14 research outputs found

    Is there a direct role for erythrocytes in the immune response?

    Get PDF
    Erythrocytes are highly abundant circulating cells in the vertebrates, which, with the notable exception of mammals, remain nucleated throughout the entire life cycle. The major function associated with these cells is respiratory gas exchange however other functions including interaction with the immune system have been attributed to these cells. Many viral, prokaryotic and eukaryotic pathogens directly target this cell type and across the vertebrate group a significant number of related pathologies have been reported. Across the primary literature mechanisms of interaction, invasion and replication between viruses and erythrocytes have been well described however the functional response of the erythrocyte has been poorly studied. A fragmented series of reports spanning the vertebrates suggests that these cells are capable of functional responses to viral infection. In contrast, in-depth proteomic studies using human erythrocytes have strongly progressed throughout the past decade providing a rich source of information related to protein expression and potential function. Furthermore information at the gene expression level is becoming available. Here we provide a review of erythrocyte-pathogen interactions, erythrocyte functions in immunity and propose in light of recent -omics research that the nucleated erythrocytes may have a direct role in the immune response

    Els eritròcits nucleats podrien jugar un paper en la resposta immunitària

    Get PDF
    Els eritròcits o glòbuls vermells de la sang podrien tenir més funcions de les que, fins ara, els han estat atribuïdes. Investigadors de la UAB han demostrat que els eritròcits de truita i pollastre (dues espècies filogenèticament molt allunyades) participen activament en la resposta immunitària d'aquests organismes, reconeixent específicament diferents patògens, variant l'abundància d'ARNm específics en resposta a aquests i generant proteïnes que poden ser expulsades al corrent sanguini per activar l'acció d'altres cèl·lules del sistema immunitari, suggerint una comunicació d'aquestes cèl·lules amb les que conformen la xarxa immunitària de l'organisme.Los eritrocitos o glóbulos rojos de la sangre podrían tener más funciones de las que, hasta ahora, les han sido atribuidas. Investigadores de la UAB han demostrado que los eritrocitos de trucha y pollo (dos especies filogenéticamente muy alejadas) participan activamente en la respuesta inmunitaria de estos organismos, reconociendo específicamente diferentes patógenos, variando la abundancia de ARNm específicos en respuesta a éstos y generando proteínas que pueden ser expulsadas a la corriente sanguínea para activar la acción de otras células del sistema inmunitario, sugiriendo una comunicación de estas células con las que conforman la red inmunitaria del organismo

    Divergent responses to peptidoglycans derived from different E. coli serotypes influence inflammatory outcome in trout, Oncorhynchus mykiss, macrophages

    Get PDF
    Background: Pathogen-associated molecular patterns (PAMPs) are structural components of pathogens such as lipopolysaccharide (LPS) and peptidoglycan (PGN) from bacterial cell walls. PAMP-recognition by the host results in an induction of defence-related genes and often the generation of an inflammatory response. We evaluated both the transcriptomic and inflammatory response in trout (O. mykiss) macrophages in primary cell culture stimulated with DAP-PGN (DAP; meso-diaminopimelic acid, PGN; peptidoglycan) from two strains of Escherichia coli (PGN-K12 and PGN-O111:B4) over time. Results: Transcript profiling was assessed using function-targeted cDNA microarray hybridisation (n = 36) and results show differential responses to both PGNs that are both time and treatment dependent. Wild type E. coli (K12) generated an increase in transcript number/diversity over time whereas PGN-O111:B4 stimulation resulted in a more specific and intense response. In line with this, Gene Ontology analysis (GO) highlights a specific transcriptomic remodelling for PGN-O111:B4 whereas results obtained for PGN-K12 show a high similarity to a generalised inflammatory priming response where multiple functional classes are related to ribosome biogenesis or cellular metabolism. Prostaglandin release was induced by both PGNs and macrophages were significantly more sensitive to PGN-O111:B4 as suggested from microarray data. Conclusion: Responses at the level of the transcriptome and the inflammatory outcome (prostaglandin synthesis) highlight the different sensitivity of the macrophage to slight differences (serotype) in peptidoglycan structure. Such divergent responses are likely to involve differential receptor sensitivity to ligands or indeed different receptor types. Such changes in biological response will likely reflect upon pathogenicity of certain serotypes and the development of disease

