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Abstract

In this paper the averaged weak (AWEC) and averaged null energy (ANEC)

conditions, together with uncertainty principle-type restrictions on negative en-

ergy (\quantum inequalities"), are examined in the context of evaporating black

hole backgrounds in both two and four dimensions. In particular, integrals

over only half-complete geodesics are studied. We �rst examine a quantized

massless scalar �eld in two-dimensional Schwarzschild spacetime in the Unruh

vacuum state. It is found that AWEC is violated along half-complete timelike

geodesics representing observers who are shot outward to in�nity at high speed

from near the horizon. However, there appears to be a quantum inequality-

type bound on the degree of the violation. More speci�cally, the magnitude of

the integrated negative energy density seen by such an observer is less than or

equal to the inverse of the characteristic proper time over which the observer

sees a signi�cant change in the energy density. Observers who remain close to

the horizon, and thus stay in the region of negative energy density for a long

period of Schwarzschild time, must follow nearly lightlike trajectories. Hence

these observers may experience large averaged negative energy densities but

only over very short proper times. For outgoing half-complete null geodesics

outside the horizon, we �nd that ANEC is violated, but a similar quantum

inequality bounds the extent of the violation. A careful analysis shows that

this result is true for null geodesics on the horizon as well. For ingoing null

geodesics or for half-complete outgoing null geodesics inside the horizon, ANEC

is satis�ed in two dimensions. In four-dimensional Schwarzschild spacetime, we

perform a similar analysis for both a conformally-coupled, quantized massless

scalar �eld and a quantized electromagnetic �eld, in the Unruh vacuum state.

For this study, we use previously calculated renormalized vacuum expecta-

tion values for the stress-energy tensor components of these �elds outside the

horizon. Our results for half-complete outgoing timelike and null geodesics

outside the horizon are similar to those found in the two-dimensional case. In

four-dimensional spacetime, the quantum inequality bounds seem to be even

stronger than their two-dimensional counterparts. The possible relevance of

these results for the validity of singularity theorems in evaporating black hole

spacetimes is discussed.
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1 Introduction

It is by now well-known that quantum �eld theory permits violations of all of the local
energy conditions used in classical general relativity. These conditions are employed
in a variety of ways, such as in the proofs of theorems on the occurrence of singularities
in gravitational collapse and cosmology, or of cosmic censorship. Two of the weakest
such local conditions are the \weak energy condition" and the \null energy condition"
which state that:

T�� u
� u� � 0 ; (1)

for all timelike vectors u�, and

T�� K
�K� � 0 ; (2)

for all null vectorsK�, respectively [1]. Note that the null energy condition follows by
continuity if the weak energy condition holds. These two local conditions are satis�ed
by known forms of classical matter, but there are a variety of states of quantum �elds
which violate them [2], the most well-known of which is arguably the Casimir vacuum
[3].

The extent to which quantum �eld theory allows violations of the local energy
conditions is not yet completely clear, although progress has been made in recent
years to answer this question. Two principal approaches for determining the degree
of violation have been \averaged energy conditions" and \quantum inequalities." The
�rst, originally due to Tipler [4], involves a suitable averaging of the local conditions
over timelike or null geodesics. It can be shown that many of the standard results of
classical general relativity obtained via global techniques can be proved using only the
averaged, rather than the local, energy conditions [4]-[9]. Here we take the \averaged
weak energy condition" (AWEC) to be

Z
1

�1

T�� u
� u� d� � 0 ; (3)

where the integral is taken over a timelike geodesic with tangent vector u� and param-
eterized by the proper time � . Similarly, we take the \averaged null energy condition"
(ANEC) to be Z

1

�1

T�� K
�K� d� � 0 ; (4)

where the integral is taken over an a�nely parameterized null geodesic with tangent
vector K� and a�ne parameter � [10]. There has been a great deal of e�ort in
the last several years to determine whether quantum �eld theory enforces averaged
energy conditions. Most of this activity has been concentrated primarily on ANEC
[11]-[16]. This is in part due to the discovery that violations of ANEC are required
to maintain traversable wormholes [17, 18]. It appears that although ANEC holds
for a wide class of quantum states in a variety of spacetimes, it does not hold in an
arbitrary four-dimensional curved spacetime (see Refs. [13], [14], and [15] for more
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detailed discussions). However, it is quite plausible that a suitable generalization of
ANEC may hold in more general spacetimes [16, 19].

The second approach involves uncertainty principle-type inequalities, derived from
quantum �eld theory, which restrict the magnitude and duration of negative energy
uxes or densities [19, 20, 21]. For example, one such \quantum inequality" (QI) for
negative energy uxes seen by inertial observers in two-dimensional at spacetime
has the form:

jF j (�� )2 <� 1 ; (5)

where jF j is the magnitude of the negative energy ux and �� is its duration. This
inequality implies that �E, the amount of negative energy transmitted in time �� ,
is limited by

j�Ej�� <� 1 : (6)

Therefore, �E is less than the quantum uncertainty in the energy, (�� )
�1
, on the

timescale �� . Recently, more precise versions of these inequalities have been derived
[21]. These involve an integral of the energy ux multiplied by a \sampling function",
i.e., a peaked function of time with a time integral of unity and characteristic width
�0. A convenient choice [22] of such a function is �0=[�(�

2 + �0
2)]. If the integrated

ux, F̂ , is de�ned by

F̂ � �0

�

Z
1

�1

F (� )

� 2 + �02
d� ; (7)

then these inequalities may be written as

F̂ >� �
1

16��02
; (8)

and

F̂ >� �
3

32�2 �04
; (9)

for all �0, in two- and four-dimensions, respectively. These inequalities have the
form required to prevent macroscopic violations of the second law of thermodynamics
[20, 21]. It was also discovered that similar inequalities hold for a quantized massless,
minimally-coupled scalar �eld propagating on two- and four-dimensional extreme
Reissner-Nordstr�om black hole backgrounds. These inequalities were shown to foil
attempts to produce an unambiguous violation of cosmic censorship by injecting a
negative energy ux into an extreme charged black hole [23, 24]. The latter results
provide perhaps one of the strongest reasons for the belief that the production of
large-scale e�ects via manipulation of negative energy may be forbidden by quantum
�eld theory. Classically, any amount of negative energy, no matter how small, injected
into an extreme black hole is enough to produce a naked singularity. Therefore, if
one had any chance of producing gross e�ects with negative energy, the scenario
discussed above would seem to have o�ered the best possibility of success. It should
also be emphasized that the energy-time uncertainty principle was not used as input
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in the derivation of any of the QI restrictions. They arise directly from quantum �eld
theory.

