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Abstract 

Glucocorticoids, key hormonal regulators of the stress response, powerfully influence 

inflammation and metabolism. Reducing excessive glucocorticoid exposure is 

beneficial in treating metabolic and cognitive disorders, but manipulating systemic 

endogenous glucocorticoids risks compromising their beneficial effects. The enzyme 

11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activates glucocorticoids in 

target tissues and thus inhibition of this enzyme presents a clinical opportunity to 

reduce tissue-specific glucocorticoid action. Active glucocorticoids also exert potent 

angiostatic effects by binding the glucocorticoid receptor (GR), and 11β-HSD1 

inhibitors have proven beneficial in models of myocardial infarction by promoting 

angiogenesis. The possibility that 11β-HSD1 inhibitors may increase pathological 

angiogenesis, such as that seen in solid tumours, remains unaddressed. This project 

tested the hypothesis that 11β-HSD1 inhibition promotes tumour growth as a result of 

increased angiogenesis, using murine models of squamous cell carcinoma (SCC) and 

pancreatic ductal adenocarcinoma (PDAC). 

Murine SCC or PDAC cells were injected (1x106 cells/flank) into WT female mice fed 

either standard diet, or diet containing the 11β-HSD1 inhibitor UE2316 (175 mg/kg, 

N=6/group), or into 11β-HSD1 knockout (Del1) mice fed standard diet. Developing 

tumours were measured by callipers over several weeks, before animals were culled 

and tissues collected. SCC tumours grew more rapidly in UE2316-treated mice to 

reach a significantly (P<0.01) larger final volume (0.158 ± 0.037 cm3) than in control 

mice (0.051 ± 0.007 cm3). PDA tumours were unaffected by 11β-HSD1 inhibition or 

deletion. Immunofluorescent co-staining of tumour sections for CD31/α-smooth 

muscle actin revealed no differences in vessel density, and RT-qPCR showed no 

difference in angiogenic factor expression, after 11β-HSD1 inhibition/deletion in 

either tumour type. GR and 11β-HSD1 RNA expression were greater in SCC vs PDAC 

tumours (P<0.001), as was 11β-HSD1 activity (P<0.0001). 

In studies using the aortic ring assay of ex vivo angiogenesis, 11β-HSD1 deletion, but 

not inhibition with UE2316, was shown to prevent glucocorticoid-mediated 

angiostasis. The growth/viability of tumour cell lines was not affected by UE2316 or 
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corticosterone, as assessed by live cell imaging using the Incucyte imaging system. 

RNA-sequencing of SCC tumours revealed that multiple factors involved in the innate 

immune/inflammatory response were reduced in UE2316-treated tumours, and that 

extracellular matrix regulation was also altered by UE2316. Imaging of tumour 

sections using Second Harmonic Generation microscopy confirmed that UE2316 

altered Type I collagen deposition in SCC (P<0.001) but not PDAC.  

11β-HSD1 inhibition can increase tumour growth, possibly via suppression of 

inflammatory/immune cell signalling and alteration of the extracellular matrix, and 

tumours with higher GR and 11β-HSD1 content, such as SCC, may be more at risk. 

Interestingly this investigation found no evidence of increased angiogenesis in vivo or 

ex vivo after UE2316 treatment, suggesting that 11β-HSD1 inhibition does not 

promote angiogenesis in all ischaemic environments. Future work must focus on the 

effects of 11β-HSD1 inhibition on the immune and extracellular matrix component of 

the tumour microenvironment. While promotion of pathological angiogenesis does not 

appear to pose a major threat, 11β-HSD1 inhibitors may still interact with the immune 

and inflammatory environment in tumours to the detriment of health. 

Lay Abstract 

Glucocorticoids are hormones that regulate the body’s response to stress. Exposure to 

sustained high levels of glucocorticoids can be damaging to health, and so reducing 

levels is desirable for treating diseases such as diabetes and Alzheimer’s. However, 

care must be taken not to disrupt glucocorticoid levels throughout the body. 

Glucocorticoids are activated in specific tissues by the enzyme 11β-hydroxysteroid 

dehydrogenase type I (11β-HSD1), and blocking the action of this enzyme is 

considered a safer method for reducing their detrimental effects in targeted areas.  

Glucocorticoids also prevent the growth of new blood vessels (that is, they are anti-

angiogenic). 11β-HSD1 inhibitors therefore promote the growth of new blood vessels 

(angiogenesis) by reducing glucocorticoid levels. While this promotes recovery in 

mice that have suffered a heart attack, it could also cause tumours to grow more 

quickly by increasing their blood supply. This project tested the hypothesis that 11β-
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HSD1 inhibition promotes tumour growth by increasing angiogenesis, using mouse 

models of skin and pancreatic cancer. 

Mouse skin cancer or pancreatic cancer cells were injected into mice which had 

received either (1) no treatment, (2) a drug that stops 11β-HSD1 generating 

glucocorticoids, or (3) genetic deletion of 11β-HSD1. Developing tumours were 

measured by callipers over 11-16 days, before animals were killed and tissues 

collected. Skin tumours grew more quickly in mice given a drug to block 11β-HSD1 

generating glucocorticoids; this meant that the tumours in these mice were bigger than 

in controls. Pancreatic tumours were unaffected by 11β-HSD1 inhibition or deletion. 

The number of blood vessels in tumours, and the angiogenic signals they produced, 

were not affected by 11β-HSD1 inhibition/deletion in either tumour type. Skin 

tumours had more 11β-HSD1 and more of the glucocorticoid receptor than pancreatic 

tumours. 

Adding glucocorticoids to a piece of mouse aorta grown on a plate prevented new 

blood vessels forming. This effect was prevented in aortas from mice lacking 11β-

HSD1, but was not prevented by the drug that blocked 11β-HSD1. The growth and 

survival of cancer cells cultured on a plate were also unaffected by 11β-HSD1 

inhibition and by glucocorticoids. Profiling gene expression in skin tumours showed 

that 11β-HSD1 inhibition reduced immune cell signalling, and affected structural 

components of the tumour, in particular collagen. Imaging of tumour sections 

confirmed that the amount of collagen in skin tumours, but not pancreatic tumours, 

was reduced by 11β-HSD1 inhibition.  

In summary, using a drug to stop 11β-HSD1 generating glucocorticoids can increase 

tumour growth, possibly by suppressing immune signalling and altering the structure 

of the tumour. Tumour types with more 11β-HSD1 and glucocorticoid receptor, such 

as skin cancer, may be more at risk.  Interestingly this investigation found no evidence 

of increased blood vessel growth after 11β-HSD1 inhibition, suggesting that local 

glucocorticoids influence blood vessels differently in the heart and in tumours. While 

11β-HSD1 inhibitors may not promote blood vessel growth, they may still pose a 

threat. Future work must determine the mechanisms by which 11β-HSD1 inhibition 

affects immune cells in tumours and tumour structure. 
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1 Introduction  

Glucocorticoids are vital modulators of the physiological stress response, with wide-

ranging effects across almost every major organ system (Sapolsky et al., 2000). These 

steroid hormones have been exploited clinically for over half a century for their anti-

inflammatory and immunosuppressive effects (Hench & Kendall, 1949) and are today 

still commonly used to treat both acute and chronic inflammatory conditions. These 

include rheumatoid arthritis, dermatological conditions, inflammatory bowel disease, 

asthma and multiple sclerosis (Coutinho and Chapman, 2011). Their potent 

immunosuppressive effects are also exploited clinically in the treatment of leukaemia 

and immunosuppression before organ transplant (Coutinho and Chapman, 2011; Lin 

and Wang, 2016).  

