1,662 research outputs found

    Electromagnetic Actuated Stiring in Microbioreactor Enabling Easier Multiplexing and Flexible Device Design

    Get PDF
    The development of a novel electromagnetically (EM) actuated stirring method, for use in microbioreactors, is reported. Mixing in microbioreactors is critical to ensure even distribution of nutrients to microorganisms and cells. Magnetically driven stirrer bars or peristaltic mixing are the most commonly utilised mixing methods employed in completely liquid-filled microbioreactors. However the circular reactor shape required for mixing with a stirrer bar and frequently used for peristaltically mixed microbioreactors presents difficulties for bubble-free priming in a microfluidic bioreactor. Moreover the circular shape and the hardware required for both types of mixing reduces the potential packing density of multiplexed reactors. We present a new method of mixing, displaying design flexibility by demonstrating mixing in circular and diamond-shaped reactors and a duplex diamond reactor and fermentation of the gram-positive bacteria S. carnosus in a diamond-shaped microbioreactor system. The results of the optimisation of this mixing method for performing fermentations alongside both batch and continuous culture fermentations are presentedPeer reviewe

    Dean flow focusing and separation of small microspheres within a narrow size range.

    Get PDF
    Copyright The Author(s) 2014. This article is published with open access at Springerlink.com. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are creditedRapid, selective particle separation and concentration within the bacterial size range (1ā€“3 Ī¼m) in clinical or environmental samples promises significant improvements in detection of pathogenic microorganisms in areas including diagnostics and bio-defence. It has been proposed that microfluidic Dean flow-based separation might offer simple, efficient sample clean-up: separation of larger, bioassay contaminants to prepare bioassay targets including spores, viruses and proteins. However, reports are limited to focusing spherical particles with diameters of 5 Ī¼m or above. To evaluate Dean flow separation for (1ā€“3 Ī¼m) range samples, we employ a 20 Ī¼m width and depth, spiral microchannel. We demonstrate focusing, separation and concentration of particles with closely spaced diameters of 2.1 and 3.2 Ī¼m, significantly smaller than previously reported as separated in Dean flow devices. The smallest target, represented by 1.0 Ī¼m particles, is not focused due to the high pressures associated with focussing particles of this size; however, it is cleaned of 93 % of 3.2 Ī¼m and 87 % of 2.1 Ī¼m microparticles. Concentration increases approaching 3.5 times, close to the maximum, were obtained for 3.2 Ī¼m particles at a flow rate of 10 Ī¼l mināˆ’1. Increasing concentration degraded separation, commencing at significantly lower concentrations than previously predicted, particularly for particles on the limit of being focused. It was demonstrated that flow separation specificity can be fine-tuned by adjustment of output pressure differentials, improving separation of closely spaced particle sizes. We conclude that Dean flow separation techniques can be effectively applied to sample clean-up within this significant microorganism size range.Peer reviewedFinal Published versio

    Conjugate gradient algorithms and the Galerkin boundary element method

    Get PDF
    Original article can be found at: http://www.sciencedirect.com/science/journal/08981221 Copyright Elsevier Ltd. DOI: 10.1016/j.camwa.2004.02.002Peer reviewe

    Towards a novel carbon device for the treatment of sepsis

    Get PDF
    Sepsis is a systemic inflammatory response to infection in which the balance of pro- andanti-inflammatory mediators, which normally isolate and eliminate infection, is disrupted[1]. Gram negative sepsis is initiated by bacterial endotoxin release which activatesmacrophages and circulating monocytes to release TNF and IL-1Ī² followed by IL-6 andother inflammatory cytokines [2]. As the disease progresses, an unregulatedinflammatory response results in, tissue injury, haematological dysfunction and organdysfunction. Severe sepsis, involving organ hypoperfusion may be further complicatedby hypotension that is unresponsive to adequate fluid replacement, resulting in septicshock and finally death [3].Despite improvements in anti-microbial and supportive therapies, sepsis remains asignificant cause of morbidity and mortality in ICUs worldwide [4]. The complexity ofprocesses mediating the progression of sepsis suggests that an extracorporeal devicecombining blood filtration with adsorption of a wide range of toxins, and inflammatorymediators offers the most comprehensive treatment strategy. However, no such deviceexists at present. A novel, uncoated, polymer pyrolysed synthetic carbon device isproposed which combines the superior adsorption properties of uncoated activatedcarbons with the capacity to manipulate porous structure for controlled adsorption oftarget plasma proteins and polypeptides [5]. Preliminary haemocompatibility andadsorptive capacity was assessed using a carbon matrix prototype

