1,232 research outputs found

    Motion of Inertial Observers Through Negative Energy

    Get PDF
    Recent research has indicated that negative energy fluxes due to quantum coherence effects obey uncertainty principle-type inequalities of the form |\Delta E|\,{\Delta \tau} \lprox 1\,. Here ∣ΔE∣|\Delta E| is the magnitude of the negative energy which is transmitted on a timescale Δτ\Delta \tau. Our main focus in this paper is on negative energy fluxes which are produced by the motion of observers through static negative energy regions. We find that although a quantum inequality appears to be satisfied for radially moving geodesic observers in two and four-dimensional black hole spacetimes, an observer orbiting close to a black hole will see a constant negative energy flux. In addition, we show that inertial observers moving slowly through the Casimir vacuum can achieve arbitrarily large violations of the inequality. It seems likely that, in general, these types of negative energy fluxes are not constrained by inequalities on the magnitude and duration of the flux. We construct a model of a non-gravitational stress-energy detector, which is rapidly switched on and off, and discuss the strengths and weaknesses of such a detector.Comment: 18pp + 1 figure(not included, available on request), in LATEX, TUPT-93-

    High volume Portland cement replacement: A review

    Get PDF
    Increasing urban development has increased the demand for cement and cement production significantly contributes to CO2 emissions. These emissions are reduced when high volumes of cement are replaced with materials that do not give of high emissions. Sustainable development and considerations for a circular economy fuel the need to find alternative binders in concrete production that reduce the amount of carbon dioxide emissions and utilizes waste materials. Certain industrial wastes (fly ash and ground granulated blast furnace slag), municipal wastes (glass powder and ceramic waste powder) and agricultural wastes (palm oil fuel ash) have been used as a Portland cement (PC) substitute due to their pozzolanic properties. This article discusses the high volume replacement of PC in concrete with these waste materials in terms of the strength development of concrete, its effect on the hydration mechanism, the environmental impact of its use and its relation to alkali cement

    Averaged Energy Conditions and Quantum Inequalities

    Get PDF
    Connections are uncovered between the averaged weak (AWEC) and averaged null (ANEC) energy conditions, and quantum inequality restrictions on negative energy for free massless scalar fields. In a two-dimensional compactified Minkowski universe, we derive a covariant quantum inequality-type bound on the difference of the expectation values of the energy density in an arbitrary quantum state and in the Casimir vacuum state. From this bound, it is shown that the difference of expectation values also obeys AWEC and ANEC-type integral conditions. In contrast, it is well-known that the stress tensor in the Casimir vacuum state alone satisfies neither quantum inequalities nor averaged energy conditions. Such difference inequalities represent limits on the degree of energy condition violation that is allowed over and above any violation due to negative energy densities in a background vacuum state. In our simple two-dimensional model, they provide physically interesting examples of new constraints on negative energy which hold even when the usual AWEC, ANEC, and quantum inequality restrictions fail. In the limit when the size of the space is allowed to go to infinity, we derive quantum inequalities for timelike and null geodesics which, in appropriate limits, reduce to AWEC and ANEC in ordinary two-dimensional Minkowski spacetime. We also derive a quantum inequality bound on the energy density seen by an inertial observer in four-dimensional Minkowski spacetime. The bound implies that any inertial observer in flat spacetime cannot see an arbitrarily large negative energy density which lasts for an arbitrarily long period of time.Comment: 20pp, plain LATEX, TUTP-94-1

    Rapid Climate-Driven Circulation Changes Threaten Conservation of Endangered North Atlantic Right Whales

    Get PDF
    As climate trends accelerate, ecosystems will be pushed rapidly into new states, reducing the potential efficacy of conservation strategies based on historical patterns. In the Gulf of Maine, climate-driven changes have restructured the ecosystem rapidly over the past decade. Changes in the Atlantic meridional overturning circulation have altered deepwater dynamics, driving warming rates twice as high as the fastest surface rates. This has had implications for the copepod Calanus finmarchicus, a critical food supply for the endangered North Atlantic right whale (Eubalaena glacialis). The oceanographic changes have driven a deviation in the seasonal foraging patterns of E. glacialis upon which conservation strategies depend, making the whales more vulnerable to ship strikes and gear entanglements. The effects of rapid climate-driven changes on a species at risk undermine current management approaches

    Insight review on impact of infrastructural development in driving the SDGs in developing nations: a case study of Nigeria

    Get PDF
    The Sustainable Development Goals (SDGs) recognize the dominance of infrastructure as a panacea for the nation’s development to improve the quality of people’s lives. In Nigeria, inadequate infrastructure has impaired the prospect of attaining some of these SDGs. Some of the identified barriers causing the poor implementations of SDGs in Nigeria include poverty, poor accountability, inadequate domestic water supply, poor energy supply, poor human capital development initiatives, poor transportation and telecommunication networks, illiteracy level, and environmental degradation. But while the SDGs are a non-enforced agreement, the way and manner of implementation and the conditions under which the state acts in accordance with the agenda were not properly spelled out. However, the success of the SDGs in Nigeria requires commitment from government at all levels to provide adequate funding, financial prudence, stable polity, sound policies, availability of functional infrastructural facilities and ensuring value for money. This will result in achieved opportunities such as the establishment of new businesses, boosting of employment rate, ample growth opportunities, enhance riskadjusted financial returns to investors, an increase in the rate of youth and adults in formal education and non-formal education, and promoting environment friendliness. This review further recommends that government should address the challenges faced in the area of power, telecommunication, corruption and access to agrarian areas in the country in order to have an inclusive infrastructural development that is positively driving growth. Moreover, assessment of projects should include initial capital investment, operational cost, maintenance, and disposal of the asset which will guarantee more sustainable infrastructure projects that are likely to perform much better through the lifecycle. Thus, successfully achieving the SDGs must involve innovative approaches to infrastructure financing and sustainable public procurement

