
Conjugate Gradient Algorithms and the Galerkin
Boundary Element Method

O.O. Ademoyero, M.C. Bartholomew-Biggs, A.J. Davies, S.C. Parkhurst

Numerical Optimisation Centre, Mathematics Department
University of Hertfordshire

Abstract

This paper deals with the symmetric linear systems of equations arising in the Galerkin
boundary element method. In particular we consider the application of several variants of
the conjugate-gradient method to these systems and present some numerical results which
shows that a simple preconditioning strategy can lead to significant improvements in solu-
tion times.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/1638348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

In a previous paper [1] we considered the application of conjugate gradient (CG) methods
to the linear systems arising in the Galerkin boundary element method. These systems
are symmetric but not necessarily positive definite. We observed in [1] that the iterative
CG approach was often more efficient than direct solution techniques, such as Gaussian
elimination: but, unfortunately, this good performance was not particularly consistent. At
best, the CG solutions could be ten times faster than those given by Gaussian elimination;
but we also found situations where CG was less than twice as fast. What we also noted in [1]
was the limited effectiveness of preconditioning by diagonal scaling. Such preconditioning
could sometimes make a modest improvement to CG performance but it seemed just as
often to lead to an increase in the number of iterations needed for convergence.

In this paper our aim is to improve upon the rather unsatisfactory state of affairs just out-
lined. We shall consider a wider range of CG variants and - more significantly - we shall
use an alternative form of diagonal preconditioning. Our implementation of CG methods
with and without preconditioning is based on suggestions by Luksan and Vlcek [2]. The
main significance of the work in [2] is that the algorithms are posed in a form which is
computable whether or not the coefficient matrix is positive definite.

Before proceeding to the main body of the paper we shall, for completeness, give a brief
overview of the Galerkin boundary element method.

1.1 Boundary integral equations

The two-dimensional mixed potential problem may be written in the form

∇2u = 0 in D (1. 1)

subject to the boundary conditions

u = u0 on C0 and q ≡ ∂u

∂n
= q1 on C1 (1. 2)

whereD is the region bounded by the closed curve,C = C0 + C1. For a point,P , in D
we can write the potential atP in the form of a boundary integral [3], using the notation of
Gray [4]:

P(P) ≡ u(P) +
∮

C

(
u(Q)

∂G

∂n
(P,Q)−G(P,Q)q(Q)

)
dQ = 0 (1. 3)

where

G(P,Q) = − 1
2π

ln |Q− P | = − 1
2π

lnR

is the fundamental solution (Green’s function) andn = n(Q) is the unit outward normal on
C atQ.

For properly-posed problems only one ofu or q is known onC so that equation (1. 3) is
not directly of use as it stands. The usual approach [3] is to develop a boundary integral
equation by consideringP as a boundary point and then to obtain the boundary integral

equation by ‘excluding’P with a small disc and taking the limit as the disc radius tends to
zero to give

α(P)u(P) +
∮

C

(
u(Q)

∂G

∂n
(P,Q)−G(P,Q)q(Q)

)
dQ = 0 (1. 4)

whereα(P) is the so-called ‘free-term’ coefficient. Equation (1. 4) is often called the poten-
tial boundary integral equation. Similarly the flux boundary integral equation is developed
in the form [5]

β(P)q(P) +
∮

C

(
u(Q)

∂2G

∂N∂n
(P,Q)− ∂G

∂N
(P,Q)q(Q)

)
dQ = 0 (1. 5)

whereN = N(P) is the unit outward normal onC atP .