In a recent paper, we have shown that there exist deep connections between
averaged energy conditions and quantum inequalities, at least in at spacetime [19].
For a quantized massless, minimally-coupled scalar �eld in two- and four-dimensional
Minkowski spacetime, we have derived analogous QI's to Eqs. (8) and (9) for energy
density. In particular, for timelike geodesics in two-dimensional at spacetime,

�0

�

Z
1

�1

hT��u�u�id�
� 2 + �02

� � 1

8��02
; (10)

for all �0. Here hT��u�u�i is the renormalized expectation value taken in an arbitrary
quantum state j  i. In the limit as �0 ! 1, we \sample" the entire geodesic, and
our inequality Eq. (10) reduces to AWEC. A similar inequality was also obtained for
null geodesics:

�0

�

Z
1

�1

hT��K�K�id�
�2 + �0

2
� � 1

16��0
2
; (11)

for all �0. This inequality is the null analog of Eq. (10). If we take the limit of
Eq. (11) as �0 !1, we get ANEC.

For a quantized massless scalar �eld in a two-dimensional Minkowski spacetime
with compacti�ed spatial dimension, it was also discovered that the di�erence between
the expectation values of T��u

�u� , or T��K
�K� , in an arbitrary quantum state and

in the Casimir vacuum state obey AWEC and ANEC-type inequalities [19]. This is
surprising since it is known [11] that AWEC and ANEC are violated for hT��u�u�i
and hT��K�K�i, respectively, in the (renormalized) Casimir vacuum state by itself.
Such \di�erence inequalities" might provide new measures of the degree of energy
condition violation in cases where the usual averaged energy conditions and QI's fail.
This approach has recently been generalized to arbitrary two-dimensional curved
spacetimes by Yurtsever [15].

For a quantized massless, minimally-coupled scalar �eld in four-dimensionalMinkowski
spacetime, we also derived the following inequality for timelike geodesics

�̂ =
�0

�

Z
1

�1

hT��u�u�i d�
� 2 + �02

� � 3

32�2�04
; (12)

for all �0. From this inequality, it was shown that one can derive AWEC and ANEC
[19].

In almost all studies of ANEC for quantum �elds, the bounds on the ANEC
integral have been taken from �1 to +1 [11, 13, 25]. However, a question of some
interest is whether ANEC is satis�ed in the spacetime of an object collapsing to form
a black hole. The answer to this question might determine, for example, whether
Penrose's singularity theorem [26] will still hold in the presence of local violations
of the energy conditions, such as the Hawking evaporation process [27, 28]. In this
case, one is usually concerned with the focusing of null geodesics which generate the
boundary of the future of a trapped surface. To prove Penrose's theorem, one would
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want ANEC to hold over these half-complete geodesics [7, 8]. This is a stronger
condition to impose than to demand that ANEC hold over full (i.e., past and future-
complete) geodesics. However, even if this version of ANEC fails in some regions
of a given spacetime, it may hold in enough other regions so that the conclusions
of Penrose's theorem will still be valid. In addition, it should be noted that ANEC
is a su�cient condition to insure continued focusing of null geodesics. One can also
guarantee focusing with other conditions, for example by allowing the right-hand-side
of the ANEC integral to be only periodically non-negative [6], or even negative but
bounded (see Eq. (5) of Ref. [8], and Ref. [16]).

In the current paper, we examine quantized massless scalar, and electromagnetic
�elds in the Unruh vacuum state in two- and four-dimensional Schwarzschild black
hole backgrounds. We evaluate AWEC and ANEC integrals along half-complete
timelike and null geodesics, respectively. Our goal is to determine the regions of
these spacetimes in which the averaged energy conditions fail, and whether there
exist any bounds on the extent of the violation. We �nd that AWEC is violated
along timelike geodesics which begin close to the horizon and reach in�nity. These
correspond to timelike observers who are shot outward from near the horizon at high
speed. However, there appear to be QI's which bound the degree of violation. Let
�� be the characteristic proper time lapse over which the observer sees a signi�cant
change in the negative energy density. Then, in one form of the QI bound, the
AWEC integral is found to be greater than or equal to minus the inverse of �� . (In
4D spacetime, an additional factor of the square of the black hole mass appears in
the denominator on the right-hand-side of the inequality.) For null geodesics in 2D
spacetime, ANEC is violated along radially outgoing null geodesics which begin just
outside the horizon and go to in�nity. Once again a QI similar to that found for
timelike geodesics bounds the degree of the violation. A careful analysis also shows
this to be true for half-complete null geodesics on the horizon. For outgoing null
geodesics just inside the horizon and for ingoing null geodesics, ANEC is shown to be
satis�ed in 2D. Calculations in 4D spacetime for outgoing null geodesics just outside
the horizon yield similar results to those in 2D. All of the QI's are invariant under
rescaling of the a�ne parameter.

The paper is organized as follows. The analysis of 2D evaporating black holes is
presented in Sec. (2); the results for 4D black holes are given in Sec. (3). The latter
section also includes a discussion of ANEC along orbiting null geodesics. Concluding
remarks are given in Sec. (4). Our units are taken to be: �h = G = c = 1.

2 2D Evaporating Black Holes

2.1 Timelike Observers

In this section, we study AWEC and ANEC for a quantized, massless scalar �eld
in the Unruh vacuum state, along half-complete geodesics in a 2D Schwarzschild
spacetime. Our goal is to determine in which regions of the spacetime the averaged
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energy conditions hold and, in regions where the conditions are violated, to ascertain
whether there exist any bounds on the degree of the violation. The discussion here
is a natural extension of the analysis in Ref. [29].

Let u� be the two-velocity of an inertial observer. The energy density in this
observer's frame is given by

U = T��u
�u� : (13)

In the following discussion, we understand T�� to denote a quantum expectation value
in a speci�ed vacuum state. The metric is

ds2 = �Cdt2 + C�1dr2; (14)

where C = 1� 2M=r. A geodesic observer's two-velocity is

u� = (ut; ur) =
� dt
d�
;
dr

d�

�
=
� k
C
;�
p
k2 � C

�
: (15)

Here the + and � refer to outgoing and ingoing observers, respectively. The con-
stant k is the energy per unit rest mass. In our two-dimensional discussion, we will
consider observers moving in both the Unruh and Boulware vacua. The stress tensor
components in the Unruh vacuum are [30]:

Ttt =
1

24�

�
7M2

r4
� 4M

r3
+

1

32M2

�
; (16)

Ttr = � 1

24�

�
1� 2M

r

�
�1 1

32M2
; (17)

and

Trr = �
1

24�

�
1� 2M

r

�
�2�M2

r4
� 1

32M2

�
: (18)

The corresponding components in the Boulware vacuum are given by:

Ttt =
1

24�

�
7M2

r4
� 4M

r3

�
; (19)

Ttr = 0 ; (20)

and

Trr = � 1

24�

M2

r4

�
1 � 2M

r

�
�2

: (21)

For an outgoing timelike observer in the Unruh vacuum,

T��u
�u� =

1

24�
C�2

(
k2
"
6M2

r4
�4M

r3
+

1

16M2

#
+
CM2

r4
� C

32M2
� k

p
k2 � C

16M2

)
: (22)
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With an eye toward the examination of null rays, let us consider the case of an
observer who starts out initially very close to the horizon and is shot outward at large
velocity, i.e., we are interested in the limits