In terms of physiology, when a stressor is encountered, the hypothalamic-pituitary-

adrenal (HPA) axis is activated, leading to a rise in circulating cortisol (in man) or 

corticosterone (in rats and mice) (Sapolsky et al., 2000). Negative feedback to both the 

hypothalamus and the pituitary ensures basal systemic glucocorticoid levels are 

maintained within a predictable range, with a diurnal peak and nadir under circadian 

control (Oakley and Cidlowski, 2013). The major role of glucocorticoids is in the 

regulation of energy metabolism; glucocorticoids oppose the effects of insulin, 

inducing gluconeogenesis and increasing free energy stores to fuel skeletal muscle 

metabolism (Walker, 2007). Glucocorticoids also exert myriad effects on other 

systems in the body, influencing reproductive function, memory, vascular tone, 

immunity and adiposity (Sapolsky et al. 2000). 

Whilst glucocorticoids are pivotal in coordinating the physiological stress response, 

they can become maladaptive if present at chronically high levels. Consequences of 

excessive glucocorticoid exposure are apparent in Cushing’s syndrome, in which 

glucocorticoid levels are constantly elevated, due either to a pituitary tumour or long-

term therapeutic steroid administration (Whitworth et al., 2000). Patients with 

glucocorticoid excess present with a range of debilitating cardiometabolic disorders, 

including increased visceral adiposity, poor glycaemic control and slow wound healing 

(Walker, 2007). This poor wound healing is attributable in part to the anti-angiogenic 
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effects mediated by active glucocorticoids (Small et al., 2005). For more than three 

decades, glucocorticoids have been known to potently inhibit angiogenesis, though to 

this day the mechanisms involved remain uncertain (Folkman et al., 1983; Small et 

al., 2005). 

Reducing glucocorticoid action is, therefore, clinically desirable in the management of 

metabolic disorders, such as type II diabetes, but manipulating systemic glucocorticoid 

action risks inducing adrenal insufficiency. As well as the tight systemic regulation of 

circulating glucocorticoid concentrations by the HPA axis, intracellular glucocorticoid 

concentrations are controlled at the pre-receptor level by two isozymes: 11β-

hydroxysteroid dehydrogenase (11β-HSD) types 1 and 2 (Seckl & Walker, 2001). 11β-

HSD2 functions as a dehydrogenase in mineralocorticoid target tissues, where it 

converts glucocorticoids to their inactive metabolites and prevents glucocorticoid 

occupancy of the mineralocorticoid receptor (MR). 11β-HSD1 is expressed in 

glucocorticoid target tissues where it acts predominantly as a reductase, activating 

glucocorticoids to amplify their effects at the glucocorticoid receptor (GR) (Chapman 

et al., 2013b).  

Manipulation of the 11β-HSDs presents a novel therapeutic opportunity to control 

tissue-specific glucocorticoid levels, without the risks associated with HPA axis 

perturbation. 11β-HSD1 selective inhibitors have been developed to improve 

glycaemic control in type II diabetes (Anderson and Walker, 2013) and these have also 

shown considerable promise in the treatment of Alzheimer’s disease (Webster et al., 

2017). Pre-clinical evidence has also shown that 11β-HSD1 inhibition can promote 

angiogenesis, improving recovery post-myocardial infarction (Small et al., 2005; 

McSweeney et al., 2010) and reducing intra-adipose tissue hypoxia in obesity 

(Michailidou et al., 2012). Whilst these are encouraging findings, the potential for 11β-

HSD1 inhibitors to promote angiogenesis could also pose a risk in diseases associated 

with pathological angiogenesis, such as proliferative diabetic retinopathy (PDR) and 

solid tumour growth (Chung and Ferrara, 2011). These diseases are more common in 

the elderly, a population that are likely to benefit from the positive effects of 11β-

HSD1 inhibitors on glycaemic control and cognitive function. Therefore, this risk 

cannot be taken lightly.  
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Few studies to date have directly addressed this risk. Recent work in a neonatal retinal 

hypoxia model suggests that 11β-HSD1 inhibition may not pose a threat to PDR 

(Davidson et al., 2017) but evidence suggests that 11β-HSD1 manipulation can 

influence tumour growth (Liu et al., 2016; Cirillo et al., 2017). Tumours require their 

own blood supply if they are to grow beyond 1-2mm in size (Hanahan and Folkman, 

1996). This is achieved via an angiogenic ‘switch’, by which tumours stimulate the 

excessive growth of a disorganised and tortuous neovasculature (Carmeliet, 2003). 

Targeting this blood supply is an important focus of cancer research (Carmeliet & Jain 

2011; Folkman 2001). Furthermore, glucocorticoids are known to inhibit tumour 

angiogenesis and growth in certain contexts (Folkman et al. 1983; Yano et al. 2006). 

The question of whether local glucocorticoid regeneration plays an important role in 

regulating tumour angiogenesis and growth forms the focus of this thesis.  

1.1 Glucocorticoid production 

1.1.1 Synthesis, secretion and clearance 

Glucocorticoids are part of the corticosteroid family of steroid hormones. They are 

synthesised from cholesterol, predominantly in the zona fasciculata of the adrenal 

cortex, via a pathway catalysed by members of the cytochrome P450 (CYP) oxidative 

enzyme family located on the inner membrane of the endoplasmic reticulum (ER) 

(Figure 1.1) (Parente, 2001). Cortisol is the major glucocorticoid produced in the 

human adrenal gland, whilst in rats and mice corticosterone is the major glucocorticoid 

as rodent adrenal glands lack the enzyme 17α-hydroxylase (Luu-The et al., 2005). The 

zona glomerulosa of the adrenals produces mineralocorticoids (Curnow et al., 1991), 

the other major class of corticosteroid which are primarily involved in the regulation 

of sodium retention, blood volume and blood pressure. Aldosterone is the primary 

mineralocorticoid (Briet and Schiffrin, 2010).  

Glucocorticoids are released from the adrenals into the blood stream where they 

circulate bound to plasma proteins. Under non-stressed conditions, less than 6% of 

circulating cortisol is unbound in humans, with 80-90% bound to corticosteroid 

binding globulin (CBG) and the remainder bound to albumin (Lewis et al., 2005).  
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Clearance of glucocorticoids occurs predominantly in the liver, where they are 

inactivated via one of several enzymatic pathways before excretion in the urine (Nixon 

et al., 2012). The key route of relevance to this project is interconversion of active 

glucocorticoids and their inactive counterparts via the 11β-HSDs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 – Glucocorticoid synthesis in rodents and humans. The enzymatic pathway by 

which glucocorticoids are produced from cholesterol, in the zona fasciculata of the adrenal 

cortex. Rodents lack CYP17 (17α-hydroxylase) and thus do not produce those steroids shown 

in the right half of the figure. Adapted from Boucher et al., 2014. 
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1.1.2 Systemic regulation  

Adrenal glucocorticoid release is under the control of the HPA axis. Upon the 

triggering of the stress response, neurons of the paraventricular hypothalamus release 

corticotropin releasing hormone (CRH) which in turn stimulates the corticotrophs of 

the anterior pituitary gland to release adrenocorticotropic hormone (ACTH) into the 

systemic circulation. ACTH stimulates increased adrenal production of 

glucocorticoids by both enhancing the delivery of cholesterol into the inner 

mitochondrial membrane, and by increasing the expression of steroidogenic enzymes. 