    Effect of Solar Wind Drag on the Determination of the Properties of Coronal Mass Ejections from Heliospheric Images

    Full text link
    The Fixed-\Phi (F\Phi) and Harmonic Mean (HM) fitting methods are two methods to determine the average direction and velocity of coronal mass ejections (CMEs) from time-elongation tracks produced by Heliospheric Imagers (HIs), such as the HIs onboard the STEREO spacecraft. Both methods assume a constant velocity in their descriptions of the time-elongation profiles of CMEs, which are used to fit the observed time-elongation data. Here, we analyze the effect of aerodynamic drag on CMEs propagating through interplanetary space, and how this drag affects the result of the F\Phi and HM fitting methods. A simple drag model is used to analytically construct time-elongation profiles which are then fitted with the two methods. It is found that higher angles and velocities give rise to greater error in both methods, reaching errors in the direction of propagation of up to 15 deg and 30 deg for the F\Phi and HM fitting methods, respectively. This is due to the physical accelerations of the CMEs being interpreted as geometrical accelerations by the fitting methods. Because of the geometrical definition of the HM fitting method, it is affected by the acceleration more greatly than the F\Phi fitting method. Overall, we find that both techniques overestimate the initial (and final) velocity and direction for fast CMEs propagating beyond 90 deg from the Sun-spacecraft line, meaning that arrival times at 1 AU would be predicted early (by up to 12 hours). We also find that the direction and arrival time of a wide and decelerating CME can be better reproduced by the F\Phi due to the cancellation of two errors: neglecting the CME width and neglecting the CME deceleration. Overall, the inaccuracies of the two fitting methods are expected to play an important role in the prediction of CME hit and arrival times as we head towards solar maximum and the STEREO spacecraft further move behind the Sun.Comment: Solar Physics, Online First, 17 page

    Averaged Energy Conditions and Evaporating Black Holes

    Get PDF
    In this paper the averaged weak (AWEC) and averaged null (ANEC) energy conditions, together with uncertainty principle-type restrictions on negative energy (``quantum inequalities''), are examined in the context of evaporating black hole backgrounds in both two and four dimensions. In particular, integrals over only half-geodesics are studied. We determine the regions of the spacetime in which the averaged energy conditions are violated. In all cases where these conditions fail, there appear to be quantum inequalities which bound the magnitude and extent of the negative energy, and hence the degree of the violation. The possible relevance of these results for the validity of singularity theorems in evaporating black hole spacetimes is discussed.Comment: Sections 2.1 and 2.2 have been revised and some erroneous statements corrected. The main conclusions and the figures are unchanged. 27 pp, plain Latex, 3 figures available upon reques

    Initial State Interactions for K−K^--Proton Radiative Capture

    Full text link
    The effects of the initial state interactions on the K−−pK^--p radiative capture branching ratios are examined and found to be quite sizable. A general coupled-channel formalism for both strong and electromagnetic channels using a particle basis is presented, and applied to all the low energy K−−pK^--p data with the exception of the {\it 1s} atomic level shift. Satisfactory fits are obtained using vertex coupling constants for the electromagnetic channels that are close to their expected SU(3) values.Comment: 16 pages, uses revte

    Osmium isotope evidence for two pulses of increased continental weathering linked to Early Jurassic volcanism and climate change

    Get PDF
    Large igneous provinces (LIPs) are proposed to have caused a number of episodes of abrupt environmental change by increasing atmospheric CO2 levels, which were subsequently alleviated by drawdown of CO2 via enhanced continental weathering and burial of organic matter. Here the sedimentary records of two such episodes of environmental change, the Toarcian oceanic anoxic event (T-OAE) and preceding Pliensbachian–Toarcian (Pl-To) event (both possibly linked to the Karoo-Ferrar LIP), are investigated using a new suite of geochemical proxies that have not been previously compared. Stratigraphic variations in osmium isotope (187Os/188Os) records are compared with those of mercury (Hg) and carbon isotopes (d13C) in samples from the Mochras core, Llanbedr Farm, Cardigan Bay Basin, Wales. These sedimentary rocks are confirmed as recording an open-marine setting by analysis of molybdenum/uranium enrichment trends, indicating that the Os isotope record in these samples reflects the isotopic composition of the global ocean. The Os isotope data include the first results across the Pl-To boundary, when seawater 187Os/188Os increased from ~0.40 to ~0.53, in addition to new data that show elevated 187Os/188Os (from ~0.42 to ~0.68) during the T-OAE. Both increases in 187Os/188Os correlate with negative carbon isotope excursions and increased mercury concentrations, supporting an interplay between terrestrial volcanism, weathering, and climate that was instrumental in driving these distinct episodes of global environmental change. These observations also indicate that the environmental impact of the Karoo-Ferrar LIP was not limited solely to the T-OAE
    • 

    corecore