    Screening for coping style increases the power of gene expression studies

    Get PDF
    Background: Individuals of many vertebrate species show different stress coping styles and these have a striking influence on how gene expression shifts in response to a variety of challenges. Principal Findings: This is clearly illustrated by a study in which common carp displaying behavioural predictors of different coping styles (characterised by a proactive, adrenaline-based or a reactive, cortisol-based response) were subjected to inflammatory challenge and specific gene transcripts measured in individual brains. Proactive and reactive fish differed in baseline gene expression and also showed diametrically opposite responses to the challenge for 80% of the genes investigated. Significance: Incorporating coping style as an explanatory variable can account for some the unexplained variation that is common in gene expression studies, can uncover important effects that would otherwise have passed unnoticed and greatly enhances the interpretive value of gene expression data

    RNA-Seq Reveals an Integrated Immune Response in Nucleated Erythrocytes

    Get PDF
    Background: Throughout the primary literature and within textbooks, the erythrocyte has been tacitly accepted to have maintained a unique physiological role; namely gas transport and exchange. In non-mammalian vertebrates, nucleated erythrocytes are present in circulation throughout the life cycle and a fragmented series of observations in mammals support a potential role in non-respiratory biological processes. We hypothesised that nucleated erythrocytes could actively participate via ligand-induced transcriptional re-programming in the immune response. Methodology/Principal Findings: Nucleated erythrocytes from both fish and birds express and regulate specific pattern recognition receptor (PRR) mRNAs and, thus, are capable of specific pathogen associated molecular pattern (PAMP) detection that is central to the innate immune response. In vitro challenge with diverse PAMPs led to de novo specific mRNA synthesis of both receptors and response factors including interferon-alpha (IFNα) that exhibit a stimulus-specific polysomal shift supporting active translation. RNA-Seq analysis of the PAMP (Poly (I:C), polyinosinic:polycytidylic acid)-erythrocyte response uncovered diverse cohorts of differentially expressed mRNA transcripts related to multiple physiological systems including the endocrine, reproductive and immune. Moreover, erythrocyte-derived conditioned mediums induced a type-1 interferon response in macrophages thus supporting an integrative role for the erythrocytes in the immune response. Conclusions/Significance: We demonstrate that nucleated erythrocytes in non-mammalian vertebrates spanning significant phylogenetic distance participate in the immune response. RNA-Seq studies highlight a mRNA repertoire that suggests a previously unrecognized integrative role for the erythrocytes in other physiological systems

    Is there a direct role for erythrocytes in the immune response?

    No full text
    Erythrocytes are highly abundant circulating cells in the vertebrates, which, with the notable exception of mammals, remain nucleated throughout the entire life cycle. The major function associated with these cells is respiratory gas exchange however other functions including interaction with the immune system have been attributed to these cells. Many viral, prokaryotic and eukaryotic pathogens directly target this cell type and across the vertebrate group a significant number of related pathologies have been reported. Across the primary literature mechanisms of interaction, invasion and replication between viruses and erythrocytes have been well described however the functional response of the erythrocyte has been poorly studied. A fragmented series of reports spanning the vertebrates suggests that these cells are capable of functional responses to viral infection. In contrast, in-depth proteomic studies using human erythrocytes have strongly progressed throughout the past decade providing a rich source of information related to protein expression and potential function. Furthermore information at the gene expression level is becoming available. Here we provide a review of erythrocyte-pathogen interactions, erythrocyte functions in immunity and propose in light of recent -omics research that the nucleated erythrocytes may have a direct role in the immune response

    Zebrafish liver (ZFL) cells are able to mount an anti-viral response after stimulation with Poly (I:C)

