91 research outputs found

    Chromatin accessibility maps of chronic lymphocytic leukemia identify subtypespecific epigenome signatures and associated transcription regulatory networks

    No full text
    Chronic lymphocytic leukemia (CLL) is characterized by substantial clinical heterogeneity, despite relatively few genetic alterations. To provide a basis for studying epigenome deregulation in CLL, we established genome-wide chromatin accessibility maps for 88 CLL samples from 55 patients using the ATAC-seq assay. These data were further complemented by ChIPmentation and RNA-seq profiling in ten samples. Based on this dataset, we devised and applied a bioinformatic method that links chromatin profiles to clinical annotations. Our analysis identified sample-specific variation on top of a shared core of CLL regulatory regions. IGHV mutation status – which distinguishes the two major subtypes of CLL – was accurately predicted by the chromatin profiles, and gene regulatory networks inferred for IGHV-mutated vs. IGHV-unmutated samples identified characteristic regulatory differences between these two disease subtypes. In summary, we found widespread heterogeneity in the CLL chromatin landscape, established a community resource for studying epigenome deregulation in leukemia, and demonstrated the feasibility of chromatin accessibility mapping in cancer cohorts and clinical research

    Different prognostic impact of recurrent gene mutations in chronic lymphocytic leukemia depending on IGHV gene somatic hypermutation status: a study by ERIC in HARMONY

    Get PDF
    Recent evidence suggests that the prognostic impact of gene mutations in patients with chronic lymphocytic leukemia (CLL) may differ depending on the immunoglobulin heavy variable (IGHV) gene somatic hypermutation (SHM) status. In this study, we assessed the impact of nine recurrently mutated genes (BIRC3, EGR2, MYD88, NFKBIE, NOTCH1, POT1, SF3B1, TP53, and XPO1) in pre-treatment samples from 4580 patients with CLL, using time-to-first-treatment (TTFT) as the primary end-point in relation to IGHV gene SHM status. Mutations were detected in 1588 (34.7%) patients at frequencies ranging from 2.3-9.8% with mutations in NOTCH1 being the most frequent. In both univariate and multivariate analyses, mutations in all genes except MYD88 were associated with a significantly shorter TTFT. In multivariate analysis of Binet stage A patients, performed separately for IGHV-mutated (M-CLL) and unmutated CLL (U-CLL), a different spectrum of gene alterations independently predicted short TTFT within the two subgroups. While SF3B1 and XPO1 mutations were independent prognostic variables in both U-CLL and M-CLL, TP53, BIRC3 and EGR2 aberrations were significant predictors only in U-CLL, and NOTCH1 and NFKBIE only in M-CLL. Our findings underscore the need for a compartmentalized approach to identify high-risk patients, particularly among M-CLL patients, with potential implications for stratified management

    Evaluation of serum markers in the LRF CLL4 trial: β2-microglobulin but not serum free light chains, is an independent marker of overall survival.

    Get PDF
    Chronic lymphocytic leukemia (CLL) is characterized by heterogeneous clinical behavior and there is a need for improved biomarkers. The current study evaluated the prognostic significance of serum free light chains (sFLC, kappa, and lambda) and other serum markers (bar, serum thymidine kinase (sTK), soluble CD23, and LDH) together with established biomarkers in 289 patients enrolled into the LRF CLL4 trial. In a multivariable analysis of serum markers alone, higher big and kappa light chains were statistically significant in predicting disease progression and higher blg, and sTK in predicting mortality. In multivariable analysis for overall survival the following were independently significant: β2M levels, immunoglobulin gene (IGHV) mutational status (>98% homology), age, 17p13 deletions (>10%), and CD38 expression. β2M is the only serum marker that retained clear independent value as a biomarker in the LRF CLL4 trial and remains powerfully prognostic requiring evaluation in any future method of risk stratifying patients

    Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations and clinical impact

    Get PDF
    Recent evidence suggests that complex karyotype (CK) defined by the presence of 653 chromosomal aberrations (structural and/or numerical) identified by chromosome banding analysis (CBA) may be relevant for treatment decision-making in chronic lymphocytic leukemia (CLL). However, many challenges towards routine clinical application of CBA remain. In a retrospective study of 5290 patients with available CBA data, we explored both clinicobiological associations and the clinical impact of CK in CLL. We found that patients with 655 abnormalities, defined as high-CK, exhibit uniformly dismal clinical outcome, independently of clinical stage, TP53 aberrations (deletion of chromosome 17p and or TP53 mutations, TP53abs) and the expression of somatically hypermutated (M-CLL) or unmutated (U-CLL) immunoglobulin heavy variable genes (IGHV). Thus, they contrasted CK cases with 3 or 4 aberrations (low-CK and intermediate-CK, respectively) who followed aggressive disease courses only in the presence of TP53abs. At the other end of the spectrum, patients with CK and +12,+19 displayed an exceptionally indolent profile. Building upon CK, TP53abs and IGHV gene somatic hypermutation status, we propose a novel hierarchical model where patients with high-CK exhibit the worst prognosis, while M-CLL lacking CK or TP53abs as well as CK with +12,+19 show the longest overall survival. In conclusion, CK should not be axiomatically considered unfavorable in CLL, representing a heterogeneous group with variable clinical behavior. High-CK with 655 chromosomal aberrations emerges as prognostically adverse, independently of other biomarkers. Prospective clinical validation is warranted before finally incorporating high-CK in risk stratification of CLL

    Disease-biased and shared characteristics of the immunoglobulin gene repertoires in marginal zone B cell lymphoproliferations.

    Get PDF
    The B cell receptor immunoglobulin (BcR IG) gene repertoires of marginal zone (MZ) lymphoproliferations were analyzed in order to obtain insight into their ontogenetic relationships. Our cohort included cases with MZ lymphomas (n=488) i.e. splenic (SMZL), nodal (NMZL) and extranodal (ENMZL) as well as provisional entities (n=76) according to the World Health Organization classification. The most striking IG gene repertoire skewing was observed in SMZL. However, restrictions were also identified in all other MZ lymphomas studied, particularly ENMZL, with significantly different IG gene distributions depending on the primary site of involvement. Cross-entity comparisons of the MZ IG sequence dataset with a large dataset of IG sequences (MZ-related or not; n=65,837) revealed four major clusters of cases sharing homologous ('public') heavy variable complementarity-determining region 3. These clusters included rearrangements from SMZL, ENMZL (gastric, salivary gland, ocular adnexa), chronic lymphocytic leukemia but also rheumatoid factors and non-malignant spleen MZ cells. In conclusion, different MZ lymphomas display biased immunogenetic signatures indicating distinct antigen exposure histories. The existence of rare public stereotypes raises the intriguing possibility that common, pathogen-triggered, immune-mediated mechanisms, may result in diverse B lymphoproliferations due to targeting versatile progenitor B cells and/or operating in particular microenvironments.This work was supported in part by H2020 “AEGLE, An analytics framework for integrated and personalized healthcare services in Europe”, by the European Union (EU); H2020 No. 692298 project “MEDGENET, Medical Genomics and Epigenomics Network” by the EU; grant AZV 15-30015A from the Ministry of Health of the Czech Republic, and the project CEITEC2020 LQ1601 from the Ministry of Education, Youth, and Sports of the Czech Republic; Bloodwise Research Grant (15019); the Swedish Cancer Society, the Swedish Research Council, the Knut and Alice Wallenberg Foundation, Karolinska Institutet, Stockholm, the Lion’s Cancer Research Foundation, Uppsala, the Marcus Borgström Foundation and Selander’s Foundation, Uppsala
    corecore