��M ; k � 1 ; (23)

where r = 2M + � is the observer's initial position. In this limit k � C, so from
the geodesic equation, Eq. (15), we have that d� � dr=k. We now wish to multiply
T��u

�u� by a sampling function, i.e., a peaked function of time whose time integral
is unity. In Refs. [19] and [21], this function was chosen to be

�0

�

Z
1

�1

d�

� 2 + �02
= 1 ; (24)

where the integral was taken over complete geodesics. However, unlike in Ref. [19],
here we are integrating over half-in�nite geodesics. Since the function given by
Eq. (24) is symmetric about � = 0, in our case we may choose

2�0

�

Z
1

0

d�

� 2 + �02
= 1 ; (25)

where the proper time � is initialized when the observer starts at r = 2M + �. If we
multiply T��u

�u� by this sampling function, and perform the resulting integral using
MACSYMA, we �nd in the limit of k � 1 and ��M :

2�0

�

Z
1

0

T��u
�u�d�

� 2 + �02
� � k

24�2 �0 �

= � 1

24�2 �0 ��
; (26)

where
�� =

�

k
: (27)

Note that in these limits �� �M .
What is the physical signi�cance of ��? The energy density drops o� very rapidly

with increasing r. In the limit k � 1 and � � M , if we consider the proper time
spent by the observer in the region of appreciable negative energy to be

Z ��

0

d� � 1

k

Z 2M+x�

2M+�
dr =

1

k
�(x� 1) ; (28)

then typically x� 1 � O(1), so

�� � �

k
: (29)

To see this a little more explicitly, note that in these limits, Eq. (22) becomes

T��u
�u� � � k2

48�
�
r � 2M

�2 : (30)
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If the observer starts at r = r0 = 2M + �, then at r = r1 = 2M + 2�,

�
T��u

�u�
�
jr=r1 �

1

4

�
T��u

�u�
�
jr=r0 ; (31)

so the energy density drops o� to 1=4 of its initial value in a distance �r = �,
corresponding to a proper time �� = �=k. Therefore, we should consider the time
interval �� not to be the entire proper time over which the energy density is negative,
but rather a time scale which characterizes a change in the energy density.

Rather than performing the integration in Eq. (26) and then taking the limits
k � 1 and ��M , we could have performed these operations in the opposite order.
Because the dominant contribution to the integral comes from the lower limit, we
may write

2�0

�

Z
1

0

T��u
�u�d�

� 2 + �02
� 2

��0

Z
1

0

T��u
�u�d�

� 2

�k�0

Z
1

2M+�
T��u

�u�dr ; (32)

where from Eq. (15), d� � dr=k. Insertion of Eq. (30) into this expression yields
Eq. (26).

If we set the width of the sampling function, �0, to be equal to �� , we get

2�0

�

Z
1

0

T��u
�u�d�

� 2 + �02
� � 1

24�2 �02
(33)

which has the form of a QI-type bound [19],

2�0

�

Z
1

0

T��u
�u�d�

� 2 + �02
>� �

1

�02
: (34)

If instead we take the �0 ! 1 limit of Eq. (26), we \sample" the entire (i.e., half-
in�nite) geodesic and �nd

Z
1

0

T��u
�u�d� � � 1

48���
; (35)

which has the form Z
1

0

T��u
�u�d� >� �

1

��
: (36)

Let us now turn to the case where the quantum state is the Boulware vacuum.
For an outgoing timelike observer in this state,

T��u
�u� =

1

24�
C�2

(
k2
"
6M2

r4
� 4M

r3

#
+
CM2

r4

)
: (37)
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Let us again consider the case where k >> 1. Then the k2 term will dominate and

T��u
�u� � k2M

12� C2 r3

 
3M

r
� 2

!
: (38)

Note that this quantity is negative everywhere for r > 2M . Also in this limit dr=d� =p
k2 � C � k, so �r � k �� .
Assume that we start at r = 2M + �. Then C � �=2M , and

T��u
�u� � � k2

48� �2
: (39)

Note that as r increases from 2M + � to 2M + 2�, T��u
�u� falls o� by a factor of 4,

so we can take �r = � and �� = �=k. ThenZ
1

0

T��u
�u�d� �

�
T��u

�u�
�
r=2M+�

��

� � 1

48� ��
: (40)

Note that Eqs. (35) and (40), the results for the Unruh and Boulware vacua, respec-
tively, are identical. This indicates that the dominant contribution to the integral is
the static vacuum energy rather than the Hawking radiation.

The inequality, Eq. (36), represents a bound on the degree of AWEC violation
seen by timelike geodesic observers who start out very close to the horizon and are
shot outward at very high speed. In this limit, the longer the (proper) timescale over
which the observer sees a signi�cant change in the energy density, the smaller is the
magnitude of the integrated negative energy density seen by that observer. Since the
negative energy density drops o� rapidly with increasing r, to remain in the negative
energy density the observer must stay close to the horizon. The closer the observer is
to the horizon, the larger is the magnitude of the negative energy density. However,
in order to remain close to the horizon for a long time as seen by a distant observer,
the observer's trajectory must be nearly lightlike. Therefore, although the observer
spends a long time in the negative energy region as seen by the distant observer, the
proper time spent in the region of appreciable negative energy (as measured by �� )
decreases with the observer's proximity to the horizon.

The QI, Eq. (36), for outgoing observers in 2D spacetime who are shot out from
near r = 2M , is very similar to that of the ux constraint for these observers found
in Ref. [29], i.e., jF j (�� )2 <� 1. SinceZ

1

0

T��u
�u�d� �

�
T��u

�u�
�
0
��; (41)

we have ���T��u�u����
0
�� <�

1

��
: (42)

Hence the expression above is analogous to jF j (�� ) <� 1=(�� ). This similarity is
not surprising, since for these 2D ultrarelativistic observers jT��u�u� j � jF j.
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2.2 Null Geodesics in 2D: O� the Horizon

We now wish to examine ANEC for null geodesics in 2D Schwarzschild spacetime.
From Eq. (14), and from the equation for null geodesics, we have

dt

d�
= �C�1E ; dr

d�
= �E ; (43)

where E is an arbitrary positive constant, whose value �xes the scale of the a�ne
parameter, �. We want to examine ANEC along both ingoing and outgoing future-
directed (i.e., d� > 0) null geodesics, inside and outside the horizon. There are four
cases (See Fig. 1):

1)
dt

d�
> 0 ;

dr

d�
= E > 0 ; for r > 2M (outgoing rays) ; (44)

2)
dt

d�
> 0 ;

dr

d�
= �E < 0 ; for r > 2M (ingoing rays) ; (45)

3)
dt

d�
> 0 ;

dr

d�
= �E < 0 ; for r < 2M (outgoing rays) ; (46)

4)
dt

d�
< 0 ;

dr

d�
= �E < 0 ; for r < 2M (ingoing rays) : (47)

Note that C = (1�2M=r) changes sign inside the horizon, while d� remains positive
for future-directed null rays.

