18,947 research outputs found

    SOFIA: A Stratospheric Observatory for Infrared Astronomy

    Get PDF
    SOFIA is described as it was originally (May 1988) for the Space and Earth Sciences Advisory Committee (SESAC). The format and questions were provided by SESAC as a standard for judging the merit of potential U.S. space science projects. This version deletes Section IIF, which addressed development costs of the SOFIA facility. SOFIA's unique astronomical potential is described and it is shown how it complements and supports existing and planned facilities

    Evidence for prelocalization of cytoplasmic factors affecting gene activation in early embryogenesis

    Get PDF
    Differentiation begins early in embryogenesis as different genes become active in different cells. Within the closed system of the early embryo, equal genomes thus direct the creation of diverse cell types. Though the nuclei of these cells contain complete copies of the same genome,(1,2) the nucleoplasmic and cytoplasmic environments of these genomes are not the same, as a result of the distribution of cleavage nuclei into diverse areas of egg cytoplasm early in the cleavage process. In some cases the fate of these nuclei, i.e., the type of differentiated cell to which they or their descendants give rise, has been seen to depend on the area of cytoplasm in which they come to lie

    Wind electric plants

    Get PDF
    The foregoing summary is based on the results from several years’ investigation of and one year’s operation,1 under test, of a wind electric plant located at this Station; and from a study2 of the performance of 66 wind electric plants on Iowa farms. The objective of these investigations was to determine as far as practicable the possibilities and limitations of the wind electric plant under Iowa farmstead conditions. The origin of the windmill is obscure. There is some evidence that it was first used in Persia during the early centuries of the Christian era.3 It came into prominent use in Europe during the twelfth century. Murphy4 gives a brief sketch of the early history of the windmill in America, and Barbour5 gives a good description of a large variety of homemade mills used in the Middlewest just following pioneer days

    Magnetic Field Structure around Low-Mass Class 0 Protostars: B335, L1527 and IC348-SMM2

    Full text link
    We report new 350 micron polarization observations of the thermal dust emission from the cores surrounding the low-mass, Class 0 YSOs L1527, IC348-SMM2 and B335. We have inferred magnetic field directions from these observations, and have used them together with results in the literature to determine whether magnetically regulated core-collapse and star-formation models are consistent with the observations. These models predict a pseudo-disk with its symmetry axis aligned with the core magnetic field. The models also predict a magnetic field pinch structure on a scale less than or comparable to the infall radii for these sources. In addition, if the core magnetic field aligns (or nearly aligns) the core rotation axis with the magnetic field before core collapse, then the models predict the alignment (or near alignment) of the overall pinch field structure with the bipolar outflows in these sources. We show that if one includes the distorting effects of bipolar outflows on magnetic fields, then in general the observational results for L1527 and IC348-SMM2 are consistent with these magnetically regulated models. We can say the same for B335 only if we assume the distorting effects of the bipolar outflow on the magnetic fields within the B335 core are much greater than for L1527 and IC348-SMM2. We show that the energy densities of the outflows in all three sources are large enough to distort the magnetic fields predicted by magnetically regulated models.Comment: Accepted for publication in The Astrophysical Journa

    An Investigation of the Standardised Patient Interview Rating Scale (SPIRS) for the Assessment of Speech Pathology Students in a Simulation Clinic

    Get PDF
    Standardised patients (SPs) are increasingly utilised in health sciences education to assist students in the development of clinical competencies, including interviewing skills. This study investigated the development and validation of a rating scale for formative assessment of speech pathology students in an interview with an SP. Participants in this study were 76 undergraduate speech pathology students and 10 clinical educators who participated in a simulated clinic module. As part of the module, pairs of students interviewed an SP portraying a parent of a child with speech delay. The Standardised Patient Interview Rating Scale (SPIRS) was developed to assess students’ foundation clinical competencies of communication, interviewing and professional practice skills. Students’ interviews were videotaped, rated individually on the SPIRS by the clinical educator, and later re-rated by an expert rater. Data were analysed to determine the content validity, internal consistency, and inter-rater reliability of the tool. In addition, descriptive statistics were used to report student performance levels. Results indicated that the SPIRS had good content validity and internal consistency but that there may be some redundancy in individual items. An acceptable level of inter-rater reliability was achieved. Students generally scored highly, with non-verbal communication being the easiest and professional practice the most difficult skill to demonstrate. The SPIRS was found to be an appropriate tool for formative assessment of students in this simulated clinic module. Recommendations for improving its reliability were made. Further research is required to investigate use of the SPIRS as an assessment tool in other contexts utilising standardised patients

