2,158 research outputs found
Freezing and water availability structure the evolutionary diversity of trees across the Americas
The historical course of evolutionary diversification shapes the current distribution of biodiversity, but the main forces constraining diversification are still a subject of debate. We unveil the evolutionary structure of tree species assemblages across the Americas to assess whether an inability to move or an inability to evolve is the predominant constraint in plant diversification and biogeography. We find a fundamental divide in tree lineage composition between tropical and extratropical environments, defined by the absence versus presence of freezing temperatures. Within the Neotropics, we uncover a further evolutionary split between moist and dry forests. Our results demonstrate that American tree lineages tend to retain their ancestral environmental relationships and that phylogenetic niche conservatism is the primary force structuring the distribution of tree biodiversity. Our study establishes the pervasive importance of niche conservatism to community assembly even at intercontinental scales
Disorder Effects on Exciton-Polariton Condensates
The impact of a random disorder potential on the dynamical properties of Bose
Einstein condensates is a very wide research field. In microcavities, these
studies are even more crucial than in the condensates of cold atoms, since
random disorder is naturally present in the semiconductor structures. In this
chapter, we consider a stable condensate, defined by a chemical potential,
propagating in a random disorder potential, like a liquid flowing through a
capillary. We analyze the interplay between the kinetic energy, the
localization energy, and the interaction between particles in 1D and 2D
polariton condensates. The finite life time of polaritons is taken into account
as well. In the first part, we remind the results of [G. Malpuech et al. Phys.
Rev. Lett. 98, 206402 (2007).] where we considered the case of a static
condensate. In that case, the condensate forms either a glassy insulating phase
at low polariton density (strong localization), or a superfluid phase above the
percolation threshold. We also show the calculation of the first order spatial
coherence of the condensate versus the condensate density. In the second part,
we consider the case of a propagating non-interacting condensate which is
always localized because of Anderson localization. The localization length is
calculated in the Born approximation. The impact of the finite polariton life
time is taken into account as well. In the last section we consider the case of
a propagating interacting condensate where the three regimes of strong
localization, Anderson localization, and superfluid behavior are accessible.
The localization length is calculated versus the system parameters. The
localization length is strongly modified with respect to the non-interacting
case. It is infinite in the superfluid regime whereas it is strongly reduced if
the fluid flows with a supersonic velocity.Comment: chapter for a book "Exciton Polaritons in Microcavities: New
Frontiers" by Springer (2012), the original publication is available at
http://www.springerlink.co
Inverse magnetic catalysis in dense holographic matter
We study the chiral phase transition in a magnetic field at finite
temperature and chemical potential within the Sakai-Sugimoto model, a
holographic top-down approach to (large-N_c) QCD. We consider the limit of a
small separation of the flavor D8-branes, which corresponds to a dual field
theory comparable to a Nambu-Jona Lasinio (NJL) model. Mapping out the surface
of the chiral phase transition in the parameter space of magnetic field
strength, quark chemical potential, and temperature, we find that for small
temperatures the addition of a magnetic field decreases the critical chemical
potential for chiral symmetry restoration - in contrast to the case of
vanishing chemical potential where, in accordance with the familiar phenomenon
of magnetic catalysis, the magnetic field favors the chirally broken phase.
This "inverse magnetic catalysis" (IMC) appears to be associated with a
previously found magnetic phase transition within the chirally symmetric phase
that shows an intriguing similarity to a transition into the lowest Landau
level. We estimate IMC to persist up to 10^{19} G at low temperatures.Comment: 42 pages, 11 figures, v3: extended discussion; new appendix D;
references added; version to appear in JHE
Sculpting oscillators with light within a nonlinear quantum fluid
Seeing macroscopic quantum states directly remains an elusive goal. Particles
with boson symmetry can condense into such quantum fluids producing rich
physical phenomena as well as proven potential for interferometric devices
[1-10]. However direct imaging of such quantum states is only fleetingly
possible in high-vacuum ultracold atomic condensates, and not in
superconductors. Recent condensation of solid state polariton quasiparticles,
built from mixing semiconductor excitons with microcavity photons, offers
monolithic devices capable of supporting room temperature quantum states
[11-14] that exhibit superfluid behaviour [15,16]. Here we use microcavities on
a semiconductor chip supporting two-dimensional polariton condensates to
directly visualise the formation of a spontaneously oscillating quantum fluid.