If we use Eqs. (44) - (47), and Eqs. (16) - (18), we obtain for the Unruh vacuum
state

T��K
�K� =

E2

24�

 
1 � 2M

r

!
�2 "

6M2

r4
� 4M

r3

#
(outgoing) ; (48)

and

T��K
�K� =

E2

24�

 
1� 2M

r

!
�2 "

6M2

r4
� 4M

r3
+

1

8M2

#
(ingoing) : (49)

To obtain Eq. (49), we have used the fact that the sign of Ttr changes inside the
horizon, as can be seen from Eq. (17), together with Eqs. (45) and (47). Note that
for Eq. (49), the term in square brackets vanishes as r ! 2M . A Taylor expansion
shows that, to leading order, it vanishes as (r � 2M)2, so it will cancel the (r � 2M)2

divergence in the denominator. Therefore Eq. (49) is �nite on the horizon, as it should
be. However, there appears to be a discontinuity in Eq. (48) for an outgoing null ray
on the horizon, r = 2M . The situation for null rays on the horizon is su�ciently
subtle as to warrant a separate discussion. This is provided in the next subsection.

From Eq. (48), T��K
�K� < 0 for outgoing null geodesics when

r > 1:5M . Therefore the local null energy condition, Eq. (2) is violated along outgo-
ing null vectors slightly inside the horizon, as well as along all outgoing rays outside
(and on) the horizon. For r > 2M , consider an outgoing null geodesic starting at
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r = 2M + �, with ��M . Examine ANEC along this ray to obtain

I1 �
Z
1

0

T��K
�K�d� =

E

24�

Z
1

2M+�

1�
r � 2M

�2
"
6M2

r2
� 4M

r

#
dr ; (50)

where we have used Eq. (44). Here � = 0 is the value of the a�ne parameter at
r = 2M + �. For r < 2M , along an outgoing null geodesic starting just inside the
horizon at r = 2M � �:

I2 �
Z �f

0

T��K
�K�d� =

E

24�

Z 2M��

rmin

1�
r � 2M

�2
"
6M2

r2
� 4M

r

#
dr ; (51)

where we have used Eq. (46), and �f is the value of the a�ne parameter at r = rmin,
the minimum value of r attained by the null geodesics. From Eqs. (45), (47), and
(49), for ingoing null geodesics starting at r = r0 (either inside or outside the horizon)
we �nd

I3 �
Z �f

0

T��K
�K�d� =

E

24�

Z r0

rmin

1�
r � 2M

�2
"
6M2

r2
� 4M

r
+

r2

8M2

#
dr ; (52)

Notice that the integrand in Eqs. (51) and (52) will be dominated by the positive
6M2=r2 term which diverges for small r. Thus we immediately see that ANEC is
satis�ed for these two sets of null geodesics.

In the limit of small �, we may expand the integrand in Eq. (50) around r = 2M
and then perform the integration to �nd

lim
�!0

I1 � �
E

48� �
< 0 : (53)

Similarly, for Eqs. (51) and (52), we may �nd the forms for small rmin by expanding
the integrands around r = 0. The results are

lim
rmin!0

I2 �
E

16� rmin

> 0 for fixed � > 0 ; (54)

and

lim
rmin!0

I3 �
E

16� rmin

> 0 for fixed r0 : (55)

Thus we see that ANEC is violated for outgoing null rays just outside the horizon,
but it is satis�ed for outgoing null rays just inside the horizon. (The divergence in
Eq. (53) as � ! 0 may be circumvented by an appropriate choice of scaling of the
a�ne parameter, i.e., by an appropriate choice of E. This and related issues will
be discussed in the next sub-section.) Even though outgoing rays which originate
in the region 1:5M < r < 2M initially encounter negative energy, the sign of the
integral of T��K

�K� is determined by a positive vacuum polarization term which
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dominates near the singularity, r = 0. We also see that ANEC holds for ingoing
null geodesics, whether they originate outside or inside the horizon, and that once
again the dominance of the positive vacuum polarization term near the singularity
determines the sign of the integral.

One might at �rst sight conclude that the reasoning here is a bit circular. It
could be argued that it is no surprise that evaluation of the ANEC integral for null
geodesics inside the horizon yields a divergent positive result. After all, we placed
our quantized �eld on a background which already had a singularity in it. Thus one
could argue that divergent values of our ANEC integrals for these geodesics are not
unexpected, because the behavior of the �elds inside the horizon is dominated by
the singularity. However, it is not obvious, a priori, what the sign of these integrals
should be. Since these are test �elds on a given background, as opposed to �elds
which generate the background spacetime (which we cannot have in any case in 2D),
it is possible that the integrals might have turned out to diverge with either sign.
Similar ANEC integrals for quantized massless fermion �elds in 2D have the same
signs as for the massless scalar �eld. This follows from the fact that the renormalized
fermion stress tensor is identical to that in the scalar case [31], even though the
formally divergent tensors have opposite signs in the two cases.

Let us now take the \null limit" of our integrals for outgoing timelike observers.
We can think of this as the limit of a series of outgoing timelike geodesic observers
who are shot outward from near the horizon with ever increasing speeds. De�ne

� = �k� ; �0 = �k�0 ; �� = �k�� ; (56)

where � is an arbitrary constant, and as before, �� = �=k. In the null limit, k !1
as � ! 0, such that the product k� remains �nite [32]. Therefore the null limit of
Eq. (26), representing outgoing null geodesics just outside the horizon in the Unruh
vacuum state, is

2�0

�

Z
1

0

T��K
�K�d�

�2 + �0
2

� � 1

24�2 �0 ��
: (57)

If we set the width of our sampling function, �0, equal to ��, we get

2�0

�

Z
1

0

T��K
�K�d�

�2 + �0
2

� � 1

24�2 �0
2

(58)

which has the form of a QI-type bound [19],

2�0

�

Z
1

0

T��K
�K�d�

�2 + �0
2

>� �
1

�0
2
: (59)

If instead we take the �0 ! 1 limit of Eq. (57), we \sample" the entire (i.e., half-
in�nite) null geodesic and �nd

Z
1

0

T��K
�K�d� � � 1

48���
; (60)
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which has the form Z
1

0

T��K
�K�d� >� �

1

��
: (61)

As a check, note that with �� = �=E, Eq. (60) agrees with Eq. (53), which we obtained
by initially starting with the expressions for null geodesics. Here we can think of ��
as a characteristic lapse of a�ne parameter over which the energy density changes
signi�cantly along the null geodesic. Therefore, although ANEC is violated along
outgoing null geodesics outside the horizon, there appears to be a QI-type bound on
the degree of the violation, at least in our simple 2D model. We �nd the same null
limit for high k observers, i.e., Eq. (61), in the Boulware vacuum as well. Note that
Eqs. (57)- (61) are all invariant under rescaling of the a�ne parameter [19].

