701 research outputs found

    The Impact of Large-scale Employee Share Ownership Plans on Labour Productivity: The Case of Eircom

    Get PDF
    Large-scale Employee Share Ownership Plans (ESOPs) have been a distinctive characteristic of Irish public enterprise reform, with shareholdings of 14.9 per cent being allocated to employees as part of firm restructuring and privatisation programmes. This paper presents a case study analysis of a large-scale ESOP in Eircom, Ireland’s former national telecommunications operator. We identify changes in labour productivity during the eight years before and after the establishment of the company’s ESOP and use a framework based on Pierce et al. (2001, 1991) to explore the role played by the ESOP. The ESOP was found to play a key role in enabling firm-level reform through concession bargaining and changes in employee relations, and thereby indirectly affecting labour productivity. However, despite the substantial shareholding and influence of the ESOP, we find it has failed to create a sense of psychological ownership among employees, and thereby further impact on productivit

    Comprehensive Solution to the Cosmological Constant, Zero-Point Energy, and Quantum Gravity Problems

    Full text link
    We present a solution to the cosmological constant, the zero-point energy, and the quantum gravity problems within a single comprehensive framework. We show that in quantum theories of gravity in which the zero-point energy density of the gravitational field is well-defined, the cosmological constant and zero-point energy problems solve each other by mutual cancellation between the cosmological constant and the matter and gravitational field zero-point energy densities. Because of this cancellation, regulation of the matter field zero-point energy density is not needed, and thus does not cause any trace anomaly to arise. We exhibit our results in two theories of gravity that are well-defined quantum-mechanically. Both of these theories are locally conformal invariant, quantum Einstein gravity in two dimensions and Weyl-tensor-based quantum conformal gravity in four dimensions (a fourth-order derivative quantum theory of the type that Bender and Mannheim have recently shown to be ghost-free and unitary). Central to our approach is the requirement that any and all departures of the geometry from Minkowski are to be brought about by quantum mechanics alone. Consequently, there have to be no fundamental classical fields, and all mass scales have to be generated by dynamical condensates. In such a situation the trace of the matter field energy-momentum tensor is zero, a constraint that obliges its cosmological constant and zero-point contributions to cancel each other identically, no matter how large they might be. Quantization of the gravitational field is caused by its coupling to quantized matter fields, with the gravitational field not needing any independent quantization of its own. With there being no a priori classical curvature, one does not have to make it compatible with quantization.Comment: Final version, to appear in General Relativity and Gravitation (the final publication is available at http://www.springerlink.com). 58 pages, revtex4, some additions to text and some added reference

    Radiative Mechanism to Light Fermion Masses in the MSSM

    Full text link
    In a previous work we have showed that the Z2{\cal Z}_{2}^{\prime} Symmetry, imply that the light fermions, the electron and the quarks, u,du,d and ss, get their masses only at one loop level. Here, we considere the more general hypothesis for flavour mixing in the sfermion sector in the MSSM. Then, we present our results to the masses of these light fermions and as a final result we can explain why the ss quark is heavier than the u,du,d quarks. This mechanism is in agrement with the experimental constraint on the sfermion's masses values.Comment: 22 pages, 8 figures, TeX mistakes corrected, accepted for publication in JHE

    Weak-Localization in Chaotic Versus Non-Chaotic Cavities: A Striking Difference in the Line Shape

    Full text link
    We report experimental evidence that chaotic and non-chaotic scattering through ballistic cavities display distinct signatures in quantum transport. In the case of non-chaotic cavities, we observe a linear decrease in the average resistance with magnetic field which contrasts markedly with a Lorentzian behavior for a chaotic cavity. This difference in line-shape of the weak-localization peak is related to the differing distribution of areas enclosed by electron trajectories. In addition, periodic oscillations are observed which are probably associated with the Aharonov-Bohm effect through a periodic orbit within the cavities.Comment: 4 pages revtex + 4 figures on request; amc.hub.94.

    An exhaustive epistatic SNP association analysis on expanded Wellcome Trust data

    Get PDF
    We present an approach for genome-wide association analysis with improved power on the Wellcome Trust data consisting of seven common phenotypes and shared controls. We achieved improved power by expanding the control set to include other disease cohorts, multiple races, and closely related individuals. Within this setting, we conducted exhaustive univariate and epistatic interaction association analyses. Use of the expanded control set identified more known associations with Crohn's disease and potential new biology, including several plausible epistatic interactions in several diseases. Our work suggests that carefully combining data from large repositories could reveal many new biological insights through increased power. As a community resource, all results have been made available through an interactive web server

    Experimental assessment of mixed-mode partition theories for generally laminated composite beams