    Nuclear dependence coefficient Ī±(A,qT)\alpha(A,q_T) for the Drell-Yan and J/Ļˆ\psi production

    Full text link
    Define the nuclear dependence coefficient Ī±(A,qT)\alpha(A,q_T) in terms of ratio of transverse momentum spectrum in hadron-nucleus and in hadron-nucleon collisions: dĻƒhAdqT2/dĻƒhNdqT2ā‰”AĪ±(A,qT)\frac{d\sigma^{hA}}{dq_T^2}/ \frac{d\sigma^{hN}}{dq_T^2}\equiv A^{\alpha(A,q_T)}. We argue that in small qTq_T region, the Ī±(A,qT)\alpha(A,q_T) for the Drell-Yan and J/Ļˆ\psi production is given by a universal function:\ a+bqT2a+b q_T^2, where parameters a and b are completely determined by either calculable quantities or independently measurable physical observables. We demonstrate that this universal function Ī±(A,qT)\alpha(A,q_T) is insensitive to the A for normal nuclear targets. For a color deconfined nuclear medium, the Ī±(A,qT)\alpha(A,q_T) becomes strongly dependent on the A. We also show that our Ī±(A,qT)\alpha(A,q_T) for the Drell-Yan process is naturally linked to perturbatively calculated Ī±(A,qT)\alpha(A,q_T) at large qTq_T without any free parameters, and the Ī±(A,qT)\alpha(A,q_T) is consistent with E772 data for all qTq_T.Comment: latex, 28 pages, 10 figures, updated two figures, and add more discussion

    Design and characterization of hybrid IIIā€“V concentrator photovoltaicā€“thermoelectric receivers under primary and secondary optical elements

    Get PDF
    Lattice-matched monolithic triple-junction Concentrator Photovoltaic (CPV) cells (InGa(0.495)P/GaIn(0.012)As/Ge) were electrically and thermally interfaced to two Thermoelectric (TE) Peltier module designs. An electrical and thermal model of the hybrid receivers was modelled in COMSOL Multiphysics software v5.3 to improve CPV cell cooling whilst increasing photon energy conversion efficiency. The receivers were measured for current-voltage characteristics with the CPV cell only (with sylguard encapsulant), under single secondary optical element (SOE) at x2.5 optical concentration, and under Fresnel lens primary optical element (POE) concentration between x313 and x480. Measurements were taken in solar simulators at Cardiff and JaƩn Universities, and on-sun with dual-axis tracking at JaƩn University. The hybrid receivers were electrically, thermally and theoretically investigated. The electrical performance data for the cells under variable irradiance and cell temperature conditions were measured using the integrated thermoelectric module as both a temperature sensor and as a solid-state heat pump. The performance of six SOE-CPV-TE hybrid devices were evaluated within two 3-receiver strings under primary optical concentration with measured acceptance angles of 1.00o and 0.89o, similar to commercially sourced CPV modules. A six-parameter one-diode equivalent electrical model was developed for the multi-junction CPV cells with SOE and POE. This was applied to extract six model parameters with the experimental I-V curves of type A receiver at 1, 3 and 500 concentration ratios. Standard test conditions (1000W/m2, 25oC and AM1.5G spectrum) were assumed based on trust-region-reflective least squares algorithm in MATLAB. The model fitted the experimental I-V curves satisfactorily with a mean error of 4.44%, and the optical intensity gain coefficient of SOE and POE is as high as 0.91, in comparison with 0.50-0.86 for crossed compound parabolic concentrators (CCPC). The determined values of diode reverse saturation current, combined series resistance and shunt resistance were similar to those of monocrystalline PV cell/modules in our previous publications. The model may be applicable to performance prediction of multi-junction CPV cells in the future