The HPA axis is maintained by a negative feedback system; corticosteroids bind the 

GR in the hypothalamus to inhibit CRH release, and in the pituitary to reduce CRH 

action and prevent ACTH secretion (Briassoulis et al., 2011; Oakley and Cidlowski, 

2013).  

Under non-stressed conditions, glucocorticoid release is regulated in a circadian 

fashion by the suprachiasmatic nucleus of the hypothalamus (Malisch et al., 2008). 

Human plasma cortisol levels are at their nadir between 8pm and midnight, peaking 

around 7-11am and declining throughout the day (Weitzman et al., 1971; Nomura et 

al., 1997; Chan and Debono, 2010). This circadian pattern is reversed in rodents, with 

plasma corticosterone levels at their lowest early in the morning (Harris et al., 2001; 

Oster et al., 2006). Typical nadir human serum cortisol levels are <50 nmol/l rising to 

peak levels of ~500 nmol/l (Parente, 2001; Debono et al., 2009; Jung et al., 2014), 

while cortisone ranges from ~10 - 60 nM (Nomura et al., 1997). In mice, baseline 

corticosterone ranges from ~25nmol/l at nadir to ~600nmol/l, and 11-

dehydrocorticosterone (11-DHC) from ~2.5 - 10nM, but levels vary between strains 

(Kotelevtsev et al., 1997; Harris et al., 2001; Yau et al., 2007; Benedetti et al., 2012; 

Gong et al., 2015). Aldosterone circulates at a lower concentration than cortisol in 

humans; levels in human plasma are ~100 - 800 pmol/L (Fischbach and Dunning, 

2009). 



Chapter 1 - Introduction 

27 

 

1.2 Glucocorticoid action 

1.2.1 Receptor binding 

Upon reaching target cells, glucocorticoids dissociate from their transport proteins and 

diffuse directly through the plasma membrane due to their lipophilic structure. They 

then bind to intracellular steroid hormone receptors in the cytoplasm, which form 

homodimers and are translocated to the nucleus where they bind DNA response 

elements and regulate transcription (Walker, 2007). Around ~2% of the human 

genome is regulated by glucocorticoids (Reddy et al., 2009). Glucocorticoids bind to 

both the GR (type 2 corticosteroid receptor) and the MR (type I corticosteroid 

receptor). GR is ubiquitously expressed whilst MR is expressed in the kidney, colon, 

vasculature, hippocampus, heart, and adipose tissue (Walker, 2007). The GR binds 

cortisol with high affinity (KD = ~20-25nM) compared with aldosterone (Hollenberg 

et al., 1985; Mulatero et al., 1997). The MR binds both glucocorticoids with relatively 

similar affinity (KD = ~0.5-1.3nM) (Krozowski and Funder, 1983; Arriza et al., 1987). 

As cortisol circulates at a 100-1000-fold higher levels than aldosterone, the MR is 

usually tonically occupied by cortisol in the absence of pre-receptor metabolism 

(Arriza et al., 1987). Glucocorticoids may also exert some rapid non-genomic effects 

via cell surface receptors (Tasker et al., 2006).  

GR and MR are both ligand-activated transcription factors (Parker, 1993). Upon 

binding their ligands, receptors dissociate from their associated heat shock proteins 

and are translocated to the nucleus where they form homodimers. These homodimers 

bind to specific sequences of DNA in the promoter regions of target genes, termed 

glucocorticoid response elements (GREs). Receptor-ligand complexes are able to 

activate transcription (transactivation) or to repress transcription (transrepression) of 

target genes (McKenna and O’Malley, 2002; Walker, 2007). Some of the 

immunomodulatory effects of glucocorticoids are mediated via direct protein-protein 

binding of GR to other transcription factors, such as nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) – this transrepression does not depend on GREs 

(Coutinho and Chapman, 2011). 
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1.2.2 Effects of glucocorticoids 

Glucocorticoids are vital modulators of the physiological stress response and, as such, 

interact with most major organ systems, exerting a huge range of physiological effects 

that have been reviewed thoroughly elsewhere (Andrews and Walker, 1999; Sapolsky 

et al., 2000; Walker, 2007; Coutinho and Chapman, 2011). Background of relevance 

to the present project can be categorised as effects on the cardiovascular system, the 

immune system and inflammatory response and metabolism.  

 The cardiovascular system 

 Cardiac output 

Glucocorticoids prepare the body for stressful conditions, and their effects on the 

cardiovascular system reflect this. Glucocorticoids increase arterial pressure, heart rate 

and, consequently, cardiac output. They also induce dynamic changes in blood flow to 

favour skeletal muscle over the gastrointestinal and renal systems (Galosy et al., 1981).  

The importance of glucocorticoids in regulating blood pressure can be seen in 

endocrine disorders; hypertension is a symptom of Cushing’s syndrome whilst 

hypotension is evident in cases of adrenal insufficiency (Sapolsky et al., 2000; 

Whitworth et al., 2000; Goodwin and Geller, 2012). These effects are mediated 

predominantly by the permissive effect of glucocorticoids on sympathetic function, 

which include increased production of enzymes involved in adrenaline synthesis and 

reduced expression of enzymes involved in catecholamine breakdown at 

neuromuscular junctions (Dailey and Westfall, 1978; Kennedy and Ziegler, 1991; 

Sapolsky et al., 2000). 

 Vessel tone 

Both GR and MR are expressed in cardiovascular tissues, including in cardiomyocytes 

of the myocardium (Lombès et al., 1992; Fraccarollo et al., 2011; Lother et al., 2011; 

Rog-Zielinska et al., 2013, 2015) and the arterial wall (Hadoke et al., 2006; Walker, 

2007). GR and MR have been detected in the medial layer of mouse vessels (Christy 

et al., 2003) and rabbit (Kornel et al., 1982; Lombès et al., 1992). MR has been 

detected in cultured rat smooth muscle cells and fibroblasts (Meyer and Nichols, 1981) 

and glucocorticoid and mineralocorticoid binding demonstrated in human smooth 
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muscle cells (Scott et al., 1987) and endothelium (Inoue et al., 1999; Oberleithner et 

al., 2003). By acting at the GR, glucocorticoids increase smooth muscle 

responsiveness to noradrenaline (Sudhir et al., 1989). This is likely mediated by 

reduced prostaglandin synthesis (Handa et al., 1984). As GR activation has been 

shown to prevent the release of prostaglandins from rabbit endothelial cells 

(Rosenbaum et al., 1986), this may indicate a paracrine mechanism between the layers 

of the vessel wall.  Glucocorticoids also bind GR to inhibit acetylcholine-induced 

vasodilation of the endothelium via reduced nitric oxide (NO) synthesis (Mangos et 

al., 2000). GR activation also contributes to hypertension by increasing expression of 

angiotensin type II receptors in rat vascular smooth muscle cells (VSMCs) (Sato et al., 

1994; Provencher et al., 1995) but paradoxically has also been shown to downregulate 

levels of the powerful vasoconstrictor endothelin-1 (Provencher et al., 1995).  This 

latter effect may be associated with the regulation of vascular inflammation rather than 

vessel tone. The matter is complicated by action of glucocorticoids at the MR, which 

are sometimes paradoxical (Adler and Williams, 2007) – MR activation in the 

endothelium can enhance arterial vasodilatation via endothelial NO synthesis (Liu et 

al., 2003; Uhrenholt et al., 2003) but in the smooth muscle, MR activation causes 

vasoconstriction (Arima et al., 2004). In healthy vessels, these two opposing actions 

likely balance one another, but in vessels in which the endothelium is damaged, the 

vasodilatory effects at the endothelium may be lost (Adler and Williams, 2007). 