Equations (1. 4) and (1. 5) are well-established. However, there are considerable worries
about the existence of the integrals. Equation (1. 4) involves a weakly singular part, due
to G, and a strongly singular part, due to∂G

∂n . Equation (1. 5) includes a strongly singu-

lar part, due to∂G
∂N , and a hypersingular part, due to∂

2G
∂N∂n . In fact the strongly singular

parts are handled in the Cauchy principal value sense and the hypersingular part is usually
handled via a Hadamard finite-part integral with the assumption that divergent terms from
neighbouring regions cancel. This causes particular difficulties when collocation is used
to develop the system equations and so Gray [4] suggests an alternative approach via the
Galerkin method. We develop our argument in just the same way. We consider the potential
and flux integrals for pointsP in D as follows:

P(P) ≡ u(P) +
∮

C

(
u(Q)

∂G

∂n
(P,Q)−G(P,Q)q(Q)

)
dQ = 0 (1. 6)

F(P) ≡ q(P) +
∮

C

(
u(Q)

∂2G

∂N∂n
(P,Q)− ∂G

∂N
(P,Q)q(Q)

)
dQ = 0 (1. 7)

where equation (1. 7) is obtained by direct differentiation of equation (1. 6) using the fact
that we can reverse the order of integration and differentiation since the integrals in (1. 6)
are well-behaved. We now consider limiting values as the pointP approaches the curveC.

1.2 Galerkin formulation

We use the usual boundary element approximation in which the curveC is approximated
by a piecewise curve,CN . In our caseCN is taken as a polygon and the boundary values of
u andq are approximated by

ũ(Q) =
N∑

j=1

wj(Q)uj and q̃(Q) =
N∑

j=1

wj(Q)qj (1. 8)

where{wj(Q) : j = 1, 2, · · · , N} is a set of linearly independent basis functions. We shall
consider linear elements in which thewj(Q) are the usual ‘hat’ functions. The boundary
element formulation of equations (1. 6) and (1. 7) takes the form

P̃CN
(P) ≡ u(P) +

∮
CN

(
ũ(Q)

∂G

∂n
(P,Q)−G(P,Q)q̃(Q)

)
dQ = 0 (1. 9)

F̃CN
(P) ≡ q(P) +

∮
CN

(
ũ(Q)

∂2G

∂N∂n
(P,Q)− ∂G

∂N
(P,Q)q̃(Q)

)
dQ = 0(1. 10)

The limiting process proposed by Gray sets equations (1. 9) and (1. 10) in the form

lim
ε→0

P̃CN
(Pε) = 0 and lim

ε→0
F̃CN

(Pε) = 0 (1. 11)

where, asε → 0, Pε → P0 onCN . Finally, the Galerkin formulation is taken as∮
CN

wk(P0) lim
ε→0

P̃CN
(Pε)dP0 = 0 (1. 12)∮

CN

wl(P0) lim
ε→0

F̃CN
(Pε)dP0 = 0 (1. 13)

There is a variety of different types of integral in equations (1. 12) and (1. 13) depending
on the elements in whichP andQ are situated. The integrals may be either non-singular,
weakly singular, strongly singular or hypersingular. The details of how these are handled
are given by Gray [4] and we shall not repeat them here.

The importance of the Galerkin approach is that if equation (1. 6) is used on that part of the
boundary on which a Dirichlet condition holds and thenegativeof equation (1. 7) is used on
that part of the boundary on which a Neumann condition holds then the resulting boundary
element algebraic equations are symmetric. The equations generated from (1. 12), (1. 13)
may be written as

Hu−Gq = 0 (1. 14)

which, in block form, are[
hdd hdn

−hnd −hnn

] [
ud

un

]
−

[
gdd gdn

−gnd −gnn

] [
qd

qn

]
= 0.

Here the partition superscripts indicate the distinction between the parts of the boundary
on which Dirichlet and Neumann conditions hold. Sinceud andqn are known, we can
re-arrange the system so that only the unknown boundary values appear on the left. Thus
if x denotes(qd, un)T we can obtain the overall system of equations in the formAx = b
where

A =
[
−gdd hdn

gnd −hnn

]
. (1. 15)

Green’s function has the properties

G(P,Q) = G(Q,P)
∂G

∂n
(P,Q) =

∂G

∂n
(Q,P) = − ∂G

∂N
(P,Q) =

∂G

∂N
(Q,P)

∂2G

∂N∂n
(P,Q) =

∂2G

∂N∂n
(Q,P)

and by virtue of these it follows thatA is symmetric.

