91 93 931 93 93 92 94 94 G4 94 95 95 97| 94
9L °L 93 45 98 9T 9T 9&¢ 94 98 95 95 95 95 95 95 95 TE GE 95 95 95 97 97 og 95
28192 93 9k |95 94 <3 93 9§ AT 97 9 97 97 97 91 9T 97 97 9T 98 93 98 99 o8| as
94 96 9% 100 120 100 99 99 9% 99 95 93 GG %9 69 95 S§ 95 99 130 190 1o o9g| a9s
2497 100 151 10T 101 10T 19t 101 141 10! 174 130 100 iGl 101 101 10y 147 121 121 101 109 a7
(95368 191 102 102 103 102 102 102 102 102 123 lud 103 1v3_103_102 102 103 192 172 103 1713 98,
95._98 107 104 105 105 Y95 105 105 105 125 135 105 165 105 105 105 105 105 135 165 104 123) "og
F5__59. 102 195 106 1CT 107 737 197 107 197 147 137 14T LGT 107 107 157 107 107 1~c 105 102 99,
9593 102 142 167 178 198 149 109 106 109 109 109 ld% 1086 109 109 109 198 148 107 10F 102 29
8,101 102 105 1£7 103 129 109 129 109 189 106 369 1G° 109 109 109 108 107 135 172 1My 93
£ 97 499 100 Y01 1C2 102 104 195 135 103 V36 Lie 106 105 1495 1n5 Jrs 193 107 ol 190 _aq{ 93
b9 497 .98 S8 98 9B S9._.§9 99 99 9% 95 69 59 99 ©5_99_ o893 98 %8 97l 5
L4250 9% 96 96 9k 96 55 95 95 9E 45 %5 . S5 ©5 95 a5 g5 96
92_93 ¢ €2 92 03 93 ) €3 o3 93 g3 93 ¢ o1 e31
_ 491081 91 90 99 90 93 90 S0, 90 9290 _9C _9n_ 94 sn
89 8% 88 ge A8 88 B8 _aT 87 87 &7 67 87 87, 88 _ 88
87 86 8¢ B85 B5 B85 85 85 85 85 45 BS _85 85 _ BT 85
84 83 8% §2 82 32 @t _ 81 8% 81  8i_ Bl _ &' 81 81 B2
JhBa &Y Bo AR A0 RO 8) Y9 Ta J9 ¥y ju y9 73 ag  pn
i A5 82 81 8? 87 9? 82 €l &l 81 sl_ 81 81 a1 87 B7_ 82 .
89 87 84 A% A5 B4 8B4 B4 B4 B4 B4 B4 84 H4 BE 84 A4 86 a7 a8
89 88 A8 BT @¢ B& Be @6 B5 85 85 95 85 a5 85 85 85 Be B6 Ay A6 87 8B A8
83 43 89 HB @3 87 87 8T 9s Bs B6 _8r 86 86 B& 86 B _B6 A& BT _AT BT BB 83 B9
83 _489 69 88 88 g8 87 &7 9T AT_87 @7 &7 87 &7 47 BT e7 87 BT 8T 8B 88 58 B89
€9 99 89 89 88 B3 BB 88 B3 A4 88 8T 87 KT buy aT_ BB B8 88 89 €8 @B &5 89 89
o 89 89 B® 89 8% 82 88 B8 88 88 &0 B3 93 B4 wE of 88 B8O B3 BA &6 88 85 £9 89
B9 89 #9__@g9_ B85 8% B9 B89 88 83 HE_ BS A3 By d_.6d. 8898 08__BA__88__89_6Y___89. B9_ 89
2 @9 B2 92 g9 8¢ e¢ @° BT BT B89 BY 8° 8% g3 8% _ 89 A9 89  Ag . A9 .89 B9 39 8% _ 90
8% 03 83 92 B9 89 89 8T 99 69 B89 B¢ BY BG B9 w9 39 89 B9 A9 85 89 89 39 g9 gn
89 8% 689..93 B9 83 B° @% 8¢ €° B BT &° 8% 4% 4% BS A9 B9 8T BO B9 @4 _go o gq
89 83 B9 95 90 &9 B8 BT A% §9 BY 65 B9 899 BF 89, B9 BI 89 89 BG . 89 8G 8¢ go 9o
89 B9 92 9% 30 8% €9 89 a5 39 BY 89 B9 B9 BY By 89 BT BT 85 B @S ge go a9 .en
#. 899 B9 9% 9T 90 BT B% 8% 89 B89 B9 8% 89 By ¥9. 6989 BT .8%__ 85 39_ 89 A9 89 90 __ 20 _.
? 89 9D 9C_ 90 90 90 82 89 89 89 HY 89 B% 39 49 B8vy _ #49 BF B9 B8 89._ 89 8% 95 99 99
62 93 96 90 eX S S0 90 89 &S BY 8¢ 85 8% 39 69 By H9 B9 B9 BY A9 89 90 99 LS9 a)
S.%0 92 90 90 90 90 90 S0 g9 89 B89 B9 B89 BY 69 89 H9 &9 A9 89 89 B B9 90 en 5n gp
9c S0 S50 93_9C S0 90 90 ¢ 9C S0 9090 I 20 9090 N0 _90 _90. Gf_