This system is created on the fly by injecting polaritons at two or more
spatially-separated pump spots. Although oscillating at tuneable THz-scale
frequencies, a simple optical microscope can be used to directly image their
stable archetypal quantum oscillator wavefunctions in real space. The
self-repulsion of polaritons provides a solid state quasiparticle that is so
nonlinear as to modify its own potential. Interference in time and space
reveals the condensate wavepackets arise from non-equilibrium solitons. Control
of such polariton condensate wavepackets demonstrates great potential for
integrated semiconductor-based condensate devices.Comment: accepted in Nature Physic
Prevention and management of excessive gestational weight gain: a survey of overweight and obese pregnant women
Background - Excessive gestational weight gain is associated with adverse infant, childhood and maternal outcomes and research to develop interventions to address this issue is ongoing. The views of women on gestational weight gain and the resources they would consider helpful in addressing this are however largely unknown. This survey aimed to determine the views of newly pregnant women, living in areas of social disadvantage, on 1) their current body weight and potential gestational weight gain and 2) the resources or interventions they would consider helpful in preventing excessive gestational weight gain.
Methods - A convenience sample of overweight and obese pregnant women living in Fife, UK, were invited to complete a short anonymised questionnaire at their 12 week booking visit.
Results - 428 women, BMI>25 kg/m2, completed the questionnaire. Fifty-four per cent of respondents were obese (231) and 62% were living in areas of mild to moderate deprivation. Over three-quarters of participants felt dissatisfied with their current weight (81%). The majority of women (60%) expressed some concern about potential weight gain. Thirty-nine percent were unconcerned about weight gain during their pregnancy, including 34 women (19%) who reported having retained weight gained in earlier pregnancies. Amongst those concerned about weight gain advice on physical activity (41%) and access to sports/leisure facilities were favoured resources (36%). Fewer women (12%) felt that group sessions on healthy eating or attending a clinic for individualised advice (14%) would be helpful. "Getting time off work" was the most frequently cited barrier (48%) to uptake of resources other than leaflets.
Conclusions- These data suggest a lack of awareness amongst overweight and obese women regarding excessive gestational weight gain. Monitoring of gestational weight gain, and approaches for its management, should be formally integrated into routine antenatal care. Barriers to the uptake of resources to address weight gain are numerous and must be considered in the design of future interventions and services
Gene Activation Using FLP Recombinase in C. elegans
The FLP enzyme catalyzes recombination between specific target sequences in DNA. Here we use FLP to temporally and spatially control gene expression in the nematode C. elegans. Transcription is blocked by the presence of an “off cassette” between the promoter and the coding region of the desired product. The “off cassette” is composed of a transcriptional terminator flanked by FLP recognition targets (FRT). This sequence can be excised by FLP recombinase to bring together the promoter and the coding region. We have introduced two fluorescent reporters into the system: a red reporter for promoter activity prior to FLP expression and a green reporter for expression of the gene of interest after FLP expression. The constructs are designed using the multisite Gateway system, so that promoters and coding regions can be quickly mixed and matched. We demonstrate that heat-shock-driven FLP recombinase adds temporal control on top of tissue specific expression provided by the transgene promoter. In addition, the temporal switch is permanent, rather than acute, as is usually the case for heat-shock driven transgenes. Finally, FLP expression can be driven by a tissue specific promoter to provide expression in a subset of cells that can only be addressed as the intersection of two available promoters. As a test of the system, we have driven the light chain of tetanus toxin, a protease that cleaves the synaptic vesicle protein synaptobrevin. We show that we can use this to inactivate synaptic transmission in all neurons or a subset of neurons in a FLP-dependent manner
Phylogenetic relationships of cone snails endemic to Cabo Verde based on mitochondrial genomes
Background: Due to their great species and ecological diversity as well as their capacity to produce hundreds of different toxins, cone snails are of interest to evolutionary biologists, pharmacologists and amateur naturalists alike. Taxonomic identification of cone snails still relies mostly on the shape, color, and banding patterns of the shell. However, these phenotypic traits are prone to homoplasy. Therefore, the consistent use of genetic data for species delimitation and phylogenetic inference in this apparently hyperdiverse group is largely wanting. Here, we reconstruct the phylogeny of the cones endemic to Cabo Verde archipelago, a well-known radiation of the group, using mitochondrial (mt) genomes. Results: The reconstructed phylogeny grouped the analyzed species into two main clades, one including Kalloconus from West Africa sister to Trovaoconus from Cabo Verde and the other