2 Linear solvers for the Galerkin method

TheN×N linear systemAx = b arising in the Galerkin method may be solved by a variety
of methods. Of the direct approaches (i.e. those which transform or factorise the given

system) the Gaussian elimination or Gauss-Jordan methods are always applicable. Choleski
factorization is a more efficient method (requiring only about half as much arithmetic and
storage), but it requiresA to be both symmetric and positive definite. While the symmetry
of (1. 15) is assured there is no guarantee, unfortunately, that it will be positive definite.
However, there are iterative methods which can be used to exploit the symmetry of the
system without assuming positive definiteness. These can be developed from the method of
conjugate gradients.

2.1 Conjugate gradient methods

The conjugate gradient (CG) approach, as first proposed by Hestenes and Stiefel [6], was
intended for definite, rather than indefinite systems of equations. It proceeds via iterations
of the form

x(k+1) = x(k) + αp(k) (2. 1)

where thesearch directionsp(0), p(1), ...p(k), .. are constructed to satisfy the conjugacy
property

p(i)T Ap(j) = 0 when i 6= j. (2. 2)

If α in (2. 1) is calculated by

α = − p(k)T r(k)

p(k)T Ap(k)
, (2. 3)

wherer denotes the residualAx− b, then it follows that

p(k)T r(k+1) = 0. (2. 4)

By using the conjugacy property (2. 2), it can be proved that, afterk iterations,

p(j)T r(k+1) = 0, for j = 0, 1, .., k. (2. 5)

This result impliesfinite termination— i.e. CG methods solveAx = b in at mostN
iterations.

There are a number of ways of generating the conjugate sequence{p(k)}. The original CG
algorithm takesp(0) = −r(0) and then uses the two-term recurrence relation

p(k+1) = −r(k+1) + βp(k) with β =
r(k+1)T r(k+1)

r(k)T r(k)
. (2. 6)

This is only guaranteed to be stable whenA is a positive- (or negative-) definite matrix. To
deal with the indefinite case we can replace (2. 6) by a three-term recurrence relation [7]

p(k+1) = −Ap(k) + α̂p(k) + β̂p(k−1) (2. 7)

whereα̂, β̂ are chosen so that

p(k+1)T Ap(j) = 0 for j = k, k − 1.

We will consider other extensions of the CG method to cover the indefinite case in a later
section. (A fuller account of CG methods in the context of boundary integral methods is
also given in [8].)

The finite termination property ensures that the CG method is anO(N3) process, since the
work on each iteration is chiefly theN2 multiplications needed to form the matrix-vector
productAp(k). This workload can be reduced ifA is sparse; but unfortunately the Galerkin
approach typically generates dense matrices. However, even in the dense case, the CG
method becomes more competitive if the eigenvalues ofA are “bunched”. Specifically it
can be proved that, ifA has onlyK distinct eigenvalues then convergence occurs in, at most,
K iterations.

The last remark motivatespre-conditionedCG methods. In this approach we seek matrices
C and M whereC is symmetric andM is such thatMMT = C−1. The intention is
thatMAMT has eigenvalues more tightly bunched than the orginal matrixA. The basic
CG method can then be applied to solve the systemMAMT y = Mb after which we set
x = MT y. In the context of the original CG method for positive-definiteA it was expected
thatC would also be positive-definite so thatM has real elements. For instance, whenA is
positive-definite its diagonal termsaii are strictly positive and a simple choice forC is the
so-calleddiagonal pre-conditioner

C = diag(aii). (2. 8)

The corresondingM is thendiag(a−1/2
ii). If we use (2. 8) the pre-conditioned matrix

MAMT has all diagonal elements equal to one which can sometimes cause the eigenvalues
also to be clustered around1. More sophisticated preconditioners for the positive-definite
case can be obtained by findingM by means of “incomplete” Cholesky factorizations ofA.

If we want to extend the idea of pre-conditioning to the case whenA is indefinite then, in
order forM to be computable in real arithmetic, the diagonal scaling matrix would have to
be defined as

C = diag(|aii|). (2. 9)

The preconditioned matrixMAMT would then have diagonals equal to±1, which can
still imply that it has eigenvalues grouped close to1 and−1. In [1] it was observed that
preconditioning based on (2. 9) was sometimes successful, but not consistently so.