    Interactions, Distribution of Pinning Energies, and Transport in the Bose Glass Phase of Vortices in Superconductors

    Full text link
    We study the ground state and low energy excitations of vortices pinned to columnar defects in superconductors, taking into account the long--range interaction between the fluxons. We consider the ``underfilled'' situation in the Bose glass phase, where each flux line is attached to one of the defects, while some pins remain unoccupied. By exploiting an analogy with disordered semiconductors, we calculate the spatial configurations in the ground state, as well as the distribution of pinning energies, using a zero--temperature Monte Carlo algorithm minimizing the total energy with respect to all possible one--vortex transfers. Intervortex repulsion leads to strong correlations whenever the London penetration depth exceeds the fluxon spacing. A pronounced peak appears in the static structure factor S(q)S(q) for low filling fractions fā‰¤0.3f \leq 0.3. Interactions lead to a broad Coulomb gap in the distribution of pinning energies g(Ļµ)g(\epsilon) near the chemical potential Ī¼\mu, separating the occupied and empty pins. The vanishing of g(Ļµ)g(\epsilon) at Ī¼\mu leads to a considerable reduction of variable--range hopping vortex transport by correlated flux line pinning.Comment: 16 pages (twocolumn), revtex, 16 figures not appended, please contact [email protected]

    Interaction model for magnetic holes in a ferrofluid layer

    Get PDF
    Nonmagnetic spheres confined in a ferrofluid layer (magnetic holes) present dipolar interactions when an external magnetic field is exerted. The interaction potential of a microsphere pair is derived analytically, with a precise care for the boundary conditions along the glass plates confining the system. Considering external fields consisting of a constant normal component and a high frequency rotating in-plane component, this interaction potential is averaged over time to exhibit the average interparticular forces acting when the imposed frequency exceeds the inverse of the viscous relaxation time of the system. The existence of an equilibrium configuration without contact between the particles is demonstrated for a whole range of exciting fields, and the equilibrium separation distance depending on the structure of the external field is established. The stability of the system under out-of-plane buckling is also studied. The dynamics of such a particle pair is simulated and validated by experiments.Comment: 15 pages, 11 figures (18 with subfigures). to appear in Phys. Rev.

    Reproductive ecology and diet of a persistent Ameiurus melas (Rafinesque, 1820) population in the UK

    Get PDF
    The black bullhead Ameiurus melas was introduced to Europe from North America in the early 20th Century and invasive populations are now present in many European countries (Novomeska et al., 2013). Their invasion is assisted by their traits of high reproductive output, parental care, omnivory, aggressive behaviour and tolerance to environ- mental parameters (e.g. Leunda et al., 2008; Novomeska et al., 2013). In the UK, however, they are not invasive, with only a single, persistent wild population believed to be present (Britton et al., 2010). The lag phase ā€“ the time period between the introduction of a species and an invasion developing ā€“ can be considerable for non-native fishes. For many species, its cessation requires a change in environmental conditions and/or the provision of a new dispersal opportunity (Fausch, 2007)

    Mass-Transport Models with Multiple-Chipping Processes

    Get PDF
    We study mass-transport models with multiple-chipping processes. The rates of these processes are dependent on the chip size and mass of the fragmenting site. In this context, we consider k-chip moves (where k = 1, 2, 3, ....); and combinations of 1-chip, 2-chip and 3-chip moves. The corresponding mean-field (MF) equations are solved to obtain the steady-state probability distributions, P (m) vs. m. We also undertake Monte Carlo (MC) simulations of these models. The MC results are in excellent agreement with the corresponding MF results, demonstrating that MF theory is exact for these models.Comment: 18 pages, 4 figures, To appear in European Physical Journal
    • ā€¦
    corecore