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Recent changes in the Gulf of Maine provide
an opportunity to test our assumptions about how
species respond to rapid warming.

ABSTRACT. As climate trends accelerate, ecosystems will be pushed rapidly into new

states, reducing the potential efficacy of conservation strategies based on historical pat-

terns. In the Gulf of Maine, climate-driven changes have restructured the ecosystem

rapidly over the past decade. Changes in the Atlantic meridional overturning circula-

tion have altered deepwater dynamics, driving warming rates twice as high as the fastest

surface rates. This has had implications for the copepod Calanus finmarchicus, a crit-

ical food supply for the endangered North Atlantic right whale (Eubalaena glacialis).

The oceanographic changes have driven a deviation in the seasonal foraging patterns

of E. glacialis upon which conservation strategies depend, making the whales more

vulnerable to ship strikes and gear entanglements. The effects of rapid climate-driven

changes on a species at risk undermine current management approaches.

There is a well-documented global pat-
tern of species shifting their ranges in the
direction of changing climate conditions
(Perry et al.,, 2005; Cheung et al., 2009;
Chen et al,, 2011; Pinsky et al., 2013).
Long-lived mobile species, like marine
mammals, should be able to track their
bioclimate envelopes and other chang-
ing conditions, shifting their ranges in
response. Because climate change is
affecting ecosystems with increasing
immediacy, we need to know whether
our current understanding of range shifts
yields effective conservation and man-
agement strategies.

Since 2004, the Gulf of Maine has been
one of the fastest warming ocean eco-
systems on the planet, as measured by
sea surface temperature (Pershing et al.,
2015). The rapid rate of warming has been
punctuated by sudden ecosystem changes
with economic consequences, primarily
to fisheries, where sudden temperature
changes are not well accounted for in man-
agement (Mills et al., 2013; Pershing et al.,
2015, 2018; Neckles et al., 2015). Recent
changes in the Gulf of Maine provide an
opportunity to test our assumptions about

how species respond to rapid warming.

A striking change has occurred within
the endangered North Atlantic right
whale population (Eubalaena glacialis,
pop. ~450; Pace et al,, 2017). E. glacialis
is not listed among mammals negatively
impacted by climate change (Pacifici
et al,, 2017) and, under the range-shift
paradigm, this highly mobile species
should be able to follow favorable condi-
tions. Successful management of the spe-
cies has relied on its historically regular
seasonal migrations, moving from spe-
cific foraging grounds in the western Gulf
of Maine in winter and spring to the east-
ern Gulf of Maine and Scotian Shelf in the
summer and autumn. These movements
track the abundance of this species’ main
prey, late stages of the lipid-rich cope-
pod Calanus finmarchicus (Murison
et al, 1989; Mayo and Marx, 1990;
Beardsley et al., 1996; Pendleton et al,
2009, 2012). Right whales began to devi-
ate from their typical foraging migration
pattern between 2008 and 2010. Their
health has since declined (Rolland et al.,
2016), and recovery has stalled (Kraus
et al., 2016; Davis et al., 2017; Pace et al.,

2017). In 2017, at least 17 whales died,
and no calves were born in 2018, raising
new alarm that E. glacialis may be extinct
within 30 years (Stokstad 2017; Meyer-
Gutbrod and Greene, 2018). The predom-
inant hypothesis is that a warming-driven
northward shift of C. finmarchicus has
driven whales into regions where protec-
tions to minimize ship strikes or fishing-
gear entanglements do not yet exist
(Daoust et al., 2017; Stokstad, 2017; Pettis
et al., 2018; Meyer-Gutbrod et al., 2018).
However, the western Gulf of Maine has
meanwhile had record-high abundance
measurements of C. finmarchicus since
2010 (Runge et al., 2015), apparently con-
tradicting this hypothesis.