In the present paper we follow some ideas given in [2] which show that the preconditoned
conjugate gradient method can be implementedwithout making use ofM explicitly. The al-
gorithm can be written in such a way that it only involves multiplications byC−1 and hence
it is possible to use indefinite preconditioners. Specifically, the diagonal preconditioner
(2. 8) is practicable (except, of course, in the case when anyaii is zero). In the numerical
results presented below we shall show that (2. 8) can be much more successful than (2. 9).

In the following sections we consider variants of the conjugate-gradient approach which
can be applied to indefinite matrices and which can use indefinite preconditioners. The
algorithms quoted are based on those given by [2].

2.1.1 A preconditioned CG algorithm to solveAx = b

Setx(0) = 0, r(0) = b
Calculatẽr(0) = C−1r(0), γ(0) = r̃(0)T r(0), p(0) = r̃(0)

Fork = 0, 1, 2, ... calculate

α = γ(k)/p(k)T Ap(k), x(k+1) = x(k) + αp(k)

r(k+1) = r(k) − αAp(k), r̃(k+1) = C−1r(k+1), γ(k+1) = r̃(k+1)T r(k+1)

β = γ(k+1)/γ(k), p(k+1) = r̃(k+1) + βp(k)

until ||r(k+1)|| < specified tolerance

This algorithm implements the basic conjugate gradient technique, based on (2. 1) - (2. 6).
As mentioned already, the algorithm is designed for the case whenA is positive definite;
and if it is applied whenA is indefinite (and possibly with an indefinite preconditioner) then
it can break down with division by zero in the calculation ofα(k+1) or β(k+1). Luksan [2]
observes that this happens very rarely - as does the related possibility of loss of accuracy
in the recurrence relations due to division by near-zero quantities. Our own experiments,
described below, do not seem to have suffered from any such difficulties.

2.1.2 A precondioned and smoothed CG algorithm to solveAx = b

Setx(0) = y(0) = 0, r(0) = s(0) = b
Calculatẽs(0) = C−1s(0), γ(0) = s̃(0)T s(0), p(0) = s̃(0)

Fork = 0, 1, 2, ... calculate
α = γ(k)/p(k)T Ap(k), y(k+1) = y(k) + αp(k)

s(k+1) = s(k) − αAp(k), r̃(k+1) = C−1r(k+1)

λ = r(k)T (s(k+1) − r(k))/||s(k+1) − r(k)||2
x(k+1) = x(k) + λ(y(k+1) − x(k)), r(k+1) = r(k) + λ(s(k+1) − r(k))
s̃(k+1) = C−1s(k+1), γ(k+1) = s̃(k+1)T s(k+1)

β = γ(k+1)/γ(k), p(k+1) = s̃(k+1) + βp(k)

until ||r(k+1)|| < specified tolerance

The smoothed CG method was proposed by Weiss [9] and the iteratatesy(k+1) are calculated
in the same way as thex(k+1) in the original CG algorithm. In order to get the solution
estimatesx(k+1) used by the smoothed CG method a further line search along the direction
y(k+1) − x(k) is used to yield a one-dimensional minimum of the residual vectorr(k+1).
This extra step ensures that the residuals decrease monotonically.

Earlier remarks about the possibility of breakdown due to division by zero whenA is indef-
inite are also applicable to this algorithm.

2.1.3 A precondioned conjugate residual algorithm to solveAx = b

Setx(0) = 0, r(0) = b
Calculatẽr(0) = C−1r(0), s̃(0) = Ar̃(0), γ(0) = s̃(0)T r̃(0),
p(0) = r̃(0), q(0) = s̃(0)

Fork = 0, 1, 2, ... calculate
q̃(k) = C−1q(k), α = γ(k)/q(k)T q̃(k)

x(k+1) = x(k) + αp(k)

r(k+1) = r(k) − αq(k), r̃(k+1) = r̃(k) − αq̃(k)

s(k+1) = Ar̃(k+1), γ(k+1) = s̃(k+1)T r̃(k+1)

β = γ(k+1)/γ(k), p(k+1) = r̃(k+1) + βp(k), q̃(k+1) = s̃(k+1) + βq(k)

until ||r(k+1)|| < specified tolerance

The conjugate residual method was proposed by Stiefel [10] and, like the smoothed CG
method, it is based on the minimization of the residual norm||Ax − b|| and ensures a
monotonic decrease in this quantity. Division by zero can occur in the indefinite case, but
this possibility has not arisen in our numerical tests (or in the extensive tests reported in [2]
which use the same algorithm).