    Events, processes, and the time of a killing

    Get PDF
    The paper proposes a novel solution to the problem of the time of a killing (ToK), which persistently besets theories of act-individuation. The solution proposed claims to expose a crucial wrong-headed assumption in the debate, according to which ToK is essentially a problem of locating some event that corresponds to the killing. The alternative proposal put forward here turns on recognizing a separate category of dynamic occurents, viz. processes. The paper does not aim to mount a comprehensive defense of process ontology, relying instead on extant defenses. The primary aim is rather to put process ontology to work in diagnosing the current state of play over ToK, and indeed in solving it

    Mode signature and stability for a Hamiltonian model of electron temperature gradient turbulence

    Full text link
    Stability properties and mode signature for equilibria of a model of electron temperature gradient (ETG) driven turbulence are investigated by Hamiltonian techniques. After deriving the infinite families of Casimir invariants, associated with the noncanonical Poisson bracket of the model, a sufficient condition for stability is obtained by means of the Energy-Casimir method. Mode signature is then investigated for linear motions about homogeneous equilibria. Depending on the sign of the equilibrium "translated" pressure gradient, stable equilibria can either be energy stable, i.e.\ possess definite linearized perturbation energy (Hamiltonian), or spectrally stable with the existence of negative energy modes (NEMs). The ETG instability is then shown to arise through a Kre\u{\i}n-type bifurcation, due to the merging of a positive and a negative energy mode, corresponding to two modified drift waves admitted by the system. The Hamiltonian of the linearized system is then explicitly transformed into normal form, which unambiguously defines mode signature. In particular, the fast mode turns out to always be a positive energy mode (PEM), whereas the energy of the slow mode can have either positive or negative sign

    Closed-form expressions for correlated density matrices: application to dispersive interactions and example of (He)2

    Full text link
    Empirically correlated density matrices of N-electron systems are investigated. Exact closed-form expressions are derived for the one- and two-electron reduced density matrices from a general pairwise correlated wave function. Approximate expressions are proposed which reflect dispersive interactions between closed-shell centro-symmetric subsystems. Said expressions clearly illustrate the consequences of second-order correlation effects on the reduced density matrices. Application is made to a simple example: the (He)2 system. Reduced density matrices are explicitly calculated, correct to second order in correlation, and compared with approximations of independent electrons and independent electron pairs. The models proposed allow for variational calculations of interaction energies and equilibrium distance as well as a clear interpretation of dispersive effects on electron distributions. Both exchange and second order correlation effects are shown to play a critical role on the quality of the results.Comment: 22 page

    Modeling of the processing and removal of trace gas and aerosol species by Arctic radiation fogs and comparison with measurements

    Get PDF
    A Lagrangian radiation fog model is applied to a fog event at Summit, Greenland. The model simulates the formation and dissipation of fog. Included in the model are detailed gas and aqueous phase chemistry, and deposition of chemical species with fog droplets. Model predictions of the gas phase concentrations of H2O2, HCOOH, SO2, and HNO3 as well as the fog fluxes of S(VI), N(V), H2O2, and water are compared with measurements. The predicted fluxes of S(VI), N(V), H2O2, and fog water generally agree with measured values. Model results show that heterogeneous SO2 oxidation contributes to approximately 40% of the flux of S(VI) for the modeled fog event, with the other 60% coming from preexisting sulfate aerosol. The deposition of N(V) with fog includes contributions from HNO3 and NO2 initially present in the air mass. HNO3 directly partitions into the aqueous phase to create N(V), and NO2 forms N(V) through reaction with OH and the nighttime chemistry set of reactions which involves N2O5 and water vapor. PAN contributes to N(V) by gas phase decomposition to NO2, and also by direct aqueous phase decomposition. The quantitative contributions from each path are uncertain since direct measurements of PAN and NO2 are not available for the fog event. The relative contributions are discussed based on realistic ranges of atmospheric concentrations. Model results suggest that in addition to the aqueous phase partitioning of the initial HNO3 present in the air mass, the gas phase decomposition of PAN and subsequent reactions of NO2 with OH as well as nighttime nitrate chemistry may play significant roles in depositing N(V) with fog. If a quasi-liquid layer exists on snow crystals, it is possible that the reactions taking place in fog droplets also occur to some extent in clouds as well as at the snow surface
    • …
    corecore