We tested the that
E. glacialis changes relate to recent rapid

hypothesis

changes in climate and prey. Most analy-
ses of rapid ocean warming have focused
on sea surface temperature because of
the broad coverage of satellite measure-
ments (Pershing et al., 2015; Di Lorenzo
and Mantua, 2016; Thomas et al., 2017).
However, a large amount of excess heat
energy is found in subsurface waters
(Jewett and Romanou, 2017), and much
of the climate-driven warming in the Gulf
of Maine is predicted to occur at depth
(Saba et al., 2016). The C. finmarchicus
life cycle depends on seasonal deepwater
temperatures because of its annual dor-
mancy period, which occurs from late
summer through winter at depths below
100 m in the Gulf of Maine. To test our
hypothesis, we aggregated data from
oceanographic buoys, transects, and
multiple zooplankton and whale sur-
veys from around the Gulf of Maine
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(Figure 1 and Supplementary Figure S1),
focusing on the period of rapid warm-
ing (2004-present) both at the sur-
face and at depth. Based on the shift in
the right whale population occurring
around 2010 (Kraus et al., 2016), we sub-
divided data into early (2004-2008) and
late (2012-2016) periods and compared
time-series data between these two peri-
ods using a Mann-Whitney rank sum
comparison test (Gibbons et al., 2011).
Focusing on areas where spatial and tem-
poral overlap would suggest the possibil-
ity of a causal effect between variables,
we also tested correlations between inter-
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annual time series across data sets. These
two complementary approaches pulled
out both stepwise and more continu-
ous shifts over the recent warming time
period and highlighted probable ocean-
ographic linkages between variables.
We oriented much of our interpreta-
tion around an oceanographic transport
pathway determined by back-tracking
currents from the Bay of Fundy feeding
grounds (Figure S2). Specific details for
processing of each data set and for com-
puting the oceanography are described in
the Materials and Methods in the online
supplementary materials.
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FIGURE 1. Gulf of Maine sampling. Yellow dots show time-series stations (Wilkinson Basin, Prince-5,
and Browns Bank Line). Grid shows statistically significant (Mann-Whitney rank sum, p <0.05)
increases (red) and decreases (blue) in late-stage C. finmarchicus log abundance from the NOAA
Northeast Fisheries Science Center Ecosystem Monitoring (ECOMON) survey, based on the dif-
ference between the two time periods 2004-2008 and 2012-2016. The map is divided because
increases are evident primarily in spring in the western gulf (left) and decreases primarily in late
summer-autumn in the eastern gulf (right). The heavy dashed black line shows the Gulf of Maine
North Atlantic Time Series (GNATS) transect. The red dot indicates the location of oceanographic
buoy N. Arrows trace the sources of advection into Gulf of Maine surface (orange) and deep (blue)
layers. The light green regions are areas historically identified as right whale feeding habitats. More
detailed information can be found in Figures S1-S3 in the online supplementary materials.
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Seasonal patterns of E. glacialis and
C. finmarchicus have shifted significantly
from the early period (2004-2008) to the
late period (2012-2016). The most notable
shift for E. glacialis was a sharp decline in
sightings per unit effort (SPUE) in the Bay
of Fundy critical habitat (Figure 2a,b). In
the western Gulf of Maine habitats, there
was a decline in the Great South Channel
and an increase in Cape Cod Bay, consis-
tent with recent analyses (Ganley et al,
2019). Increases of C. finmarchicus were
largely restricted to the western Gulf of
Maine and occurred in spring, while the
late summer through winter decreases in
C. finmarchicus occurred throughout the
Gulf, corresponding to the period of dor-
mancy at depth (Figures 1 and S1). There
was a significant decrease in late-stage
abundance in late summer, autumn, and
winter (Figure 2c—f). At the Wilkinson
Basin station, there was a significant
increase in the spring abundance of juve-
nile stages (Figure 2e,f). In Cape Cod Bay,
there was a notable increase in copepod
abundance in early winter (Figure 2g,h).