2.1.4 A precondioned symmetric QMR algorithm to solveAx = b

Setx(0) = 0, r(0) = s(0) = b, u(0) = v(0) = 0, θ(0) = 0, τ (0) = s(0)T s(0)

Calculatẽs(0) = C−1s(0), γ(0) = s̃(0)T s(0), p(0) = s̃(0)

Fork = 0, 1, 2, ... calculate
α = γ(k)/p(k)T Ap(k), s(k+1) = s(k) − αAp(k)

σ = s(k+1)T s(k+1)/tau(k)

u(k+1) = (θ(k)u + αp)/(1 + σ), v(k+1) = (θ(k)v + αAp(k))/(1 + σ)
x(k+1) = x(k) + u(k+1), r(k+1) = r(k) − v(k+1),
theta(k+1) = σ, τ (k+1) = τ (k)σ/(1 + σ)
s̃(k+1) = C−1s(k+1), γ(k+1) = s̃(k+1)T s(k+1)

β = γ(k+1)/γ(k), p(k+1) = s̃(k+1) + βp(k)

until ||r(k+1)|| < specified tolerance

The symmetric QMR algorithm was derived in [11] from the more general non-symmetric
algorithm.

3 Numerical experiments

In this section we compare the performance of algorithms 2. 8 - 2.1.4. In our tests we use
the linear equations arising in the Galerkin solutions to Laplace’s equation with various
boundary conditions. It is worth noting that the algorithms stated in the previous section all
have a stopping rule based on theactualresidualr = Ax− b, even when pre-conditioning
is used. In the numerical tests reported below we have used the convergence test

||r|| ≤ 10−5||b||.

3.1 Example 1

Example 1involves the problem∇2u = 0 subject to the boundary conditions

u(0, y) = 0 0 ≤ y ≤ 1
u(x, 0) = x 0 ≤ x ≤ 1
u(1, y) = 1 0 ≤ y ≤ 1
u(x, 1) = x 0 ≤ x ≤ 1

Results for Example 1 are given in the tables below. We consider different numbers of points
N in the discretization of the boundary and for each value ofN we show the numbers of it-

erations needed by the algorithms 2.1.1 - 2.1.4. We show the results with no preconditioning
and also with preconditionersC given by (2. 8) and (2. 9).

algorithm no preconditioner preconditioner (2. 8) preconditioner (2. 9)
2.1.1 27 17 17
2.1.2 25 17 17
2.1.3 26 17 17
2.1.4 25 17 17

Table 1: Numbers of CG iterations for Example 1 withN = 128

algorithm no preconditioner preconditioner (2. 8) preconditioner (2. 9)
2.1.1 35 24 24
2.1.2 31 20 21
2.1.3 31 20 21
2.1.4 31 20 21

Table 2: Numbers of CG iterations for Example 1 withN = 256

algorithm no preconditioner preconditioner (2. 8) preconditioner (2. 9)
2.1.1 92 93 93
2.1.2 88 74 75
2.1.3 87 73 74
2.1.4 88 74 75

Table 3: Numbers of CG iterations for Example 1 withN = 512

These first results show that performance of the basic conjugate algorithm is consistently
inferior to that of the more sophisticated algorithms 2.1.2 - 2.1.4. For the larger problem,
preconditioning seems to have no effect for algorithm 2.1.1 and it remains slower than the
best of its competitors by about20%.