 Inflammation and fibrosis in vascular tissues 

MR activation causes perivascular and cardiac inflammation with associated fibrosis 

(Funder, 2005; Joffe and Adler, 2005). MR antagonists, such as spironolactone or the 

more selective eplerenone, are used clinically to treat congestive heart failure and left 

ventricular hypertrophy (LVH) (Pitt et al., 1999; Soberman and Weber, 2000). Whilst 

the detrimental effects of MR activation are mediated by aldosterone (particularly in 

combination with high-salt diet), tonic occupancy of the MR is predominantly by 

cortisol.  

Both long-term treatment with exogenous glucocorticoids and chronic over-

production of endogenous glucocorticoids (as present in Cushing’s syndrome) are 
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associated with an increased risk of atheromatous disease (reviewed by Walker, 2007). 

Glucocorticoids influence a variety of factors likely to influence this process. 

 Angiogenesis 

Angiogenesis, the growth of new vessels from the existing vasculature, is potently 

inhibited by glucocorticoids. Folkman et al. (1983) were the first to describe the 

angiostatic effects of glucocorticoids, discovered during their studies of tumour 

angiogenesis. Steroids were shown to inhibit vessel growth in the presence of heparin 

leading to the conclusion that steroids may interact with endogenous heparins to 

tonically inhibit new vessel growth (Folkman and Ingber, 1987). In separate studies, 

glucocorticoids were shown to inhibit VSMC proliferation, possibly via decreased 

sensitivity to mitogenic stimulation (Longenecker et al., 1982, 1984). The mechanism 

of angiostasis was not determined, but during this initial period of interest the 

mechanism was proposed to involve disruption of the capillary basement membrane, 

possibly related to reduced collagen deposition (Maragoudakis et al., 1989).  

These early studies used supraphysiological concentrations of glucocorticoids. More 

recently, physiological glucocorticoid concentrations have been shown to inhibit 

angiogenesis both in vitro and in vivo (Small et al., 2005). Importantly, these effects 

were shown to be mediated via the GR, as the GR antagonist RU38486 abolished the 

angiostatic effects of glucocorticoids whereas spironolactone had no effect. The 

mechanism involved remains unclear. Corticosteroids decrease expression of vascular 

endothelial growth factor (VEGF) in cultured human VSMCs (Nauck et al., 1998) and 

in human proximal renal tubular epithelial cells (Leonard et al., 2005). Glucocorticoids 

alter cytoskeletal arrangement in endothelial cells (Logie et al., 2010) and increase 

expression of the angiostatic protein thrombospondin-1 (Rae et al., 2009; Logie et al., 

2010). Importantly, when TSP-1 was blocked using siRNA, cortisol no longer caused 

angiostasis in vitro (Rae et al., 2009). Yano et al. (2006) also demonstrated the 

angiostatic (and consequently anti-tumour) effects of glucocorticoids in a murine 

model of prostate cancer.  
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 The immune system and inflammatory response 

 Therapeutic use 

Glucocorticoids are used therapeutically to suppress the immune system before organ 

transplantation and to treat a range of inflammatory and auto-immune conditions, such 

as rheumatoid arthritis, psoriasis and asthma (Maxwell et al., 1994). In the clinic, 

therapeutic glucocorticoids are usually synthetic derivatives of the endogenous 

glucocorticoids, structural alterations of which confer variable characteristics in terms 

of receptor binding and metabolism by the 11β-HSDs (Diederich et al., 2004). For 

example, dexamethasone and prednisolone are commonly used synthetic 

glucocorticoids which are relatively selective and potent GR agonists. Dexamethasone 

and prednisolone are metabolised by 11β-HSD2 but crucially 11-dehydroDex retains 

potency at the GR (Best et al., 1997; Diederich et al., 2004). 

Glucocorticoids exert their anti-inflammatory and immunosuppressive effects on most 

cells of the immune system by downregulation of a huge range of pro-inflammatory 

chemokines and cytokines, including many interleukins (IL), interferon gamma (IFN-

γ) and tumour necrosis factor alpha (TNF-α), as well as mediators of inflammation 

such as histamine and adhesion molecules. They reduce T cell activation and 

proliferation and promote the pro-inflammatory Th1 response while suppressing the 

anti-inflammatory Th2 response. They also alter the balance of leukocyte survival and 

apoptosis, and prevent leukocyte infiltration into sites of inflammation (Sapolsky et 

al., 2000; Coutinho and Chapman, 2011). These actions are mediated by binding at the 

GR (Cronstein et al., 1992). The importance of glucocorticoids in constraining the 

immune and inflammatory responses is evident in mice administered endotoxin; 

adrenalectomised mice do not survive doses of endotoxin that control mice can 

withstand, and dexamethasone pre-administration completely prevents lethality 

(Bertini et al., 1988). 

 Pro-inflammatory actions of glucocorticoids 

Whilst high dose clinically-administered glucocorticoids exert anti-inflammatory and 

immunosuppressive effects, physiologically they can exert immunostimulatory 

effects. Sapolsky et al. (2000) described the effects of glucocorticoids on the stress 
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response in terms of four criteria: permissive; suppressive, preparative and 

stimulatory. Glucocorticoids have been reported to have permissive inflammatory 

effects by elevating TNF-α and IL-6 concentrations in plasma after lipopolysaccharide 

(LPS) administration (Barber et al., 1993); these cytokines promote the growth and 

activation of T-cells (Kuhweide et al., 1990). Likewise, Wiegers et al. (1993, 1994, 

1995) showed that physiologically-relevant concentrations of corticosterone (500-

1000nM) directly enhanced T-cell growth in vitro (Wiegers et al., 1993, 1994, 1995) 

and in vivo (Wiegers et al., 1993) in rat tissues.  

The explanation Wiegers et al. (1993) offer for this differential effect between 

pharmacological and physiological glucocorticoids is that low concentrations of 

glucocorticoids enhance the T-cell response via T-cell MR activation, while high 

concentrations of glucocorticoids may inhibit this response via T-cell GR activation. 

In further support of this theory, MR blockade in obese mice reduced the expression 

of pro-inflammatory mediators such as TNF-α and MCP-1 (Guo et al., 2008). Sapolsky 

et al. (2000) highlight the importance of re-interpreting previous studies that made use 

of synthetic glucocorticoids with a low affinity for MR, and studies that made use of 

the GR antagonist RU38486, in light of this theory. Increased immune cell responses 

after GR blockade could result from preferential activation of MR rather than removal 

of the suppressive GR-mediated effects (Sapolsky et al.,  2000). 