We ran pairwise interannual cor-
relations across time series during the
2004-2016 period. The strongest rela-
tionships aligned along an oceanographic
transport pathway stretching from the
Northeast Channel through the deep
waters of Jordan Basin and into Grand
Manan Basin (Figures 1 and S2), partic-
ularly in late summer through autumn
and winter. Extreme deepwater warming
that began in 2004 exhibited strong sub-
annual and subsurface components. The
fastest warming rates occurred at depth
in the late summer, autumn, and winter
months (Figure 3a). Warming was fast-
est at depths of 20-150 m, from August
to February, reaching as high as 0.5°C per
year, twice the extreme warming rates
of 0.23°C per year reported by Pershing
et al. (2015) for surface waters. The rapid
warming in these deep waters and in
surface waters correlated strongly with
the Gulf Stream Index (Figure 3b—e).
The spatial structure of this correlation
changed seasonally, being strongest at
the surface in spring and shifting toward



depths below 100 m in summer and
winter. The most recent high-resolution
ocean models project above-average
warming to occur in the Northwest
Atlantic, particularly in the deep waters
of the Gulf of Maine (Saba et al., 2016).
A key oceanographic node in this warm-
ing process is the Northeast Channel,
where warmer, deeper slope water can
enter the Gulf of Maine. This location
has been identified as a key indicator of
changes in the Atlantic meridional over-
turning circulation (AMOC; Sherwood
etal., 2011; Rahmstorfet al., 2015), which
has slowed more rapidly than expected
(Caesar et al., 2018). The strong correla-
tions between the Gulf Stream Index and
the deepwater temperatures in Jordan
Basin over the past decade reflect a strong
localized effect of this process in the deep
Gulf of Maine.

C. finmarchicus spends much of the
year in dormancy at depths below 100 m.
Season-specific deepwater temperature
(150 m) correlated negatively (p <0.05)
with late-stage C. finmarchicus abun-
dance during summer (r*= 0.67), autumn
(r?* = 0.40), and winter (r2 = 0.90), but not
spring (Figure 4). Lagged correlations
between the Browns Bank Line stations
and inner Gulf of Maine C. finmarchicus
measurements showed that only Station 6
correlated significantly with Jordan Basin
(r* = 0.67, Figure 3). Other Browns Bank
Line stations showed weak to no cor-
relations with the inner Gulf of Maine
stations (Figure S3). Because of the
location of Station 6 adjacent to the
Northeast Channel, this pattern is consis-
tent with the pattern of deepwater inflow
(Figures 1and S2).

The rapid decline in E. glacialis habi-
tat use in the Bay of Fundy correlated sig-
nificantly with late-stage C. finmarchicus

FIGURE 3. (a) Rate of temperature change for
2004-2017 at buoy N in the Northeast Channel
by depth and month. (b—e) Correlation between
water temperature from the GNATS transect
(see Figure 1) averaged into seasons and the
Gulf Stream Index over the period 1998-2015.
Dots indicate statistical significance (p <0.05).
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Wilkinson Basin for the two periods.
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abundance in the eastern Gulf of Maine
during the same late-summer period.
There was a strong positive correlation
(r? = 0.92) between Jordan Basin late-
stage C. finmarchicus abundances and
September E. glacialis SPUE in the Bay
of Fundy (Figure 4f). There also appeared
to be a distinct break at C. finmarchicus
abundances of around 40,000 m~, below
which E. glacialis sightings were very
low. Mayo and Marx (1990) and Murison
and Gaskin (1989) estimated the imme-
diate decision-making threshold for
E. glacialis feeding to be approximately
1,000 m™ for Cape Cod Bay and the
Bay of Fundy, respectively. Kenney et al.
(1986) estimated the minimum concen-
trations necessary for right whale feed-

Winter r2=0.9, p = 0.0004
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ing to provide a net energetic benefit over
the long term to be in the 10°-10° m™
range. The 40,000 m™ threshold in our
data suggests a similar break, represent-
ing the regional copepod abundance at
which high-density, exploitable, small-
scale patches within a region are likely to
occur. In the western Gulf of Maine, links
between changes in copepod abundance
and E. glacialis habitat use were ambigu-
ous. The data from Cape Cod Bay, span-
ning January to May, did not correlate
significantly with right whale SPUE in
any month for any of the three dominant
copepod taxa (C. finmarchicus, Pseudo-
calanus, and Centropages; Table S1).
This likely has to do with the fact that
E. glacialis is exploiting multiple spe-