3.2 Example 2

Example 2involves the solution of∇2u = 0 subject to the boundary conditions

q(0, y) = 0 0 ≤ y ≤ 1
u(x, 0) = 0 0 ≤ x ≤ 1
q(1, y) = 0 0 ≤ y ≤ 1
u(x, 1) = 1 0 ≤ x ≤ 1

Results for Example 2 are as follows.

To some extent, the results for Example 2 are similar to those for Example 1. Without
preconditioning the basic CG method is less efficient than the smoothed CG, conjugate

algorithm no preconditioner preconditioner (2. 8) preconditioner (2. 9)
2.1.1 94 41 68
2.1.2 86 38 68
2.1.3 85 38 68
2.1.4 86 36 68

Table 4: Numbers of CG iterations for Example 2 withN = 128

algorithm no preconditioner preconditioner (2. 8) preconditioner (2. 9)
2.1.1 162 55 137
2.1.2 121 50 136
2.1.3 123 50 135
2.1.4 121 55 136

Table 5: Numbers of CG iterations for Example 2 withN = 256

residual and QMR algorithms. When preconditioning is used, however, the behaviour of all
four methods is more uniform. What is most striking is that the indefinite preconditioner
(2. 8) produces by far the best results for all the algorithms. By contrast, the positive definite
preconditioner (2. 9) causes a deterioration in performance in some cases whenN = 256.

3.3 Example 3

In Example 3we solve∇2u = 0 subject to the boundary conditions

u(0, y) = 300 0 ≤ y ≤ 6
q(x, 0) = 0 0 ≤ x ≤ 6
u(6, y) = 0 0 ≤ y ≤ 6
q(x, 6) = 0 0 ≤ x ≤ 6

Results for this problem are as follows

algorithm no preconditioner preconditioner (2. 8) preconditioner (2. 9)
2.1.1 136 54 160
2.1.2 126 54 160
2.1.3 126 56 162
2.1.4 126 54 160

Table 6: Numbers of CG iterations for Example 3 withN = 256

These results reinforce the observations made on Example 2. The indefinite preconditioner
(2. 8) gives the fastest convergence, and all the methods 2.1.1 - 2.1.4 use similar numbers
of iterations. The positive definite preconditioner (2. 9), however is consistently counter-
productive. In the absence of preconditioning, the basic CG method needs about10% more
iterations than the other techniques considered.

algorithm no preconditioner preconditioner (2. 8) preconditioner (2. 9)
2.1.1 232 94 370
2.1.2 208 93 369
2.1.3 209 94 408
2.1.4 208 94 369

Table 7: Numbers of CG iterations for Example 3 withN = 512

3.4 Example 4

Example 4is the Motz problem which involves solving∇2u = 0 on a rectangular domain
D{x, y : 0 ≤ x ≤ 14, 0 ≤ y ≤ 7} subject to the boundary conditions

u(x, 0) = 500 0 ≤ x ≤ 7
q(x, 0) = 0 7 ≤ x ≤ 14
q(x, 7) = 0 0 ≤ x ≤ 14
u(0, y) = 1000 0 ≤ y ≤ 7

q(14, y) = 0 0 ≤ y ≤ 7
(3. 1)

Results obtained with Example 4 are given below.

algorithm no preconditioner preconditioner (2. 8) preconditioner (2. 9)
2.1.1 253 87 345
2.1.2 240 87 335
2.1.3 239 84 326
2.1.4 240 87 335

Table 8: Numbers of CG iterations for Example 4 withN = 256

algorithm no preconditioner preconditioner (2. 8) preconditioner (2. 9)
2.1.1 464 139 756
2.1.2 397 139 711
2.1.3 398 141 693
2.1.4 397 139 711

Table 9: Numbers of CG iterations for Example 4 withN = 512

The spread of eigenvalues in the coefficient matrix of the linear system for this example
appears to be wider than in Examples 1-3, since the number of iterations needed by the
unpreconditioned methods (and particularly the basic CG method 2.1.1) is much closer to
N . Nevertheless, even though the problem is seems more difficult, we see similar behaviour
to that in the preceding subsections. Preconditioner (2. 8) is very effective while (2. 9)is
extremely ineffective.