Whilst MR-mediated effects may explain enhanced T-cell activation by 

glucocorticoids, they cannot explain some of the observed pro-inflammatory actions 

of glucocorticoids. Low concentrations of corticosterone (100 pM) administered to rat 

macrophages stimulated them to produce pro-inflammatory cytokines, chemokines 

and NO, an effect that was not attributable to activation of the MR as lentiviral 

inactivation of the MR had no effect (Lim et al., 2007). Thus both GR and MR may 

play a role in mediating the pro-inflammatory effects of glucocorticoids, particularly 

in macrophage populations which express both receptors (Liu et al., 1999; Barish et 

al., 2005). Of note, the same study found high concentrations of glucocorticoids (1 

µM) potently inhibited this inflammatory activation (Lim et al., 2007), again 

demonstrating the importance of glucocorticoid concentration when considering 

effects.  
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 Metabolism 

Though focus has thus far centred on their role in inflammation, the name 

glucocorticoid is derived from the key role that glucocorticoids play in glucose 

homeostasis. Glucocorticoids in most respects oppose the action of insulin by 

mobilising energy stores for use in combating a stressor. Glucocorticoids rapidly 

elevate blood glucose through a combination of mechanisms: they stimulate hepatic 

gluconeogenesis and glycogenolysis by elevating glucagon levels, and promote insulin 

resistance to redirect glucose from storage sites to active muscle (Sapolsky et al., 

2000). These effects last for longer than the acute metabolic effects elicited by 

adrenaline. Longer-term elevation of glucocorticoid levels also stimulates lipolysis 

and proteolysis to mobilise fatty acids and amino acids as alternative energy sources 

(Peckett et al., 2011; Wang et al., 2016). 

The maladaptive effects of chronic glucocorticoid excess on metabolism are apparent 

in Cushing’s syndrome, which is characterised by central obesity, dyslipidaemia, 

muscle wasting, hyperglycaemia and insulin resistance (Walker, 2007). While short-

term glucocorticoid action mobilises energy stores and opposes insulin, chronic 

elevation of glucocorticoids causes increased insulin secretion and can lead to 

redistribution of fat from subcutaneous to intraabdominal depots associated with 

increased risk of adverse cardiometabolic consequences (Dallman et al., 2004). The 

preferential storage in these depots may be due to the higher levels of GR expression 

in omental compared to subcutaneous adipocytes (Veilleux et al., 2010).  

Glucocorticoids thus influence and regulate a wealth of integral physiological 

processes across the body. Manipulating glucocorticoid action could be of benefit to 

myriad metabolic, cardiovascular, cognitive and systemic inflammatory disorders. The 

tissue-specific regulation of glucocorticoids by 11β-HSD1 and 2 offers a novel 

therapeutic opportunity to regulate the levels of glucocorticoids reaching target tissues. 



Chapter 1 - Introduction 

34 

 

1.3 The 11β-hydroxysteroid dehydrogenases  

1.3.1 Function 

Glucocorticoids are systemically governed by the HPA axis and plasma protein 

binding. On a local level, they are subject to pre-receptor regulation by the 11β-HSD 

isozymes, allowing for tissue-specific differences in glucocorticoid activity. 11ß-

HSD1 is a dihydronicotinamide adenine dinucleotide phosphate (NADP(H))-

dependent bidirectional oxidoreductase which acts predominantly as a reductase in 

vivo (Cai et al., 2001; Seckl and Walker, 2001; Dover et al., 2007), though in vivo 

dehydrogenase activity has been reported (Morris et al., 2003). It is highly expressed 

in glucocorticoid target tissues such as liver, brain, adipose and vascular tissues, where 

it amplifies local glucocorticoid concentrations to increase binding at the GR (Seckl 

and Walker, 2001).  

11βHSD-2 functions uniformly as a nicotinamide adenine dinucleotide phosphate 

(NADP+)-dependent dehydrogenase, converting cortisol (and corticosterone in 

rodents) to inactive 11-keto metabolites (Stewart and Krozowski, 1999). It acts 

primarily to allow selective access of aldosterone to the MR, but also has a protective 

role in the placenta (Edwards et al., 1993). Loss of 11β-HSD2 function (as seen in the 

syndrome of apparent mineralocorticoid excess; SAME) mimics the effects of 

excessive aldosterone on cardiovascular tissues (Funder, 2005).  The respective 

activity of the isozymes is shown in Figure 1.2.  
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Figure 1.2 – Systemic and local glucocorticoid regulation. The Hypothalamic-Pituitary-

Adrenal (HPA) axis maintains systemic glucocorticoids within tight parameters under normal 

healthy conditions through the regulated release of CRH and ACTH. The isozymes 11β-

hydroxysteroid dehydrogenase (11β-HSD) 1 and 2 control pre-receptor metabolism of local 

glucocorticoids in specific tissues. 11β-HSD1 acts predominantly as a reductase in vivo, 

converting cortisone to cortisol, using NADPH as a co-factor. 11β-HSD2 catalyses the reverse 

reaction, acting as a dehydrogenase in vivo to inactivate cortisol to cortisone, using NAD+ as 

a co-factor. 

ACTH 

Hypothalamus 

Anterior 
Pituitary 

Adrenal cortex 

CRH 

Cortisol 

11β-HSD2 

11β-HSD1 

Cortisone 

Negative feedback 

NAD+ NADH 

NADP+ NADPH 

Systemic regulation 

Pre-receptor local 
regulation 



Chapter 1 - Introduction 

36 

 

1.3.2 Structure 

Both 11β-HSD1 and 2 are microsomal isozymes of the short chain alcohol 

dehydrogenase superfamily (Stewart and Krozowski, 1999). 11β-HSD1 (in human and 

mouse) is a 292 amino acid protein with a molecular mass of 34kDa (Chapman et al., 

2013b). The type I isozyme is encoded by the Hsd11b1 gene located on chromosome 

1 and is highly conserved between species (Zhou et al., 2012). The enzyme is 

comprised of a cofactor binding site, a substrate binding site facing the luminal space 

(Odermatt & Klusonova, 2015), and a highly hydrophobic N-terminal domain that 

anchors the enzyme to the membrane of the smooth ER where it is located. It has an 

affinity of ~ 2µM for cortisol (Zhou et al., 2012) and a huge range of reported affinities 

for cortisone (Km: ~150nM - 20µM, Chapman et al., 2013b).  

1.3.3 Discovery of the 11β-HSD isozymes 

Extra-adrenal interconversion of cortisone and cortisol was first demonstrated over 60 

years ago (Amelung et al. 1953). Over three decades later, the first evidence of 11β-

HSD emerged, though at this time there was thought to be only one enzyme (Lakshmi 

& Monder, 1988). Two groups published simultaneously on the role of 11β-HSD in 

SAME, sufferers of which exhibit sodium retention, hypokalaemia and hypertension 

without an associated elevation in circulating aldosterone. This syndrome could be 

explained by congenital deficiency of 11β-HSD (or its inhibition by the liquorice 

derivative glycyrrhetinic acid) allowing inappropriate access of glucocorticoids to the 

MR (Edwards et al., 1988; Funder et al., 1988). Stewart et al. (1988) described the 

first adult case of 11β-HSD insufficiency, in which the patient presented with 

hypertension, hypokalaemia and suppressed renin-angiotensin-aldosterone system 

(RAAS) activity due to excessive MR activation by cortisol in the kidney and likely 

also in the blood vessel wall. This syndrome could be treated using dexamethasone, 

which selectively activated the GR and suppressed the HPA axis. A second interesting 

case study (Conn et al., 1968) describes a patient presenting with these same 

symptoms. It was deduced that excessive liquorice consumption (2-3 36 g bars per day 

for 7 years) was responsible, as its removal from the patient’s diet led to recovery. At 

the time, this was considered to be due to direct mineralocorticoid action by liquorice-

derived compounds, but glycyrrhetinic acid has since been confirmed to be a liquorice 
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derivative that potently inhibits 11β-HSD activity (Stewart et al., 1987). Subsequent 

purification and cloning revealed the distinct expression sites and substrate affinities 

of the type I and type II isozymes (Monder & Lakshmi 1989; Stewart et al. 1991; 

Albiston et al. 1994). 