Springr?=0.1,p=0.34

g 15
5 b
c g & ®2015
‘%2 g 10
8<o
wv
c3>8 ©2007
§£3 . 24 2009 S
A 11
s S 2004 2013
S ©2005 2010
= 0 2008
© 5 6 7 8 9
Temperature (°C) 150 m
o Autumnr?=0.4,p=0.03
5} 6
-'§ d 2008
c S5 | 2004 #2007 #2006
ano g 4 ®2011
8<o
cs8
S¢S , 2009 52005 2013
S s5x LJ
E 2015 2&14 ®2012
£ %010
e 6 7 8 9
Temperature (°C) 150 m
r2=0.92, p <0.00005
600 f 08.%)OS
- 20078
Teb 2006 ® @ 2009
25 g 400 ®2011
w S
6% E
58
&4 g 200
2l 2012
0 2013 @ ® 42010

2 3 4 5 6
Jordan Basin
C. finmarchicus Abundance
Mean June-September (x 10,000 m-2)

FIGURE 4. (a—d) Jordan Basin temperature versus Jordan Basin late-stage C. finmarchicus, within
each of the four seasons. (e) Copepodite C. finmarchicus at Browns Bank Line Station 6 in April ver-
sus late-stage C. finmarchicus in Jordan Basin in June. (f) Jordan Basin late-summer abundance of
late-stage C. finmarchicus versus Bay of Fundy E. glacialis sightings per unit effort.
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cies, each with different phenologies and
energetic contents.

These lines of evidence support the
concept that there are presently two
largely distinct oceanographic path-
ways controlling C. finmarchicus and
E. glacialis in the Gulf of Maine. The two
pathways manifest at different times of
year and at different depths, are sensi-
tive to different driving forces, and influ-
ence E. glacialis foraging differently. The
first pathway influences the western Gulf
of Maine, which has been the location of
some of the highest abundances measured
for C. finmarchicus within its range (Melle
etal., 2014). These high abundances are a
consequence of the “coastal amplification
of supply and transport (CAST)” process,
described by Ji et al. (2017), in which
individuals are carried along the highly
productive Maine Coastal Current, tak-
ing advantage of the high productivity of
the coastal environment (Figure 1, orange
arrow). This pathway typically results in
very high C. finmarchicus abundances in
the western Gulf of Maine in spring and
is more sensitive to winter phytoplankton
stock available to reproducing females
(Figure 2i,j) than to temperature because
of the strong link between food avail-
ability and egg production rates (Durbin
et al., 2003). In contrast to predictions of
northward range shifts, this pathway has
maintained favorable conditions in the
spring for both C. finmarchicus (Ji et al.,
2017) and E. glacialis in the western Gulf
of Maine, where E. glacialis also feed on
smaller copepods in the winter and spring
(Pendleton et al., 2009), further buffer-
ing potential changes in C. finmarchicus.
While the CAST pathway as described
is internal to the Gulf of Maine (Ji
et al, 2017), the upstream extension
along the Nova Scotia Current has been
cited as a key input of C. finmarchicus
into the Gulf of Maine (Greene et al.,
2004). Presumably, some level of exter-
nal supply is necessary to sustain this
C. finmarchicus population, and a reduc-
tion in supply would hypothetically affect
this source. However, the lack of cor-
relation between the nearshore Browns



Bank Line stations and the interior Gulf
of Maine C. finmarchicus abundances
(Figure S3) suggests that supply along this
part of the advective route is less import-
ant than has been reported in past years.
The high winter phytoplankton produc-
tivity and high reproductive potential of
C. finmarchicus (i.e., the coastal amplifi-
cation) reduces the sensitivity to changes
in supply along this route.

