3,146 research outputs found

    Resonance damping and optical susceptibilities

    Get PDF

    Mechanisms for optical binding

    Get PDF
    The phenomenon of optical binding is now experimentally very well established. With a recognition of the facility to collect and organize particles held in an optical trap, the related term 'optical matter' has also been gaining currency, highlighting possibilities for a significant interplay between optically induced inter-particle forces and other interactions such as chemical bonding and dispersion forces. Optical binding itself has a variety of interpretations. With some of these explanations being more prominent than others, and their applicability to some extent depending on the nature of the particles involved, a listing of these has to include the following: collective scattering, laser-dressed Casimir forces, virtual photon coupling, optically induced dipole resonance, and plasmon resonance coupling. It is the purpose of this paper to review and to establish the extent of fundamental linkages between these theoretical descriptions, recognizing the value that each has in relating the phenomenon of optical binding to the broader context of other, closely related physical measurements

    Multiple light scattering and optomechanical forces

    Get PDF
    When off-resonant light travels through a transparent medium, light scattering is the primary optical process to occur. Multiple-particle events are relatively rare in optically dilute systems: scattering generally takes place at individual atomic or molecular centers. Several well-known phenomena result from such single-center interactions, including Rayleigh and Raman scattering, and the optomechanical forces responsible for optical tweezers. Other, less familiar effects may arise in circumstances where throughput radiation is able to simultaneously engage with two or more scattering sites in close, nanoscale, proximity. Exhibiting the distinctive near-field electromagnetic character, inter-particle interactions such as optical binding and a variety of inelastic bimolecular processes can then occur. Although the theory for each two-center process is well established, the connectivity of their mechanisms has not received sufficient attention. To address this deficiency, and to consider the issues that ensue, it is expedient to represent the various forms of multi-particle light scattering in terms of transitions between different radiation states. The corresponding quantum amplitudes, registering the evolution of photon trajectories through the material system, can be calculated using the tools of quantum electrodynamics. Each of the potential outcomes for multi-particle scattering generates a set of amplitudes corresponding to different orderings of the constituent photon-matter interactions. Performing the necessary sums over quantum pathways between radiation states is expedited by a state-sequence development, this formalism also enabling the identification of intermediate states held in common by different paths. The results reveal the origin and consequences of linear momentum conservation, and they also offer new insights into the behavior of light between closely neighboring scattering events. © 2010 Society of Photo-Optical Instrumentation Engineers

    Estudios de acoplamiento molecular de nuevos análogos de quinolonas a la ADN girasa de Escherichia coli

    Get PDF
    Indexación: Scopus.Chemicals and CAS Registry Numbers: amino acid, 65072-01-7; ciprofloxacin, 85721-33-1; DNA topoisomerase (ATP hydrolysing); gatifloxacin, 112811-59-3, 180200-66-2; levofloxacin, 100986-85-4, 138199-71-0; lomefloxacin, 98079-51-7; moxifloxacin, 151096-09-2; nalidixic acid, 389-08-2; oxolinic acid, 14698-29-4; pipemidic acid, 51940-44-4; rufloxacin, 101363-10-4; sitafloxacin, 127254-12-0, 163253-35-8Context: Bacterial resistance to antibiotics is the inevitable consequence of the use of antimicrobial agents. Thus, quinolones are an important class of antibacterials; these agents generally consist of a 1-subtituted-1,4-dihydro-4-oxopyridine-3-carboxylic acid moiety combined with an aromatic or heteroaromatic ring fused at the 5- and 6-position. Aims: To determine the binding of quinolones to DNA gyrase of Escherichia coli. Methods: An analysis was performed using an in silico approach to determine, by docking calculations and energy descriptors, the conformer of 4‐oxo‐1,4‐dihydroquinoline skeleton that forms the most stable complex with DNA gyrase of E. coli. Results: The complex shows that the pose of the quinolones coincides with the amino acid residues Asp87, Thr88, Arg91 and Met92, which is expected to be critical in the binding of quinolones to DNA gyrase of E. coli. A series of quinolones were computationally designed, and the interactions between the quinolones and the amino acid residues of the DNA gyrase were calculated. Conclusions: Among the designed compounds, compounds 105 and 115 exhibit higher binding energy values and interact with amino acids Asp87, Thr88, Arg91 and Met92. © 2018 Journal of Pharmacy & Pharmacognosy Research.http://jppres.com/jppres/pdf/vol6/jppres18.368_6.5.386.pd

    Evaluation of the geotechnical behaviour of a volcanic soil wall with additions of lime and cement against landslides

    Get PDF
    The construction of earth walls can be a significant response to prevent the next landslides from reaching the road and avoid accidents. Therefore, a material of the same slope was used and reinforced with mixtures of lime and cement, with this same reinforced material a mechanically stabilized hypothetical earth wall (MSE) was developed. An analysis of the original slope was developed to check if there was a possible failure through its safety factor. Then, a hypothetical wall was developed with a floor reinforced with mixtures, in order to assess its overall safety factor and its maximum landslides. According to the results, in principle it was determined that the dosage M-3 / C-4-4 improves in a range of 30% to 37% the friction angle. In addition, it was found that a reinforced wall, that is to say with Lime and cement additions, presents a better behaviour. In its effect, its displacements are about 8 mm and have a global factor of 1.23

    Laboratory activity to effectively teach introductory geomicrobiology concepts to non-geology majors

    Get PDF
    We have designed a three-week experiment that can complement any microbiology course, to teach main geomicrobiology concepts for non-geology majors. One of the most difficult concepts for non-geology majors to comprehend is how bacteria serve as a platform for different mineralization reactions. In our three-week laboratory practice, students learn the main principles and conditions required for an induced bacterial mineralization. Upon completion of the laboratory experience, students will: 1) learn how microbial-induced mineralization (such as calcium carbonate formation) is affected by differential media and growth conditions; 2) understand how bacterial physiology affects any induced in situ or in vitro mineralization; 3) comprehend how growing conditions and bacterial physiologies interrelate, resulting in differential crystal formation. The teaching-learning process was assessed using a pre-/posttest with an increase from 26% to 76% in the number of positive answers from the students. We also measured the students' proficiency while conducting specific technical tasks, revealing no major difficulties while conducting the experiments. A final questionnaire was provided with satisfactory evaluations from the students regarding the organization and content of the practices. 84-86% of the students agreed that the exercises improved their knowledge in geomicrobiology and would like to attend similar laboratories in the future. Such response is the best indicator that the laboratory practice can be implemented in any undergraduate/graduate microbiology course to effectively teach basic geomicrobiology concepts to non-geology majors

    Genome-wide association studies are coming for human infectious diseases

    Get PDF
    A genetic contribution to infectious disease in human populations has long been suspected and is now supported by more than 50 years of epidemiological evidence showing, for example, infection rates to be much higher than disease rates. In successful family studies of high-penetrance effects, single gene mutations have been identified that reveal a molecular mechanism leading to increased risk of a specific infectious disease. However, in population-based studies, genetic variants conferring host susceptibility to various infectious diseases have been difficult to uncover. Although mutations such as that in the CCR5 gene, which confers protection against HIV infection, have been reliably discovered, polymorphisms affecting larger proportions of a population have been hard to prove definitively. The recent arrival of the genome-wide association study format, currently being applied to Kawasaki disease, tuberculosis, malaria, HIV, dengue and others, gives us hope that these challenges can finally be met, with implications for population-based treatment and prognosis strategies
    corecore