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Composite Structures. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version will be subsequently published in Composite Structures.Three different approaches to partitioning mixed-mode delaminations are assessed for their ability to predict the interfacial fracture toughness of generally laminated composite beams. This is by using published data from some thorough and comprehensive experimental tests carried out by independent researchers (Davidson et al., 2000 and 2006). Wang and Harvey’s (2012) Euler beam partition theory is found to give very accurate prediction of interfacial fracture toughness for arbitrary layups, thickness ratios and loading conditions. Davidson et al.’s (2000) non-singular-field partition theory has excellent agreement with Wang and Harvey’s Euler beam partition theory for unidirectional layups. Although Davidson et al.’s partition theory predicts the interfacial fracture toughness of multidirectional layups reasonably well, overall Wang and Harvey’s Euler beam partition theory is found to give better predictions. In general, the singular-field approach based on 2D elasticity and the finite element method gives poor predictions of fracture toughness

    Wave Mechanics and General Relativity: A Rapprochement

    Full text link
    Using exact solutions, we show that it is in principle possible to regard waves and particles as representations of the same underlying geometry, thereby resolving the problem of wave-particle duality

    Pentaquark baryon production from photon-neuteron reactions

    Full text link
    Extending the hadronic Lagrangians that we recently introduced for studying pentaquark Θ+\Theta^+ baryon production from meson-proton, proton-proton, and photon-proton reactions near threshold to include the anomalous interaction between γ\gamma and KKK^*K, we evaluate the cross section for Θ+\Theta^+ production from photon-neutron reactions, in which the Θ+\Theta^+ was first detected in the SPring-8 experiment in Japan and the CLAS experiment at Thomas Jefferson National Laboratory. With empirical coupling constants and form factors, and assuming that the decay width of Θ+\Theta^+ is 20 MeV, the predicted cross section is found to have a peak value of about 280 nb, which is substantially larger than that for Θ+\Theta^+ production from photon-proton reactions.Comment: 13 pages, 6 figure

    A synonymous codon variant in two patients with autosomal recessive bestrophinopathy alters in vitro splicing of BEST1

    Get PDF
    Purpose: Autosomal recessive bestrophinopathy (ARB) is a newly defined retinal dystrophy caused by biallelic mutations in bestrophin-1 (BEST1) and is hypothesized to represent the null bestrophin-1 phenotype in humans. The aim was to determine whether a synonymous BEST1 variant, c.102C>T, identified in two unrelated ARB patients, alters pre-mRNA splicing of the gene. Additionally a detailed phenotypic characterization of this distinctive condition is presented for both patients.Methods: BEST1 was analyzed by direct sequencing. Patients underwent standard ophthalmic assessment. In silico and in vitro analysis using a minigene system was performed to assess whether a synonymous variant identified, c.102C>T p.Gly34Gly, alters pre-mRNA splicing of BEST1.Results: Both ARB patients harbored either proven (patient 1; c.102C>T p.Gly34Gly and c.572T>C p.Leu191Pro) or presumed (patient 2; c.102C>T p.Gly34Gly and c.1470_1471delCA, p.His490GlnfsX24) biallelic mutations in BEST1 and were found to have phenotypes consistent with ARB. In vitro analysis of the synonymous variant, c.102C>T p.Gly34Gly, demonstrated it to introduce a cryptic splice donor site 52 nucleotides upstream of the actual splice donor site.Conclusions: The novel BEST1 variant identified, c.102C>T p.Gly34Gly, alters pre-mRNA splicing in vitro and is potentially pathogenic. In vivo this splicing variant is predicted to lead to the production of an mRNA transcript with a premature termination codon (p.Glu35TrpfsX11) that is predicted to be degraded by NMD

    Astrophysical Reaction Rates for 10^{10}B(p,α\alpha)7^{7}Be and 11^{11}B(p,α\alpha)8^{8}Be From a Direct Model

    Full text link
    The reactions 10^{10}B(p,α\alpha)7^{7}Be and 11^{11}B(p,α\alpha)8^{8}Be are studied at thermonuclear energies using DWBA calculations. For both reactions, transitions to the ground states and first excited states are investigated. In the case of 10^{10}B(p,α\alpha)7^{7}Be, a resonance at ERes=10E_{Res}=10 keV can be consistently described in the potential model, thereby allowing the extension of the astrophysical SS-factor data to very low energies. Strong interference with a resonance at about ERes=550E_{Res}=550 keV require a Breit-Wigner description of that resonance and the introduction of an interference term for the reaction 10^{10}B(p,α1\alpha_1)7^{7}Be^*. Two isospin T=1T=1 resonances (at ERes1=149E_{Res1}=149 keV and ERes2=619E_{Res2}=619 keV) observed in the 11^{11}B+p reactions necessitate Breit-Wigner resonance and interference terms to fit the data of the 11^{11}B(p,α\alpha)8^{8}Be reaction. SS-factors and thermonuclear reaction rates are given for each reaction. The present calculation is the first consistent parametrization for the transition to the ground states and first excited states at low energies.Comment: 27 pages, 5 Postscript figures, uses RevTex and aps.sty; preprint also available at http://quasar.physik.unibas.ch/ Phys. Rev. C, in pres
    corecore