3.5 Example 5

In Example 5we solve∇2u = 0 subject to the boundary conditions

u(x, 0) = 0 0 ≤ x ≤ 100
q(100, y) = 0 0 ≤ y ≤ 8

u(x, 8) = −16 95 ≤ x ≤ 100
q(95, y) = 0 8 ≤ y ≤ 20
u(x, 20) = −4 0 ≤ x ≤ 95
q(0, y) = 0 0 ≤ y ≤ 20

The results for this problem are shown in the tables below.

algorithm no preconditioner preconditioner (2. 8) preconditioner (2. 9)
2.1.1 729 203 738
2.1.2 654 203 710
2.1.3 672 209 699
2.1.4 654 204 710

Table 10: Numbers of CG iterations for Example 5 withN = 256

algorithm no preconditioner preconditioner (2. 8) preconditioner (2. 9)
2.1.1 2062 191 971
2.1.2 1878 189 922
2.1.3 1947 179 936
2.1.4 1878 191 922

Table 11: Numbers of CG iterations for Example 5 withN = 512

The linear systems for this example prove to be the most difficult yet for the unprecondi-
tioned algorithms and we see iteration counts of between2.5N and4N . Positive definite
preconditoning using (2. 9) helps in the larger case but not whenN = 256. However
the indefinite preconditioner (2. 8) makes a substantial difference in all cases, accelerating
convergence by a factor of 10 whenN = 512.

3.6 Example 6

The final problem Example 6introduces a non-rectangular boundary. We solve∇2u = 0
subject to the boundary conditions

u(x, 0) = 0 0 ≤ x ≤ 3
u(x, 2) = 2 0 ≤ x ≤ 4
u(0, y) = y 0 ≤ y ≤ 2
q(4, y) = 0 1 ≤ y ≤ 2
u(x, y) = 0 3 ≤ x ≤ 4, y =

√
(1− (x− 4)2)

Results for this example are summarised below.

algorithm no preconditioner preconditioner (2. 8) preconditioner (2. 9)
2.1.1 190 74 137
2.1.2 152 71 132
2.1.3 153 70 131
2.1.4 152 71 132

Table 12: Numbers of CG iterations for Example 6 withN = 256

algorithm no preconditioner preconditioner (2. 8) preconditioner (2. 9)
2.1.1 339 101 266
2.1.2 241 101 264
2.1.3 243 104 259
2.1.4 241 99 264

Table 13: Numbers of CG iterations for Example 6 withN = 512

The introduction of a curved boundary does not seem to have made the problem any more
difficult than the previous examples and the relative performances of the methods are much
the same as we have seen before.

4 Discussion and Conclusions

Based on the example problems in the previous section we can make the following com-
ments

• without preconditioning, the basic conjugate gradient method is consistently less efficient
than the more sophisticated algorithms 2.1.2, 2.1.3 and 2.1.4. On the other hand, there
is relatively little to choose between the performances of the smoothed CG method, the
conjugate residual method and the symmetric QMR algorithm.

• use of the very simpleindefinitepeconditioner (2. 8) produces significant savings in num-
bers of iterations for all the methods tested. Indeed, with this preconditioner, all the methods
have near-identical performance.

• as we observed in [1], the positive definite preconditioner (2. 9) is only sometimes suc-
cessful. It never yields faster convergence than (2. 8) and in about half the tests it actually
causes an increase in the number of iterations.

The point we now need to consider is how these CG solutions compare, in terms of effi-
ciency, with the use of a direct method such as Gauss-Jordan or Gaussian elimination.

A benchmark test shows that, for a problem withN = 512, the solution time needed by a
Gauss-Jordan approach is about 240 times as long as a single unpreconditioned conjugate
gradient iteration. This factor is likely to be relatively problem-independent since the num-
ber of arithmetic steps needed by the Gauss-Jordan approach is aboutN3/2 multiplications

and does not depend on the values in the coefficient matrix. The main work in an iteration
of algorithm 2.1.1 is a matrix-vector product which costsN2 multiplications. Therefore we
can deduce that a conjugate-gradient algorithm will be faster than Gauss-Jordan if it takes
fewer thanN/2 iterations.

