804 research outputs found

    Fission widths of hot nuclei from Langevin dynamics

    Get PDF
    Fission dynamics of excited nuclei is studied in the framework of Langevin equation. The one body wall-and-window friction is used as the dissipative force in the Langevin equation. In addition to the usual wall formula friction, the chaos weighted wall formula developed earlier to account for nonintegrability of single-particle motion within the nuclear volume is also considered here. The fission rate calculated with the chaos weighted wall formula is found to be faster by about a factor of two than that obtained with the usual wall friction. The systematic dependence of fission width on temperature and spin of the fissioning nucleus is investigated and a simple parametric form of fission width is obtained.Comment: RevTex, 12 pages including 9 Postscript figure

    Prescission neutron multiplicity and fission probability from Langevin dynamics of nuclear fission

    Get PDF
    A theoretical model of one-body nuclear friction which was developed earlier, namely the chaos-weighted wall formula, is applied to a dynamical description of compound nuclear decay in the framework of the Langevin equation coupled with statistical evaporation of light particles and photons. We have used both the usual wall formula friction and its chaos-weighted version in the Langevin equation to calculate the fission probability and prescission neutron multiplicity for the compound nuclei 178^{178}W, 188^{188}Pt, 200^{200}Pb, 213^{213}Fr, 224^{224}Th, and 251^{251}Es. We have also obtained the contributions of the presaddle and postsaddle neutrons to the total prescission multiplicity. A detailed analysis of our results leads us to conclude that the chaos-weighted wall formula friction can adequately describe the fission dynamics in the presaddle region. This friction, however, turns out to be too weak to describe the postsaddle dynamics properly. This points to the need for a suitable explanation for the enhanced neutron emission in the postsaddle stage of nuclear fission.Comment: RevTex, 14 pages including 5 Postscript figures, results improved by using a different potential, conclusions remain unchanged, to appear in Phys. Rev.

    Self-pulsing effect in chaotic scattering

    Full text link
    We study the quantum and classical scattering of Hamiltonian systems whose chaotic saddle is described by binary or ternary horseshoes. We are interested in parameters of the system for which a stable island, associated with the inner fundamental periodic orbit of the system exists and is large, but chaos around this island is well developed. In this situation, in classical systems, decay from the interaction region is algebraic, while in quantum systems it is exponential due to tunneling. In both cases, the most surprising effect is a periodic response to an incoming wave packet. The period of this self-pulsing effect or scattering echoes coincides with the mean period, by which the scattering trajectories rotate around the stable orbit. This period of rotation is directly related to the development stage of the underlying horseshoe. Therefore the predicted echoes will provide experimental access to topological information. We numerically test these results in kicked one dimensional models and in open billiards.Comment: Submitted to New Journal of Physics. Two movies (not included) and full-resolution figures are available at http://www.cicc.unam.mx/~mejia

    A blind detection of a large, complex, Sunyaev--Zel'dovich structure

    Get PDF
    We present an interesting Sunyaev-Zel'dovich (SZ) detection in the first of the Arcminute Microkelvin Imager (AMI) 'blind', degree-square fields to have been observed down to our target sensitivity of 100{\mu}Jy/beam. In follow-up deep pointed observations the SZ effect is detected with a maximum peak decrement greater than 8 \times the thermal noise. No corresponding emission is visible in the ROSAT all-sky X-ray survey and no cluster is evident in the Palomar all-sky optical survey. Compared with existing SZ images of distant clusters, the extent is large (\approx 10') and complex; our analysis favours a model containing two clusters rather than a single cluster. Our Bayesian analysis is currently limited to modelling each cluster with an ellipsoidal or spherical beta-model, which do not do justice to this decrement. Fitting an ellipsoid to the deeper candidate we find the following. (a) Assuming that the Evrard et al. (2002) approximation to Press & Schechter (1974) correctly gives the number density of clusters as a function of mass and redshift, then, in the search area, the formal Bayesian probability ratio of the AMI detection of this cluster is 7.9 \times 10^4:1; alternatively assuming Jenkins et al. (2001) as the true prior, the formal Bayesian probability ratio of detection is 2.1 \times 10^5:1. (b) The cluster mass is MT,200 = 5.5+1.2\times 10^14h-1M\odot. (c) Abandoning a physical model with num- -1.3 70 ber density prior and instead simply modelling the SZ decrement using a phenomenological {\beta}-model of temperature decrement as a function of angular distance, we find a central SZ temperature decrement of -295+36 {\mu}K - this allows for CMB primary anisotropies, receiver -15 noise and radio sources. We are unsure if the cluster system we observe is a merging system or two separate clusters.Comment: accepted MNRAS. 12 pages, 9 figure

    Theory of quantum radiation observed as sonoluminescence

    Get PDF
    Sonoluminescence is explained in terms of quantum radiation by moving interfaces between media of different polarizability. In a stationary dielectric the zero-point fluctuations of the electromagnetic field excite virtual two-photon states which become real under perturbation due to motion of the dielectric. The sonoluminescent bubble is modelled as an optically empty cavity in a homogeneous dielectric. The problem of the photon emission by a cavity of time-dependent radius is handled in a Hamiltonian formalism which is dealt with perturbatively up to first order in the velocity of the bubble surface over the speed of light. A parameter-dependence of the zero-order Hamiltonian in addition to the first-order perturbation calls for a new perturbative method combining standard perturbation theory with an adiabatic approximation. In this way the transition amplitude from the vacuum into a two-photon state is obtained, and expressions for the single-photon spectrum and the total energy radiated during one flash are given both in full and in the short-wavelengths approximation when the bubble is larger than the wavelengths of the emitted light. It is shown analytically that the spectral density has the same frequency-dependence as black-body radiation; this is purely an effect of correlated quantum fluctuations at zero temperature. The present theory clarifies a number of hitherto unsolved problems and suggests explanations for several more. Possible experiments that discriminate this from other theories of sonoluminescence are proposed.Comment: Latex file, 28 pages, postscript file with 3 figs. attache