with a paraphyletic Lautoconus due to the sister group relationship of Africonus from Cabo Verde and Lautoconus ventricosus from Mediterranean Sea and neighboring Atlantic Ocean to the exclusion of Lautoconus endemic to Senegal (plus Lautoconus guanche from Mauritania, Morocco, and Canary Islands). Within Trovaoconus, up to three main lineages could be distinguished. The clade of Africonus included four main lineages (named I to IV), each further subdivided into two monophyletic groups. The reconstructed phylogeny allowed inferring the evolution of the radula in the studied lineages as well as biogeographic patterns. The number of cone species endemic to Cabo Verde was revised under the light of sequence divergence data and the inferred phylogenetic relationships. Conclusions: The sequence divergence between continental members of the genus Kalloconus and island endemics ascribed to the genus Trovaoconus is low, prompting for synonymization of the latter. The genus Lautoconus is paraphyletic. Lautoconus ventricosus is the closest living sister group of genus Africonus. Diversification of Africonus was in allopatry due to the direct development nature of their larvae and mainly triggered by eustatic sea level changes during the Miocene-Pliocene. Our study confirms the diversity of cone endemic to Cabo Verde but significantly reduces the number of valid species. Applying a sequence divergence threshold, the number of valid species within the sampled Africonus is reduced to half.Spanish Ministry of Science and Innovation [CGL2013-45211-C2-2-P, CGL2016-75255-C2-1-P, BES-2011-051469, BES-2014-069575, Doctorado Nacional-567]info:eu-repo/semantics/publishedVersio
Gross-Neveu Models, Nonlinear Dirac Equations, Surfaces and Strings
Recent studies of the thermodynamic phase diagrams of the Gross-Neveu model
(GN2), and its chiral cousin, the NJL2 model, have shown that there are phases
with inhomogeneous crystalline condensates. These (static) condensates can be
found analytically because the relevant Hartree-Fock and gap equations can be
reduced to the nonlinear Schr\"odinger equation, whose deformations are
governed by the mKdV and AKNS integrable hierarchies, respectively. Recently,
Thies et al have shown that time-dependent Hartree-Fock solutions describing
baryon scattering in the massless GN2 model satisfy the Sinh-Gordon equation,
and can be mapped directly to classical string solutions in AdS3. Here we
propose a geometric perspective for this result, based on the generalized
Weierstrass spinor representation for the embedding of 2d surfaces into 3d
spaces, which explains why these well-known integrable systems underlie these
various Gross-Neveu gap equations, and why there should be a connection to
classical string theory solutions. This geometric viewpoint may be useful for
higher dimensional models, where the relevant integrable hierarchies include
the Davey-Stewartson and Novikov-Veselov systems.Comment: 27 pages, 1 figur
A cross-sectional study of the number and frequency of terms used to refer to knowledge translation in a body of health literature in 2006: a Tower of Babel?
<p/> <p>Background</p> <p>The study of implementing research findings into practice is rapidly growing and has acquired many competing names (<it>e.g</it>., dissemination, uptake, utilization, translation) and contributing disciplines. The use of multiple terms across disciplines pose barriers to communication and progress for applying research findings. We sought to establish an inventory of terms describing this field and how often authors use them in a collection of health literature published in 2006.</p> <p>Methods</p> <p>We refer to this field as knowledge translation (KT). Terms describing aspects of KT and their definitions were collected from literature, the internet, reports, textbooks, and contact with experts. We compiled a database of KT and other articles by reading 12 healthcare journals representing multiple disciplines. All articles published in these journals in 2006 were categorized as being KT or not. The KT articles (all KT) were further categorized, if possible, for whether they described KT projects or implementations (KT application articles), or presented the theoretical basis, models, tools, methods, or techniques of KT (KT theory articles). Accuracy was checked using duplicate reading. Custom designed software determined how often KT terms were used in the titles and abstracts of articles categorized as being KT.</p> <p>Results</p> <p>A total of 2,603 articles were assessed, and 581 were identified as KT articles. Of these, 201 described KT applications, and 153 included KT theory. Of the 100 KT terms collected, 46 were used by the authors in the titles or abstracts of articles categorized as being KT. For all 581 KT articles, eight terms or term variations used by authors were highly discriminating for separating KT and non-KT articles (p < 0.001): implementation, adoption, quality improvement, dissemination, complex intervention (with multiple endings), implementation (within three words of) research, and complex intervention. More KT terms were associated with KT application articles (n = 13) and KT theory articles (n = 18).</p> <p>Conclusions</p> <p>We collected 100 terms describing KT research. Authors used 46 of them in titles and abstracts of KT articles. Of these, approximately half discriminated between KT and non-KT articles. Thus, the need for consolidation and consistent use of fewer terms related to KT research is evident.</p
- …