The same remarks about cost per iteration also apply to the unpreconditioned forms of
algorithms 2.1.2 - 2.1.4. Moreover, if we use a diagonal preconditioner like (2. 8) the cost
is not significantly increased. Hence we can measure the performance of the Gauss-Jordan
method against the algorithms discussed in this paper by considering the ratios

ρCG =
No of unpreconditioned CG iterations whenN = 512

N/2

ρbest =
No of iterations by best preconditioned CG method whenN = 512

N/2
.

The following table shows the values of these ratios for each of the test examples.

Example ρcg ρbest

1 0.33 0.25
2 0.78 0.37
3 0.82 0.34
4 1.5 0.5
5 7.9 0.69
4 1.0 0.38

Table 14: CG methods vs Gauss-Jordan for problems withN = 512

In the first three cases the unpreconditoned CG method is competitive with the Gauss-Jordan
technique; but it is of no advantage for the last three examples. However, with the simple
indefinite preconditioner (2. 8),all the CG variants that we have considered seem to offer
appreciably faster solutions than the Guass-Jordan approach.

Further reductions in the numbers of iterations might be expected if the algorithms 2.1.1 -
2.1.4 used a more advanced preconditonerC based on (say) an incompleteLDLT factor-
ization. It is worth remembering though that the algorithms would then need about2N2

multiplications because a calculation likẽs(k+1) = C−1s(k+1) or r̃(k+1) = C−1r(k+1)

would then involve a dense matrix rather than a diagonal one. Therefore the use of such a
preconditioner would need to halve the number of iterations to solveAx = b in order to
match the relative performance measures quoted in Table 14.

Our experience in this paper strengthens the remarks that we made in [1] suggesting that
conjugate gradient methods couldsometimesbe advantageous for solving the linear systems
arising the Galerkin boundary element method. We have now obtained a much more consis-
tent advantage by using a simple indefinite preconditioner within an algorithmic framework
given by [2]. This preconditoner seems to be equally successful when used with a number
of different variants of the CG approach.

References

[1] Ademoyero O.O, Bartholomew-Biggs, M.C. and Davies A.J.Computational Linear
Algebra Issues in the Galerkin Boundary Element Method, Computers and Mathematics
with Applications, 42, pp 1267-1283, 2001.

[2] Luksan L. and Vlcek J.Numerical experience with Iterative Methods for Equality Con-
strained Nonlinear programming ProblemsOptimization Methods and Software, 16,
pp 257-287, 2001.

[3] Brebbia C.A. and Dominquez J.Boundary Elements, an Introductory Course, Compu-
tational Mechanics Publications, 1992.

[4] Gray L.J. Evaluation of singular and hypersingular Galerkin integrals: direct limits and
symbolic computation;Singular Integrals in boundary element methods, eds Sladek V.
and Sladek J, Computational Mechanics Publications, pp 33-84, 1998.

[5] Sladek V, and Sladek J. Introductory Notes on Singular Integrals;Singular Integrals
in boundary element methods, eds Sladek V. and Sladek J, Computational Mechanics
Publications, pp 1-31, 1998.

[6] Hestenes M.R. and E. Stiefel. Methods of conjugate gradients for solving linear sys-
tems.J. Res. Nat. Bureau of Standards49, 409-436, 1952.

[7] Nazareth L. A conjugate gradient algorithm without line searches.Journ. Opt. Theory
Applics.23, 373-387, 1977.

[8] Romate J.E. On the use of conjugate gradient type methods for boundary integral equa-
tions.Computational Mechanics12, 214-232, 1993.

[9] Weiss R.Parameter-free Iterative Linear Solvers, Akademie Verlag, Berlin, 1996,

[10] , Stiefel E.Relaxationsmethoden bester Strategie zur Losung Linearer Gleichungssys-
temeComm. Math. Helv., 29, pp 157-179, 1955.

[11] Freund R.W. and Nachtigal N.M.A New Krylov-subspace Method for Indefinite Linear
SystemsReport ORNL/TM-12754, Oak Ridge National Laboratory, 1994.