    Localization of Events in Space-Time

    Full text link
    The present paper deals with the quantum coordinates of an event in space-time, individuated by a quantum object. It is known that these observables cannot be described by self-adjoint operators or by the corresponding spectral projection-valued measure. We describe them by means of a positive-operator-valued (POV) measure in the Minkowski space-time, satisfying a suitable covariance condition with respect to the Poincare' group. This POV measure determines the probability that a measurement of the coordinates of the event gives results belonging to a given set in space-time. We show that this measure must vanish on the vacuum and the one-particle states, which cannot define any event. We give a general expression for the Poincare' covariant POV measures. We define the baricentric events, which lie on the world-line of the centre-of-mass, and we find a simple expression for the average values of their coordinates. Finally, we discuss the conditions which permit the determination of the coordinates with an arbitrary accuracy.Comment: 31 pages, latex, no figure

    Evidence for Stellar Substructure in the Halo and Outer Disk of M31

    Full text link
    We report the discovery of significant stellar substructure in the halo and outer disk of our nearest large galactic neighbour, M31. Our deep panoramic survey with the Isaac Newton Telescope Wide Field Camera currently maps out an area of ~25 square degrees around M31, extending along the semi-major axis to 55 kpc, and is the first to allow an uninterrupted study of the density and color distribution of individual red giant branch stars across a large fraction of the halo of an external spiral galaxy. We find evidence for both spatial density and metallicity (as inferred from colour information) variations, which are often, but not always, correlated. In addition to the previously reported giant stellar stream (Ibata 2001b), the data reveal the presence of significant stellar overdensities at large radii close to the south-western major axis, in the proximity of the very luminous globular cluster G1, and near the north-eastern major axis, coinciding with and extending beyond the previously-known `northern spur'. The most prominent metallicity variations are found in the southern half of the halo, where two large structures with above average metallicites are apparent; one of these coincides with the giant stellar stream while the other corresponds to a much lower-level stellar enhancement. Our findings contrast with, but do not conflict with, past studies of the M31 halo and outer disk which have suggested a rather homogeneous stellar population at large radius: the bulk of our newly-detected substructure lies in the previously-uncharted far outer regions of the galaxy. We discuss the possible origin of the substructure observed and the implications it has for constraining the galaxy assembly process.Comment: 20 pages, 10 figures. Accepted for publication in AJ (Sep 2002). Version with high resolution embedded figures available at http://www.astro.rug.nl/~ferguson/m31.ps.g

    The fundamental constants and their variation: observational status and theoretical motivations

    Full text link
    This article describes the various experimental bounds on the variation of the fundamental constants of nature. After a discussion on the role of fundamental constants, of their definition and link with metrology, the various constraints on the variation of the fine structure constant, the gravitational, weak and strong interactions couplings and the electron to proton mass ratio are reviewed. This review aims (1) to provide the basics of each measurement, (2) to show as clearly as possible why it constrains a given constant and (3) to point out the underlying hypotheses. Such an investigation is of importance to compare the different results, particularly in view of understanding the recent claims of the detections of a variation of the fine structure constant and of the electron to proton mass ratio in quasar absorption spectra. The theoretical models leading to the prediction of such variation are also reviewed, including Kaluza-Klein theories, string theories and other alternative theories and cosmological implications of these results are discussed. The links with the tests of general relativity are emphasized.Comment: 56 pages, l7 figures, submitted to Rev. Mod. Phy

    "Author! Author!" : Shakespeare and biography

    Get PDF
    Original article can be found at: http://www.informaworld.com/smpp/title~content=t714579626~db=all Copyright Informa / Taylor & Francis Group. DOI: 10.1080/17450910902764454Since 1996, not a year has passed without the publication of at least one Shakespeare biography. Yet for many years the place of the author in the practice of understanding literary works has been problematized, and even on occasions eliminated. Criticism reads the “works”, and may or may not refer to an author whose “life” contributed to their meaning. Biography seeks the author in the works, the personality that precedes the works and gives them their characteristic shape and meaning. But the form of literary biography addresses the unusual kind of “life” that puts itself into “works”, and this is particularly challenging where the “works” predominate massively over the salient facts of the “life”. This essay surveys the current terrain of Shakespeare biography, and considers the key questions raised by the medium: can we know anything of Shakespeare's “personality” from the facts of his life and the survival of his works? What is the status of the kind of speculation that inevitably plays a part in biographical reconstruction? Are biographers in the end telling us as much about themselves as they tell us about Shakespeare?Peer reviewe

    First LIGO search for gravitational wave bursts from cosmic (super)strings

    Get PDF
    We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected in 14.9 days of data from times when all three LIGO detectors were operating. We interpret the result in terms of a frequentist upper limit on the rate of gravitational wave bursts and use the limits on the rate to constrain the parameter space (string tension, reconnection probability, and loop sizes) of cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR
    • …
    corecore