    No full text
    The zebrafish (Danio rerio) is a widely used model species for biomedical research and is also starting to be a model for aquaculture research. The ZFL cell line, established from zebrafish liver, has been mostly used in toxicological and ecotoxicological studies. However, no studies have previously characterised this cell line in regard to its immunological response. The aim of this work was to study the gene expression response of the ZFL cell line after incubation with different prototypical immune stimuli, such as lipopolysaccharide (LPS), peptidoglycan (PGN), zymosan, and with a special focus on the dsRNA Poly (I:C). Using PCR, microarrays, and confocal microscopy we have explored the response of the ZFL cells against Poly (I:C). This study shows that the ZFL is able to uptake very efficiently the Poly (I:C) and mount a strong anti-viral response. We can conclude that ZFL could be used not only in toxicological studies, but also in studying anti-viral responses in zebrafish

    Divergent responses to peptidoglycans derived from different E. coli serotypes influence inflammatory outcome in trout, Oncorhynchus mykiss, macrophages

    No full text
    Pathogen-associated molecular patterns (PAMPs) are structural components of pathogens such as lipopolysaccharide (LPS) and peptidoglycan (PGN) from bacterial cell walls. PAMP-recognition by the host results in an induction of defence-related genes and often the generation of an inflammatory response. We evaluated both the transcriptomic and inflammatory response in trout (O. mykiss) macrophages in primary cell culture stimulated with DAP-PGN (DAP; meso-diaminopimelic acid, PGN; peptidoglycan) from two strains of Escherichia coli (PGN-K12 and PGN-O111:B4) over time. Transcript profiling was assessed using function-targeted cDNA microarray hybridisation (n = 36) and results show differential responses to both PGNs that are both time and treatment dependent. Wild type E. coli (K12) generated an increase in transcript number/diversity over time whereas PGN-O111:B4 stimulation resulted in a more specific and intense response. In line with this, Gene Ontology analysis (GO) highlights a specific transcriptomic remodelling for PGN-O111:B4 whereas results obtained for PGN-K12 show a high similarity to a generalised inflammatory priming response where multiple functional classes are related to ribosome biogenesis or cellular metabolism. Prostaglandin release was induced by both PGNs and macrophages were significantly more sensitive to PGN-O111:B4 as suggested from microarray data. Responses at the level of the transcriptome and the inflammatory outcome (prostaglandin synthesis) highlight the different sensitivity of the macrophage to slight differences (serotype) in peptidoglycan structure. Such divergent responses are likely to involve differential receptor sensitivity to ligands or indeed different receptor types. Such changes in biological response will likely reflect upon pathogenicity of certain serotypes and the development of disease

    Differential responses to environmental challenge by common carp Cyprinus carpio highlight the importance of coping style in integrative physiology

    No full text
    Common carp Cyprinus carpio displaying proactive or reactive stress coping styles were acclimated to two environmental regimes (low oxygen and low temperature), and selected groups were tested for response to an inflammatory challenge (Escherichia coli lipopolysaccharide, LPS). Plasma glucose and lactate levels were measured, as were selected C. carpio-specific messenger (m)RNA transcript abundance, including cortisol receptor (CR), enolase (ENO), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and interleukin-1-beta (IL1β) was measured in individual whole brain samples. Basal levels (in sham injected fish held in normoxic conditions at 25° C) of plasma lactate and glucose differed between coping styles, being significantly lower in proactive individuals. Both variables increased in response to LPS challenge, with the exception of plasma glucose in reactive fish held in hypoxia. Baseline levels of gene expression under control conditions were significantly different for GAPDH between behavioural phenotypes. The responses to experimental challenge were sometimes diametrically opposed between stress-coping styles in a transcript-specific manner. For CR and GAPDH, for example, the response to LPS injection in hypoxia were opposite between proactive and reactive animals. Proactive fish showed decreased CR and increased GAPDH, whereas reactive showed the opposite response. These results further highlight that screening for stress-coping styles prior to experiments in adaptive physiology can significantly affect the interpretation of data obtained. Further, this leads to a more finely tuned analytical output providing an improved understanding of variation in individual responses to both environmental and inflammatory challenge
    corecore