2.3 Null Geodesics in 2D: On the Horizon

Recall that our results for outgoing null geodesics outside the horizon are formulated
in terms of the null tangent vector

K� = E (C�1; 1) : (62)

where the components are given in terms of Schwarzschild t; r coordinates. Since
these coordinates are badly-behaved on the horizon, let us switch to Kruskal null
coordinates, given by

U = �e��u ; V = e�v ; (63)

where u = t� r�, v = t+ r�, with r� the usual tortoise coordinate and � = 1=(4M).
In these coordinates, our null vector has the form

K �� =

 
dU

d�
;
dV

d�

!
=

 
0 ;

2E

C
�e�v

!
: (64)

If E has the same value for all outgoing null geodesics, then K �� would not be de�ned
in the limit where the geodesics approach the horizon, since C ! 0. However, E need
only be constant along each null geodesic, but not the same constant for di�erent null
geodesics.

Consider a sequence of outgoing null geodesics which start at di�erent values of
r, e.g., the histories of a sequence of photons emitted by an infalling observer. Let r0
be the value of r at which the null geodesic begins (which will be di�erent for each
null geodesic). We might choose the various values of E for di�erent null geodesics
by the following prescription. Let the observer emit photons of �xed frequency !e in
his rest frame. The time-component of the observer's two-velocity (in Schwarzschild
coordinates) is

ut =
dt

d�
=

 
1 � 2M

r0

!
�1

~E ; (65)

where ~E is the observer's energy per unit rest mass, measured at in�nity. This is
just the rate of a clock at in�nity as compared to the rate of the clock carried by the
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infalling observer. The frequency of a photon at in�nity is !1, which is related to !e
by

!1

!e
=

d�

dt
=

 
1 � 2M

r0

!
~E�1 : (66)

Note that the expression on the right-hand-side includes both the Doppler e�ect and
the gravitational redshift. The factor of ~E�1 reects the fact that the faster the
observer is shot toward the black hole (i.e., the larger ~E is), the greater will be the
Doppler shift. If we choose a scaling for the a�ne parameter such that E = !1, for
�xed !e, then

E =

 
1� 2M

r0

!
!e ~E

�1 / C(r0) : (67)

Now E=C(r0) is �nite in the limit r0 ! 2M , so that the components of K� are �nite
on the horizon, in either Schwarzschild or Kruskal coordinates.

However, K �� is still not the same as k��, the a�nely parameterized null tangent
vector on the horizon. In Kruskal null coordinates the vector k�� has components

k�� = (0; �) : (68)

(See the discussion on p. 331 of Ref. [33].) On the horizon,

K �� =

 
2E

C

!
r=2M

e�v (0 ; �) ; (69)

so these vectors still di�er by a factor of exp(�v). Thus, a null vector such as K�,
which is an a�nely parameterized null tangent vector o� the horizon, does not nec-
essarily remain a�nely parameterized on the horizon.

With these lessons in hand, let us now consider the integral
R
T���� k

�� k�� dV along
a portion of the future event horizon. Here T���� is the vacuum expectation value of
the stress-tensor in the Unruh vacuum state expressed in Kruskal null coordinates,
and k�� is an a�nely parameterized null tangent vector on the horizon. The Kruskal
advanced time coordinate V , is an a�ne parameter on the horizon (see for example,
p. 331 of Ref. [33] or p. 122 of Ref. [34]). From Eq. (68), and a straightforward
coordinate transformation of Eqs. (16)- (18), we obtain

Z
1

V0

T���� k
�� k�� dV = � 1

768�M2 V0
: (70)

This integral is taken over a portion of the future horizon; V0 is the value of the
V = const line which intersects the future horizon at the (arbitrary) event where we
start our null geodesic.

The right-hand-side of Eq. (70) goes to �1 as V0 ! 0. However, this would
correspond to integrating along the full future horizon of an eternal black hole space-
time. The Unruh vacuum state is singular on the past horizon (i.e., V = 0) of such
a spacetime, so it is not surprising that we get a divergence in this case. Physically,
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this would correspond to a black hole that Hawking-radiates for an in�nite time. For
the Unruh vacuum state to be realizable, we must consider only physically realistic
collapse spacetimes in which the black hole forms at a �nite time in the past. There-
fore, the smallest allowed value of V0 = Vmin, which is the value of the V = const

line at which the the worldline of the surface of the collapsing star intersects the
future event horizon, as shown in Fig. (2). For such spacetimes, the ANEC integral
along a portion of the future horizon is negative but �nite. This result seems to be
in agreement with the results of Wald and Yurtsever [13]. They �nd that ANEC is
satis�ed along the complete null geodesic comprised of the future horizon plus the
null line which would have been the past horizon in an eternal black hole spacetime.
In a collapse spacetime, this complete null geodesic originates at past null in�nity,
propagates through the collapsing star, \reects o�" r = 0, and then ultimately
joins on to the future horizon at V0 = Vmin (see Fig. (2) ). Evidently there is a
positive contribution to the ANEC integral from the part of the geodesic prior to its
exit from the collapsing star [35]. This contribution must be greater than or equal
to (768�M2 Vmin)

�1. (Note that the source of the positive contribution we refer
to here is the quantized �eld, not the classical collapsing matter. The latter would
presumably make the ANEC integral even more positive.)

The dimensions of k�� are (length)�1, whereas T���� , V , and V0 are dimensionless.
Let us now rescale the coordinates to get a more familiar choice of dimensions. Let
x�̂ = ��1 x�, i.e., Û = ��1 U ; V̂ = ��1 V , so V̂0 = ��1 V0. Then T�̂�̂ = �2 T���� , and
k�̂ = ��1 k��. If we rewrite Eq. (70) in terms of the rescaled coordinates, we obtainZ

1

V̂0

T�̂�̂ k
�̂ k�̂ dV̂ = � 1

768� �2M2 V̂0

= � 1

48� V̂0
: (71)

Compare this result with our result for null rays outside the horizon, i.e.,Z
1

0

T��K
�K�d� >� �

1

��
; (72)

where �� was interpreted as the characteristic a�ne parameter distance along the
null geodesic over which the negative energy density falls o�. Let us now show that
a similar interpretation holds on the horizon. The integrand of Eq. (71) is equal to

�1=(48� V̂ 2), so Z
1

V̂0

T�̂�̂ k
�̂ k�̂ dV̂ = � 1

48�

Z
1

V̂0

 
1

V̂ 2

!
dV̂

= � 1

48� V̂0
: (73)

Note that V̂0 can be interpreted as the characteristic a�ne parameter distance over
which the integrand falls o�, i.e., as V̂ increases from V̂ = V̂0 to V̂ = 2V̂0, T�̂�̂ k

�̂ k�̂

falls o� to 1=4 of its initial value. Thus the interpretation of the QI for null geodesics
on the horizon is the same as that for Eq. (72).
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3 4D Evaporating Black Holes

In this section, we examine AWEC and ANEC in four-dimensional evaporating black
hole spacetimes. In these spacetimes, the components of the renormalized expectation
value of the stress-energy tensor are only known numerically. Accordingly, we make
use of the numerical data of Elster [36] for the conformally-coupled massless scalar
�eld and that of Jensen, McLaughlin, and Ottewill [37] for the electromagnetic �eld,
evaluated in the Unruh vacuum state. We examine the cases of outgoing radial
timelike observers, outgoing radial null geodesics, and orbiting null geodesics. We �nd
that although AWEC and ANEC are violated in all three cases, as in two-dimensional
spacetime, there appear to be QI-type bounds in each case which constrain the degree
of the violations.