Figure C8.-

°0__90 _90_%0_ 92 90

.90

Mach chart at lower surface of wing in
computational plane.

25

89 g9
89 8%
89 B9
89 A%
8y 89
H® A9
as 89
89 89
8% 89
a5 89
89 94
9y 9n
89 99
91 99
97 99
90 99
39 %2
g0 a9n
33 @3
9% 9
99 99
LT
90 92
93 ¢n
91 90
71 o0
LTI
21 gt
52 91
92 91
92 91
92 g1
BCER!
93 9t
o1 91
93 ‘g1
91 9N
97 o1
37 5
AR ) |
IR
°3  an
53 90
908 _9p
89 a3
1% 90
89 89
89 89
88 39
59 89
89 89
289 B9
.89 _ 89
By 89
e 39
as @9
&9 89
89 g«<
B9 39
94 po
98 50
29 99
9p 9a



REFERENCES

Jameson, A.: Numerical Calculation of the Three Dimensional Transonic
Flow over a Yawed Wing. Proceedings of the AIAA
Computationsl Fluid Dynamics Conference. Palm Springs,
California, July 19-20, 1973. pp. 18-26.

Jameson, A.: Three Dimensional Flows Arcund Airfoils with Shocks.
Proceedings of the IFIP Symposium on Computing Methods
in Applied Sciences and Engineering, 17-21 December 1973,
Versailles, France. To be published by Springer-
Verlag (availeble in Colloques IRIA Methodes Calqul
Scientifique et Technigue, 1973).

Bauer, F.; Garabedian, P.; Jemeson, A.; and Korn, D.: Handbook of
Supercritical Wing Sections. To be published as a NASA
8P.

Jameson, A.: Transonic Flow Calculations for Airfoils and Bodies of
Revolution. Grumman Rep. 390-T1-1, 1971.

Garsbedian, P.; and Korn, D.: Analysis of Transonic Airfoils. Comm.
Pure Appl. Math, Vol XXIV, 1971, pp. 841-851.

Bauer, F.; Garsbedian, P.; and Korn, D.: Supercritical Wing Sections.
Springer-Verlag, New York, 1972.

Jameson, A.: Iterative Solution of Transonic Flows Over Airfoils
and Wings IncludingFlows at Mach 1. Accepted for
publication in Comm. Pure Applied Math., 197Th.

Loftin, L. K., Jr.: Theoretical and Experimentel Data for a Number

of NACA éA-Series Airfoil Secticns. NACA Rept. 903,
1948,

26