1.3.4 Activity 

Whilst 11β-HSD2 is unidirectional in its dehydrogenase activity (Brown et al., 1996), 

there has been some debate over the predominant activity of 11β-HSD1 (Seckl & 

Walker 2001; Morris et al., 2003), with varying results seen between studies. Early 

studies examining 11β-HSD1 purified from rat liver showed bidirectional activity; 

however, the enzyme showed predominant reductase activity across a number of intact 

cell lines, including hepatocytes (Jamieson et al., 1995), adipocytes (Bujalska et al., 

1997), VSMCs (Brem et al., 1995) and skin fibroblasts (Hammami & Siiteri, 1991).  

Some cell lines, such as Leydig cells (Phillips et al. 1989; Leckie et al. 1998), have 

generated contrasting results, though developmental stage of these cells may cause a 

switch in activity  (Ge et al., 1997). Culture conditions and metabolic conditions may 

also influence activity (Zhou et al., 2012), making it difficult to interpret some 

contradictory evidence. 

Critically, the same cells showing predominant reductase activity in culture often 

displayed bidirectional activity when homogenised (Brem et al., 1995; Jamieson et al., 

1995), suggesting that 11β-HSD1 only exhibits bidirectional activity when released 

from the intracellular compartment. 11β-HSD1 is located within the SER luminal 

compartment in close proximity with another enzyme - hexose-6-phosphate 

dehydrogenase (H6PDH). H6PDH interacts with its substrate glucose-6-phosphate 

(G6P) and generates a large pool of NADPH. The abundance of NADPH then drives 

the reductase activity of 11β-HSD1 activity in intact cells (Lavery et al., 2006; Walker 

et al., 2007; Atanasov et al., 2008; Zhang et al., 2009), resolving the differential 

activity between intact and disrupted tissues. 

Evidence of high cortisol-to-cortisone ratio in the hepatic circulation in humans also 

suggests predominance of reductase activity in vivo (Walker et al., 1992). The 

generation of 11β-HSD1 knockout (KO) mice at the University of Edinburgh 
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demonstrated that 11β-HSD1 is the sole enzyme capable of reducing 11-keto 

metabolites to their active counterparts (Kotelevtsev et al., 1997). The enzyme has 

several other substrates, including bile acids and xenobiotics. It is not within the scope 

of this introduction to cover these but they have been reviewed in detail elsewhere 

(Zhou et al., 2012; Chapman et al., 2013b). 

1.3.5 Regulation 

Several factors regulate 11β-HSD1 expression. Sexual dimorphism of hepatic enzyme 

expression is apparent in rats, with male animals expressing more 11β-HSD1 due to a 

pulsatile release in pituitary growth hormones as opposed to the continuous release in 

females (Low et al., 1994). Note that this is not the case in mice (Rajan et al., 1995); 

thus there are both inter-species and inter-gender differences in 11β-HSD1 expression. 

Glucocorticoids themselves increase expression of the enzyme in many cultured cell 

types, including: adipocytes (Engeli et al., 2004), fibroblasts (Hammami and Siiteri, 

1991), hepatocytes (Jamieson et al., 1995) and neuronal cells (Rajan et al., 1996). In 

intact tissues this only remains true for some tissue types (adipose for example) 

(Balachandran et al., 2008) whilst in tissues such as liver, enzyme expression is 

reduced by exposure to glucocorticoids (Smith et al., 1982).  

Pro-inflammatory stimuli such as TNF-α and IL-1 stimulate increased 11β-HSD1 

expression across a range of cell types in vitro, including stromal mesenchymal cells 

(Ahasan et al., 2012) and keratinocytes (Itoi et al., 2013). Furthermore, transgenic 

mice expressing TNF-α show increased hepatic 11β-HSD1, suggesting that 

inflammation may promote enzyme expression in vivo (Ignatova et al., 2009). Co-

administration of pro-inflammatory cytokines with glucocorticoids appears to 

augment this effect (Sun and Myatt, 2003; Ahasan et al., 2012). There is evidence to 

suggest this may not hold true in the murine vasculature, as Dover et al. (2007) did not 

see increased 11β-HSD1 expression or activity ex vivo or in vivo after introducing an 

inflammatory stimulus. Importantly, pro-inflammatory stimuli do not necessarily 

increase enzymatic expression in immune cells (Freeman et al., 2005).  
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1.3.6 Key sites of expression 

11β-HSD1 expression is typically high in glucocorticoid target tissues, and enzyme 

expression is associated with GR expression in many tissues (Whorwood et al., 1992). 

Distribution of 11β-HSD1 is generally similar in mice and humans, with the exception 

of the testis (Tannin et al., 1991; Rajan et al., 1995). mRNA expression is highest in 

liver, with activity also high in adipose tissue (Bujalska et al., 1997), vasculature and 

heart (Walker et al., 1991; Dover et al., 2007), ovary (Benediktsson et al., 1992), brain 

(Lakshmi et al., 1991), uterus and placenta (Burton et al., 1998; Waddell et al., 1998), 

skeletal muscle (Whorwood et al., 2002), as well as immune and inflammatory cells 

(Thieringer et al., 2001; Gilmour et al., 2006) and fibroblasts (Lee et al., 2013; 

Tiganescu et al., 2013; Terao et al., 2014). 

 11β-HSDs in the vasculature 

Early suggestions of a role for 11β-HSD in the vasculature arose from studies using 

glycyrrhetinic acid to inhibit the enzyme in the skin; this potentiated the 

vasoconstrictor response to cortisol suggesting enhanced activation of the GR in 

smooth muscle (Teelucksingh et al., 1990). 11β-HSD1 expression was later confirmed 

in rat vascular smooth muscle, with higher expression in smaller resistance vessels 

than in aorta (Walker et al. 1991). 11β-HSD2 has also been detected in human VSMCs 

(Smith et al., 1996) and both isozymes have been reported in rat endothelial cells 

(Brem et al., 1998). Hadoke et al. (2001), using 11β-HSD1 and 11β-HSD2 KO mice, 

found that 11β-HSD2 KO reduced the release of endothelium-derived-NO, inhibiting 

vasorelaxation. This suggests that 11β-HSD2 is the predominant isoform in the 

endothelium. This effect was reversible with the addition of L-arginine (Christy et al., 

2003). Christy et al. (2003) confirmed that 11β-HSD1 expression co-localised with α-

smooth muscle actin (α-SMA) while 11β-HSD2 expression co-localised with 

angiopoietin receptor 2 (TIE-2) expression, further suggesting this differential 

distribution in the vessel wall. The same study also suggested that the effects of 11β-

HSD2 deletion on vasomotor function may be mediated, at least in part, by renal 

enzyme loss. 11β-HSD2 was also the only isozyme detected in endometrial endothelial 

cells (Rae et al., 2009). 
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 11β-HSDs in immune and inflammatory cells 

Given the powerful immunomodulatory effect of glucocorticoids, the expression of 

the 11β-HSDs in immune and inflammatory cell types has been studied extensively. 

11β-HSD1 is not expressed in human monocytes until their differentiation into 

macrophages; enzyme expression is increased 10-fold by exposure to pro-

inflammatory cytokines (IL-4/IL-13), and induction is inhibited by IFN-γ, a functional 

antagonist of ILs (Thieringer et al., 2001). 11β-HSD2 is undetectable, or present at 

very low levels, in macrophages and monocytes (Gilmour et al., 2006; Chapman et al., 

2013b). Wild-type (WT) murine macrophages can convert 11-DHC to corticosterone, 

promoting phagocytosis of apoptotic neutrophils in WT mice. This effect is not seen 

in macrophages from 11β-HSD1 KO mice, demonstrating a functional role for 11β-

HSD1 in the resolution of inflammation (Gilmour et al., 2006). This finding suggests 

that 11β-HSD1 inhibition could impede the resolution of inflammation.  