The second pathway, in contrast, is
more sensitive to climate-driven changes
in oceanography. Slope water along the
Scotian Shelf represents another poten-
tial source of C. finmarchicus to the shelf
and to downstream locations (Head
et al, 1999; Zakardjian et al., 2003).
In the eastern Gulf of Maine, dormant
C. finmarchicus populations are exposed
to oceanographic changes occurring
at greater depths during late summer
through winter. Warming has been most
rapid in deep water during these seasons,
likely reflecting changes in flow through
the Northeast Channel (Figure 3). The
decline in C. finmarchicus is likely a com-
bination of reduced supply and a more
direct effect of deepwater temperatures.
The lagged link with Browns Bank Line
Station 6 (Figures 4e and S3) is consistent
with C. finmarchicus supply from warm
slope-water sources (Figures 1 and S2).
While the temperatures are not high
enough to cause mortality directly,
C. finmarchicus mortality is typically cal-
culated as an increasing function of tem-
perature (Speirs et al., 2006) to capture the
combined effects of predation, increased
metabolic demands, and decreased dia-
pause duration. The fact that the tem-
perature effect is strongest in winter
(Figure 4a) suggests a cumulative direct
effect of temperature throughout the dor-
mancy period. Whether through direct
advection of C. finmarchicus or through
the effect of warmer advected water, the
decline is consistent with a change in flow
through the Northeast Channel associ-
ated with changes in the AMOC. This
driver has been documented in recon-
structed past data (Sherwood etal., 2011),
is well described in models (Saba et al.,

2016), and has resulted in rapid deep-
water warming. This depth and season-
ality match the time of year when lipid-
rich C. finmarchicus are in diapause in
the Gulf of Maine in deep water, and also
when E. glacialis typically feeds in the
eastern Gulf of Maine. The documented
change in the AMOC (Caesar et al., 2018)
is the likely driver of these changes, and

hotspot (Leiter et al., 2017), demonstrat-
ing the potential value of oceanographic
forecasts as early warning systems and as
adaptation tools in a more rapidly chang-
ing environment.

Climate change is often viewed as a
long-term problem, and in this context,
mean species range shifts could be a use-
ful tool. However, mean shifts assume

An understanding of subannual ecosystem

and oceanographic dynamics, and of the response

of systems to rapid change, will be necessary to
support conservation in the future.

because of the link between the AMOC
and climate change, this is a probable pre-
cursor to future changes.

Adapting to rapid change will require
approaches that anticipate change. In the
case of E. glacialis, measures to reduce
risk—such as designation of critical hab-
itat areas, vessel routing modifications,
and fishing closures—are built upon the
notion that whales will visit the same for-
aging grounds at the same times each
year (Vanderlaan et al., 2011). A dis-
ruption to this regularity, as a conse-
quence of rapid oceanographic changes,
has exposed whales to increased risks
as they have ranged beyond their regu-
latory protections, prompting new sur-
vey effort and risk-reduction measures
in Canadian waters (Davies and Brillant,
2019). One approach to making manage-
ment more dynamic is forecasting at sub-
annual timescales. For example, using
a dynamic species distribution model
informed by C. finmarchicus distribu-
tions, Pendleton et al. (2012) predicted
highly favorable E. glacialis foraging habi-
tat south of Nantucket, which was outside
of the known foraging areas. This region
was subsequently found to be a foraging

that organisms can adjust quickly to new
conditions in the ocean. While the shift
in right whale distributions is consis-
tent with this assumption, low calf pro-
duction is an indication that they are not
yet able to forage well in these new habi-
tats (Corkeron et al., 2018). Recent mod-
eling work suggests that a healthy whale
population can rebound after a few low-
reproduction years by finding and adapt-
ing to a new habitat (Tulloch et al., 2019).
The right whale population is not healthy,
and more time spent foraging may lead to
additional mortality, amplifying the chal-
lenges this species faces. Rapid warm-
ing at the level observed in the Gulf of
Maine is likely to be a more prominent
feature of the future ocean. Even climate-
based projections, which predict grad-
ual northward range shifts, fall short at
finer timescales. An understanding of
subannual ecosystem and oceanographic
dynamics, and of the response of systems
to rapid change, will be necessary to sup-
port conservation in the future.

SUPPLEMENTARY MATERIALS

Materials and Methods, Figures S1-S3, Table S1, and
References are available online at https://doi.org/
10.5670/0ceanog.2019.201.
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