3.1 Outgoing Radial Timelike Observers

The four-velocity of an outgoing radial timelike observer in 4D Schwarzschild space-
time is given by

u� =
� k
C
;
p
k2 � C; 0; 0

�
; (74)

where again C = (1 � 2M=r). Let us adopt the notation of Elster [36] so that:
�(r) = �T t

t ; pr(r) = T r
r ; L = �4� r2C Ttr, where the components of the stress-

tensor here represent renormalized expectation values in the Unruh vacuum state.
Therefore, we may write

T��u
�u� =

k2

C
(� + pr) � pr �

kL

2� r2C2

p
k2 �C : (75)

If a QI-type bound of the kind found in 2D, i.e., Eq. (36), also holds in 4D, then we
might expect it [38] to have the formZ

1

0

T��u
�u�d� >� �

1

M2 ��
; (76)

where again �� is the characteristic proper time which the observer spends in the
negative energy. (Note that since the �elds we will be considering are massless, the
massM of the black hole is only natural length scale which appears in the problem.)
We want to numerically compare the left and right-hand-sides of Eq. (76), in order
to see if the inequality is satis�ed.

The integrand in Eq. (76) drops o� rapidly with increasing r near the horizon,
hence the dominant contribution to the AWEC integral comes from the initial part
of the trajectory. We will therefore approximate the AWEC integral asZ

1

0

T��u
�u�d� � T (r)jr0 �� ; (77)

where T (r) � T��u
�u� is understood to be evaluated at the starting point r0 (min-

imum r) of the trajectory. Since the magnitude of T (r) rapidly decreases near the
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r0 �(r0)M
4 pr(r0)M

4 �r=M k � �=M T � � �(M2 � � )�1

2.1 �2:7� 10�3 1:9 � 10�3 0.5 0.5 1:77 �1:1� 10�2 -0.56
1.0 0:54 �1:0� 10�2 -1.85

5.0 0.10 �4:4� 10�2 -10
10.0 0.05 �8:5� 10�2 -20

2.2 �1:8� 10�3 1:5 � 10�3 1.0 1 1:16 �5:7� 10�3 -0.86

5 0.20 �1:7� 10�2 -5
10 0.10 �3:5� 10�2 -10

2.5 �1:1� 10�3 6:8 � 10�4 1.0 1 1:22 �3:3� 10�3 -0.82

5 0.20 �1:0� 10�2 -5

10 0.10 �2:1� 10�2 -10

3 �5:4� 10�4 3:2 � 10�4 2 1 2:82 �2:8� 10�3 -0.45

5 0.40 �6:8� 10�3 -2.5
10 0.20 �1:3� 10�2 -5

Table 1: Outgoing timelike geodesics moving through the quantized electromagnetic
�eld.

horizon, our estimate of using T (r0) gives a result which is somewhat more negative
than the true result. Therefore, correction of this estimate only goes in the direction
of strengthening the inequality.

Our results for the electromagnetic �eld are displayed in Table 1. The values of
� and pr for the electromagnetic �eld are from the numerical data given in Ref. [37],
and the value of L = 3:4� 10�4=M2 used in this case is the photon luminosity given
by Page [39]. In the fourth column of Table 1, �r is chosen such that the magnitude
of T (r) decreases by at least a factor of two from r0 to r0 + �r. The characteristic
proper time, �� , is computed from

�� =
Z r0+�r

r0

drp
k2 � C

: (78)

The next to last column in the table is our approximation of the AWEC integral given
in Eq. (77), while the last column represents the right-hand-side of our QI given by
Eq. (76). By examining the last two columns of Table 1, we see that the QI, Eq. (76),
is easily satis�ed. A similar analysis for the conformally-coupled massless scalar �eld
shows that the QI is easily satis�ed in that case as well. Numerical values of � ; pr,
and L = 7:44 � 10�5=M2 for the scalar �eld were obtained from the numerical data
given in Ref. [36].

3.2 Radial Null Rays

The components of the tangent vector to an a�nely parameterized outgoing radial
null geodesic (outside the horizon) are given by

K� = E (C�1; 1 ; 0 ; 0) : (79)
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Thus we have

T��K
�K� =

E2

2� (r � 2M)
2

(
2�r (r � 2M) [�(r) + pr(r)] � L

)
: (80)

The 4D analog of the QI for null geodesics in 2D given by Eq. (61) is

Z
1

0

T��K
�K�d� >� �

1

M2 ��
; (81)

where �� is again interpreted as the characteristic a�ne parameter distance along
the null geodesic over which the negative energy density falls o�. If we de�ne

T � 1

E2
(T��K

�K�) ; (82)

and use the fact that dr=d� = E and �� = �r=E, then it is easily seen that the QI,
Eq. (81) is equivalent to Z

1

r0

T dr >� �
1

M2 �r
; (83)

where r0 > 2M is the initial starting value of r for the outgoing null geodesic and �r is
the characteristic interval in r over which the negative energy falls o�. We numerically
evaluate each side of Eq. (83) to see if the inequality is satis�ed. Following a similar
procedure to that used for outgoing radial timelike observers, we approximate the
ANEC integral by Z

1

r0

T dr � T (r0) �r : (84)

As discussed in the last section, this approximation gives a result which is somewhat
more negative than the true result. Therefore, if the QI holds for our approximation,
then the inequality in the actual case is even stronger.

Our results for the scalar �eld are given in Table 2, and those for the electromag-
netic �eld appear in Table 3, where as before the numerical data of Refs. [36] and
[37], were used for the scalar and electromagnetic �elds, respectively. The next to last
column in each table is our approximation of the ANEC integral given in Eq. (84),
while the last column represents the right-hand-side of our QI given by Eq. (83). By
examining the last two columns of each table, we see that the QI, Eq. (83), is easily
satis�ed and hence so is Eq. (81). Note that the inequalities in 4D seem to be satis�ed
by a wider margin than the corresponding QI's in 2D. This is due to the fact that the
numerical factors which appear in the components of the renormalized expectation
values of the stress-tensor are characteristically smaller in 4D than in 2D spacetime,
at least for radial null geodesics in the scalar �eld case.