Activation of human macrophages, but not monocytes, with LPS polarises them to a 

‘classically activated’ M1 phenotype and enhances 11β-HSD1 expression, whereas 

alternative activation (M2) has no effect on expression of this enzyme (Chapman et 

al., 2013b). Furthermore, phagocytosis of apoptotic neutrophils reduces 11β-HSD1 

expression in macrophages (Chapman et al., 2009), suggesting that the enzyme plays 

a dynamic role in the inflammatory process. Dendritic cell differentiation induces 11β-

HSD1 expression. Interestingly, this expression is maintained by signals associated 

with innate immune activation (TNF-α, LPS), but is markedly decreased by CD40, a 

surface marker associated with activated antigen presenting cells (Freeman et al., 

2005). 11β-HSD1 is also expressed both in neutrophils and in mast cells (Chapman et 

al., 2013a; Coutinho et al., 2016). 

Murine lymphocytes show only low levels of 11β-HSD1 activity and no 11β-HSD2 

activity, though 11β-HSD1 activity is increased in response to activation or 

polarisation to Th1 or Th2 states (Zhang et al., 2005). Not only does this imply a 

physiological role for pre-receptor glucocorticoid regulation in the mounting of the 

immune response, it also offers a therapeutic opportunity to control aspects of 

lymphocyte function without perturbing the HPA axis.  
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1.4 Angiogenesis 

1.4.1 Process 

To appreciate the effects of 11β-HSD1 manipulation on angiogenesis, an 

understanding of blood vessel development is required. In the developing embryo, 

many endothelial progenitor cells assemble to form a simple network of capillaries, in 

a process termed vasculogenesis. The remodelling of the vasculature to form a 

complex network of mature vessels is called angiogenesis, though there is some 

mechanistic crossover between these two processes (Carmeliet, 2003). As vessels 

mature, they acquire mural cells, including pericytes and VSMCs, which provide 

structural integrity and stability. This process is called arteriogenesis. Angiogenesis is 

complex, and its regulation in adult life is governed by a balance of stimulatory and 

inhibitory factors (Carmeliet, 2005b), some of which act upon many cell types and 

several of which act specifically upon the vascular endothelium (Yancopoulos et al., 

2000).  

Blood vessels are vital in providing oxygen and nutrients for healthy tissues, for 

providing a means by which immune cells can travel between sites, and for allowing 

the transport of waste metabolites for excretion (Carmeliet and Jain, 2011). Finding a 

means by which to promote angiogenesis after ischaemic events, while highly 

desirable clinically (Isner, 2002), has proven challenging due to the myriad factors 

involved in orchestrating the complex angiogenic process. Furthermore, aberrant 

angiogenesis forms part of the pathology of several diseases, including proliferative 

diabetic retinopathy, rheumatoid inflammatory conditions and tumour growth 

(Folkman, 1995). Efforts to prevent angiogenesis have seen more success, with several 

angiogenesis inhibitors now in use; yet these are still limited in their efficacy. This 

section will provide an overview of physiological angiogenesis (for thorough reviews 

see Carmeliet & Jain 2011; Potente et al. 2011). Tumour vessels are abnormal and 

tumour angiogenesis will be described in more detail in Section 1.6.3. 

1.4.2 Vasculogenesis 

Vasculogenesis describes the formation of the primitive vascular network in the 

developing embryo. The early vascular plexus originates from the mesoderm, based 
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on signalling by members of the fibroblast growth factor (FGF) family. Both 

haematopoietic and endothelial cell lineages share a common precursor – the 

haemangioblast - as evidenced by experiments showing that deletion of VEGF 

Receptor 2 (VEGFR2) disrupts both haematopoietic and angioblastic lineages 

(Shalaby et al., 1997). 

In the yolk sac, heamangioblasts form cell aggregates, the inner cells of which are 

haematopoietic in origin and the outer of which are angioblastic. VEGF signalling is 

pivotal in determining angioblast cell fate at this stage; deletion of a single copy of the 

VEGF gene results in embryonic lethality with associated aberrant vessel formation in 

the yolk sac (Carmeliet et al., 1996; Ferrara et al., 1996). Signalling via VEGF 

receptors 1 and 2 (encoded by the Flt1 and Kdr genes, respectively) influences cell 

fate. VEGFR1 suppresses commitment to the haemangioblast lineage (Fong et al., 

1999), a limiting mechanism vital in the functional assembly of vessels during 

vasculogenesis, while VEGFR2 is critical for endothelial cell formation and migration 

(Shalaby et al., 1997). VEGFR3 is expressed in embryonic vasculature, but later 

becomes largely confined to the lymphatic system with the notable exception of 

endothelial sprouting (Tammela et al., 2008). VEGF signalling functions in 

combination with molecules determining the interaction between endothelial cells and 

the extracellular matrix (ECM) to guide the process of vasculogenesis (Carmeliet, 

2000). Even at this early stage, genetically-determined molecular differences can 

influence long term endothelial cell fate (Swift and Weinstein, 2009); Ephrin 

signalling, for example, governs arterial/venous commitment (Gale and Yancopoulos, 

1999). Once formed, angioblasts can migrate to form a new vascular plexus at a distant 

site (Risau, 1997).  

The molecular processes of vasculogenesis were originally thought to be independent 

from angiogenic processes in adult life, but the consensus has now shifted (Carmeliet 

and Jain, 2011), such that now there is interest in ‘therapeutic vasculogenesis’ 

(reviewed extensively in Luttun et al. 2002). This concept is based on findings such as 

the secretion of potent pro-angiogenic factors by circulating endothelial progenitor 

cells derived from monocytes and macrophages (Rehman et al., 2003). The 
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involvement of endothelial progenitor cells in tumour angiogenesis is now subject to 

debate (Patenaude et al., 2010); discussed further in Section 1.6.4.3). 

1.4.3 Angiogenesis 

Vasculogenesis results in the formation of a homogenous vascular plexus, which 

undergoes sprouting and is remodelled extensively to form a functional and complex 

vascular bed – this is the process of angiogenesis (Potente et al., 2011). Angiogenesis 

occurs most commonly as sprouting angiogenesis, during which an angiogenic 

stimulus causes new vessels to bud and branch off from existing vessels. Less 

commonly, networks can be formed via intussusception, which involves pillars of 

ECM splitting vessels. This process occurs under specific circumstances, such as lung 

development (Risau, 1997), but its relevance to typical adult angiogenesis is unclear 

(Carmeliet and Jain, 2011).  

Endothelial cells in mature vessels are quiescent and experience relatively low cell 

turnover, maintained by the coordinated signalling of VEGFs (Lee et al., 2007; 

Stockmann et al., 2008; Tvorogov et al., 2010) and FGFs (Murakami et al., 2008), as 

well as Notch (Benedito et al., 2009; Jakobsson et al., 2010) and angiopoietin-1 (ANG-

1) (Sato et al., 1995; Suri et al., 1996; Saharinen et al., 2008). Several of these signals 

are released in a paracrine fashion by stabilising pericytes. In this quiescent state, 

endothelial cells form a tight monolayer secured with claudins and VE-cadherin, and 

share a basement membrane with their supporting mural cells (Eble and Niland, 

2009).They are oxygen-sensitive, dynamically responding to signals from the hypoxia 

inducible factors (HIF) to regulate flow (Carmeliet and Jain, 2011).  