In our calculations, we have ignored the backreaction of the Hawking radiation
on the background spacetime. It might be better to repeat our calculations on an
evolving background, such as a Vaidya spacetime. However, we can estimate the
e�ects of backreaction on an outgoing null ray just outside the horizon in the following
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r0=M �(r0)M
4 pr(r0)M

4 �r=M T �rM3 �M=�r

2.5 �4� 10�6 0 0.5 �3:4� 10�5 -2
4 �4� 10�7 �3� 10�7 3 �4:8� 10�6 -0.3

5 �1:5� 10�6 �3� 10�7 5 �7:8� 10�6 -0.2

Table 2: Data is given for outgoing null geodesics, where � and pr are the energy

density and pressure for a massless scalar �eld.

r0=M �(r0)M
4 pr(r0)M

4 �r=M T �rM3 �M=�r

2.1 �2:7� 10�3 1:9� 10�3 0.5 -0.01 -2

2.2 �1:8� 10�3 1:5� 10�3 1 -0.004 -1
2.5 �1:1� 10�3 6:8� 10�4 1 -0.002 -1

3 �5:4� 10�4 3:2� 10�4 2 �1:4 � 10�3 -0.5

Table 3: Data is given for outgoing null geodesics, where � and pr are the energy

density and pressure for the electromagnetic �eld.

way. Our approximation should hold as long as the time of escape of a null ray from
near the horizon is small compared to the evaporation time of the black hole. Here
these times are measured by an observer at in�nity. For such a null ray we have

Z tesc

0

dt =
Z xM

2M+�
(1� 2M=r)�1 dr : (85)

Solving for tesc yields

tesc = xM + 2M ln

 
x

2
� 1

!
� 2M � � + 2M ln

 
2M

�

!
; (86)

where tesc is the time for the ray to go from r = 2M + � to r = xM . For x� 2 and
�nite, in the limit of small �:

tesc ! 2M ln

 
2M

�

!
: (87)

By contrast, the evaporation time of the hole is tevap = AM3, where A � 104=n,
and n is the number of species of particles, each of which is assumed to contribute
approximately 10�4M�2 to the black hole's luminosity. Our approximation should
break down only when � <� 2M exp[�AM2=2].

3.3 Orbiting Null Rays

We now examine orbiting null geodesics in Schwarzschild spacetime. The line element
is

ds2 = �Cdt2 + C�1dr2 + r2(d�2 + sin2�d�2) ; (88)
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where again C = (1 � 2M=r). For an orbiting null ray in Schwarzschild with � =
�=2 = const,

dt

d�
=

rp
C

d�

d�
: (89)

Here we choose d�=d� > 0, for our future-directed ray. From the geodesic equations,
we have

_t � dt

d�
=
E

C
; (90)

_� � d�

d�
=
L

r2
; (91)

where E and L are constants. It follows that

L

E
= r C�1=2 : (92)

At r = 3M , we have
L

E

���r=3M = 3
p
3M : (93)

From the numerical values in Figs. (1) and (3) of Ref. [37] for the quantized electro-
magnetic �eld, and Eq. (93), we �nd that

T��K
�K� jr=3M = 3E2

h
�T t

t + T
�
�

i
jr=3M

� �3:1� 10�4
E2

M4
; (94)

where K� = dx�=d� is the tangent to the null geodesic. For one orbit, �� = 2� =
(L=9M2)��, so

E

M
=

2
p
3�

��
: (95)

We may therefore rewrite Eq. (94) as

T��K
�K� jr=3M � �3:7� 10�2

1

M2 (��)2
: (96)

Since T��K
�K�jr=3M is a constant, we can trivially construct a QI-type integral:

T��K
�K� jr=3M =

2�0

�

Z
1

0

T��K
�K�d�

�2 + �0
2

� �3:7� 10�2
1

M2 (��)2
; (97)

where we have used Eq. (25) to creatively multiply by 1. A minor technical point
is in order. Strictly speaking, we cannot have � = �1 as the lower bound on our
integral, since that would imply that the black hole was eternal. Here we can imagine
creating a photon in the r = 3M orbit (after the black hole has been formed), and
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set � = 0 at this creation event, so our integral goes from � = 0 to � = 1. (Since
the r = 3M orbit is unstable, realistically we would expect the null ray to at best
only make a few orbits.)

We may also integrate T��K
�K� over one orbit to get

Z ��

0

T��K
�K�d� � �3:1� 10�4

E2

M4
(��)

� �3:7� 10�2
1

M2 (��)
: (98)

Thus we see that for orbiting null geodesics

Z ��

0

T��K
�K�d� >� � 1

M2 (��)
: (99)

The expressions given by Eqs. (98) and (99) are of the same form as those for
radial null geodesics discussed earlier. The di�erence here is that we integrate only
over one orbit, i.e., we do not consider multiple traversals through the same negative
energy region. The inclusion of the contributions of an arbitrary number of orbits
would violate the inequality given in Eq. (99). However, it is of interest to note
that if we consider the null geodesics which generate the boundary of the future of
an event P with r = 3M , then the orbiting null geodesics leave this boundary after
half an orbit. This is due to the fact that orbiting null geodesics originating at P ,
which initially set o� in opposite spatial directions, encounter a conjugate point (i.e.,
the geodesics cross) on the far side of the black hole after half an orbit [40], [41]. At
this point, the geodesics leave the boundary of the future of P (i.e., an event Q which
lies beyond the conjugate point along either null geodesic can be connected to P by
a timelike curve), and therefore are not achronal.

This observation may be relevant in the context of proving singularity theorems
in the presence of negative energy. For example, in the proof of a singularity theorem
such as the Penrose theorem, one uses either the local or the averaged null energy
condition to insure the focusing of the null geodesics which generate the boundary of
the future of a closed trapped surface. Geodesics of the orbiting variety considered
here would not relevant, at least in the spherically symmetric case, since they leave
the boundary of the future of a point in any case, irrespective of energy condition-
focusing arguments. We also note in passing that, at least in this simple case, while
these null geodesics are in the boundary they obey the inequality, Eq. (99).

Let us compare the previous results with the following situation. Consider a
4D Minkowski spacetime with one spatial dimension compacti�ed, and a quantized,
minimally-coupled, massless scalar �eld in the Casimir vacuum state on this back-
ground. Let K� = E(1; 1; 0; 0) be the tangent to a null geodesic in the x-direction.
The vacuum expectation value of the stress-tensor in this state is

T�� =
�2

45L4
� diag f�1;�3; 1; 1g ; (100)
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where we have taken x as the compacti�ed dimension with circumferenceL. It follows
that

T��K
�K� = �4�2E2

45L4
: (101)

The a�ne parameter lapse for one orbit is �p = L=E. If we integrate over one orbit,
we �nd that

Z �p

0

T��K
�K�d� =

�
T��K

�K�
�
(�p)

= � 4�2

45L2 �p
: (102)

We see that this result has the same form as Eq. (98) for the black hole case. Both
of these expressions are invariant under rescaling of the a�ne parameter. Here, as in
the black hole case, we have ignored the possibility of multiple orbits, which would
violate the inequality. However, it is possible that in the 4D compacti�ed case, as
was found previously in 2D [19], an ANEC-type bound might hold on the di�erence
between the expectation values of T��K

�K� in an arbitrary quantum state and in
the Casimir vacuum state.

4 Conclusions

In this paper, we have examined AWEC and ANEC in both two and four- dimensional
evaporating Schwarzschild black hole spacetimes, for quantized massless scalar and
electromagnetic �elds. It was discovered that AWEC is violated for outgoing radial
timelike geodesics which start just outside the horizon and reach in�nity. Similarly,
ANEC is violated for half-complete outgoing radial null geodesics just outside the
horizon, and also on the horizon in 2D. This condition is violated for orbiting null
geodesics in 4D as well. In a 2D black hole spacetime, ANEC is satis�ed along ingoing
null geodesics and along outgoing null geodesics inside the horizon. However, in all
cases where the conditions are violated, there appear to be QI-type bounds which
limit the degree of the violations. In curved spacetime, let �� be the characteristic
proper time for timelike geodesics and �� be the a�ne parameter length for null
geodesics over which the negative energy density changes signi�cantly. Then the QI
bounds have the form that the integrated negative energy density along the timelike
or null geodesic (i.e., the AWEC or ANEC integral) is greater than or equal to minus
the inverse of �� or ��, respectively. The application of QI bounds to constrain the
dimensions of traversable wormholes is currently under investigation.

Can the semi-classical e�ects of negative energy, in processes such as black hole
evaporation, invalidate the singularity theorems before quantum gravity e�ects be-
come signi�cant? Although we do not have a de�nite proof in the general case, our
results suggest that the answer may be no. It remains possible that even though
ANEC (or even a weaker energy condition [16]) might fail in some regions of a given
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spacetime, it may hold in enough other regions for the conclusions of the singularity
theorems to be maintained. Our (admittedly) 2D results for ANEC would seem to
support this view. In Ref. [8], it was shown that if ANEC is satis�ed along the null
geodesics which generate the boundary of the future of a trapped surface, then Pen-
rose's singularity theorem will still hold. There the local null energy condition was
replaced by ANEC along half-complete null geodesics. However, two points should
be emphasized about that result. First, it is not necessary to assume that the ANEC
integral is non-negative to prove the result [8, 16]. In fact, from Eq. (5) of Ref. [8]
and the Einstein equations, it is su�cient to haveZ

1

0

T��K
�K� d� � �0

2
; (103)

where �0 < 0 is the initial expansion of the null geodesic congruence at the trapped
surface. The ANEC integral may be negative as long as it is not more negative
than �0=2. Physically this implies that a singularity will still form provided that
the defocusing e�ects due to the presence of any negative energy are more than
compensated for by the initial convergence of the null geodesics produced by the
trapped surface.

Second, the existence of only one such trapped surface whose orthogonal null
geodesics obey either ANEC or the weaker inequality, Eq. (103), is required to prove
the occurrence of a singularity. There may exist other trapped surfaces in the space-
time whose orthogonal null geodesics do not obey either of the inequalities. However,
as long as there exists at least one trapped surface with the desired properties, a
singularity is inevitable.

Consider an evaporating black hole spacetime, with backreaction included. The
Penrose diagram for the standard scenario is shown in Fig. (3). Let us assume that
this standard picture is correct. The line H+ is the event horizon, the dashed curve
A is the apparent horizon, and the lines g1, g2, and g3 are outgoing null geodesics
orthogonal to the trapped surfaces labelled 1, 2, and 3, respectively. The outgoing
null rays from 1 do not focus but instead reach future null in�nity, so one expects
that any averaged energy condition which would insure focusing, such as ANEC or
Eq. (103), would fail along them. The closest analogs to these rays in our analysis
are the outgoing null rays just outside the horizon shown in Fig. (1). It was found
that in both two and four-dimensional Schwarzschild spacetime, ANEC was violated
along these rays, although in each case a QI limits the degree of the violation. One
would expect that if an analogous QI holds in more general cases, such as Fig. (3),
it will not be strong enough to guarantee focusing of null rays in the region between
H+ and A in Fig. (3). We could not examine the weaker inequality Eq. (103), since
in a static evaporating black hole background there are no trapped surfaces outside
the horizon. For the outgoing null rays from 2 in Fig. (3) (a trapped surface inside
the collapsing matter), one would suspect that ANEC probably holds. In this case,
the focusing e�ects of the matter of the star most likely overwhelm any defocusing
by negative energy. For the outgoing null rays from 3 (a trapped surface \behind"
the event horizon, in the vacuum outside the collapsing matter), one might expect
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either ANEC or a similar but weaker inequality such as Eq. (103) to hold, since the
null rays eventually do run into a singularity. This is assuming, of course, that the
\standard" scenario depicted in Fig. (3) is in fact the correct one - a view which
could well be wrong. In our 2D analysis, we found that ANEC was satis�ed along
these rays, and also along ingoing null rays. We showed that our approximation of
neglecting backreaction should fail only when the time of escape of a null ray from
near the horizon is comparable to the evaporation time of the black hole. This implied
that such a ray would have to start out extremely close to the horizon. Nevertheless,
it would be useful to attempt a similar analysis to ours for evaporating black hole
spacetimes with backreaction taken into account. The situation is complicated by
our ignorance of the detailed form of the stress-tensor components in such cases.

Recent work of Kuo and Ford [42, 43] has shown that negative energy densities
in at spacetime are subject to large uctuations. In these circumstances, one does
not expect the semi-classical Einstein equations to be a good approximation. If the
same is true of negative energy densities in curved spacetime, and we see no reason to
believe otherwise, then the question arises as to whether such uctuations could cause
a gross failure of the semi-classical approximation at scales well above the Planck
scale. Large stress-tensor uctuations would presumably produce large uctuations
in spacetime geometry. Therefore, it is very important to determine whether such
uctuations might render suspect the semi-classical picture of the Hawking process,
or the conclusions of the singularity theorems in the presence of negative energy. On
the other hand it could turn out, for example in the Hawking process, that if the
timescale of the stress-tensor uctuations is very short compared to other relevant
time scales, such as the evaporation time of the hole, then the standard analysis may
still be valid. In the proofs of the singularity theorems, one assumes a �xed classical
spacetime background which determines the causal structure. If the background
geometry uctuates, it is not clear that the usual global techniques employed in
classical general relativity will still be useful [44]. These questions are currently
under active investigation.
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Figure Captions

� [1] Radial null geodesics in the spacetime of a black hole formed by gravitational
collapse: an ingoing geodesic (a), an outgoing geodesic inside the horizon (b),
and an outgoing geodesic outside of the horizon (c).

� [2] The spacetime of a black hole formed by gravitational collapse. The null
ray which lies in the future horizon enters the collapsing body (shaded region),
and then re-imerges into the vacuum spacetime at Vmin.

� [3] The spacetime of an evaporating black hole, including the e�ects of backre-
action.
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