Upon sensing an angiogenic stimulus (such as VEGF, FGFs, ANG-2, or chemokines), 

vessels undergo a process comprised of several distinct steps; basement membrane 

disintegration, endothelial cell migration, channel formation and vessel maturation and 

survival (Figure 1.3).  
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Figure 1.3 – Sprouting angiogenesis. Physiological angiogenesis can be divided into four 

major processes; i) Basement membrane (BM) disintegration, in which an angiogenic stimulus 

promotes the redistribution of cell junctions, the breakdown of the underlying BM, and the 

loss of mural cell coverage; ii) Endothelial cell (EC) migration, in which the coordinated 

signalling of VEGF and Notch/DLL4 confers tip and stalk cell identity; iii) channel formation, 

in which ECs communicate with the ECM to produce a lumen and new BM; and iv) vessel 

maturation, in which mural cells are recruited and cell become perfused, promoting EC 

survival and quiescence. Non-perfused vessels are pruned and regress. Adapted from 

Francavilla et al., 2009. 
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 Basement membrane disintegration 

When a vessel receives an angiogenic signal, be it part of an inflammatory or hypoxic 

event, vasodilation occurs (mediated by NO) and vessels become hyper-permeable due 

to the redistribution of VE-cadherin and other junctional proteins. This allows plasma 

proteins to extravasate and deposit a provisional ECM (Carmeliet, 2000). Supporting 

pericytes detach from the vessel wall and break away from the basement membrane. 

ANG-2 stimulates this detachment (Augustin et al., 2009), whilst matrix 

metalloproteases (MMPs) degrade the basement membrane (Carmeliet and Jain, 

2011). This has the added benefit of liberating sequestered growth factors, such as 

VEGF and FGF (Arroyo and Iruela-Arispe, 2010). Targeting MMP2 and 9 has been 

seen to inhibit angiogenesis (Brooks et al., 1998; Liu et al., 2014). Evidence from the 

rat aortic ring assay also suggests that VEGF and ANG-1 stimulate the recruitment of 

innate immune cells from the adventitia of large vessels which contribute further pro-

angiogenic cytokines (Aplin et al. 2006).  

 Endothelial cell migration 

VEGF signalling at VEGFR2 causes endothelial cells to upregulate Delta like 

canonical notch ligand-4 (DLL4) expression. The endothelial cells that expresses the 

most DLL4 becomes the ‘tip cell’, which leads the migration of endothelial cells into 

the new ECM by extending numerous filopodia (Phng and Gerhardt, 2009). These 

extensions sense environmental cues like ephrins and semaphorins that guide their 

migration (Carmeliet and Jain, 2011). Tip cell identity is specified by Notch pathway 

signalling (Eilken and Adams, 2010), and endothelial cells dynamically compete for 

this role (Jakobsson et al., 2010). High expression of DLL4 in the tip cell allows for 

activation of notch signalling in the adjacent endothelial cells, which suppresses tip 

cell behaviour and confers the identity of ‘stalk cell’. Disruption of Notch-DLL4 

signalling results in excessive branching and filopodia (Thurston et al., 2007). Stalk 

cells also express high levels of VEGFR1 which function as a VEGF trap and prevent 

further branching (Jakobsson et al., 2010). Several other upstream pathways, such as 

Wnt/β-catenin, also feed into this process by regulating DLL4 expression (Corada et 

al., 2010). 
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 Channel formation 

Stalk cells are able to form the vascular lumen required for perfusion, as well as 

producing junctional proteins with adjacent cells and depositing basement membrane 

to stabilise the new vessel (Phng and Gerhardt, 2009). The mechanism of lumen 

formation may depend on the vascular bed in question (Zeeb et al.,  2010; Potente et 

al., 2011). Cadherins are required for lumen formation, evidenced by cadherin-

deficient mice which die during embryogenesis due to impaired lumen formation 

(Carmeliet et al., 1999). VE-cadherin is a key player in that it links endothelial cells to 

one another and also interacts with F-actin, a cytoskeletal fibre that is vital for forming 

the vessel lumen (Zeeb et al., 2010). Endothelial cell polarity is also vital for lumen 

formation, as the apical surface must form the lumen whilst the basolateral surface 

interacts with the ECM and mural cells. This polarity is mediated by cell-cell and cell-

ECM interactions, and may involve transport of intracellular vesicles. The process of 

lumen formation is reviewed extensively by Zeeb et al., (2010). 

 Vessel maturation and survival 

For a new vessel to become functionally mature, it must produce a basement 

membrane and inter-cell junctions, as well as recruiting mural cells to provide integrity 

and to maintain endothelial cell survival and quiescence (Potente et al., 2011). 

Endothelial cells differentiate based on signals from the surrounding tissue and thus 

differ based on the vascular bed in question (Dyer and Patterson, 2010). Blood flow 

introduces mechanical shear stress, which is sensed by Kruppel-like factor 2 (KLF2), 

and enhances vessel maintenance via upregulation of nitric oxide synthase (NOS) and 

anticoagulation factors (Potente et al., 2011). Nutrients and oxygen delivered by the 

blood also reduce VEGF signalling to encourage quiescence. Non-perfused vessels 

will regress (Carmeliet and Jain, 2011). 

Two types of mural cell associate with vessels. Pericytes are supporting cells that 

interact directly with capillaries and immature vessels to provide the vessel with 

integrity and maintenance signals, and also interact with the surrounding ECM 

(Gaengel et al., 2009). VSMCs are associated with mature arteries and veins and are 

separated from endothelial cells by ECM (Gaengel et al., 2009). The phenotypic 

crossover between these two fibroblast-like cell types, and the lack of specific markers, 
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leaves the possibility for interconversion between the two open to debate (Adams and 

Alitalo, 2007). Transforming growth factor β (TGF-β) signalling enhances mural cell 

induction, migration and proliferation (Pardali et al., 2010). Typically, the NG2 

proteoglycan and α-SMA are used to demarcate these cells experimentally. A variety 

of integrated signals drive mural cell recruitment, but a key player is platelet-derived 

growth factor B (PDGF-B) which binds the PDGF receptor-B receptor on mural cells 

(Adams and Alitalo, 2007; Gaengel et al., 2009). 

Once recruited, mural cells produce signals that act on endothelial cells in a paracrine 

fashion. ANG-1 is released by mural cells and binds to the TIE2 receptor on 

endothelial cells, tightening endothelial junction to enhance vessel stability. These 

tight junctions allow vessels to effectively regulate vessel wall permeability and the 

extravasation of cells. Cadherins, occludins and members of the claudin family are all 

important in forming tight junctions (Cavallaro and Dejana, 2011). Recent evidence 

has shown that ANG-1 may play a more important role after injury, whilst in quiescent 

vessels it may be dispensable (Jeansson et al., 2011). Ephrin-B2 and Notch signalling 

are also required for association of mural cells with endothelial cells, and deficiency 

of either causes vascular defects (Gridley, 2010; Pitulescu and Adams, 2010).  

Once in a quiescent state, survival is a priority for endothelial cells. Autocrine release 

of VEGF reinforces endothelial cell survival (Warren and Iruela-Arispe, 2010). FGFs 

are also important in annealing adherens junctions, which link the cytoskeleton, 

between endothelial cells. Loss of FGF signalling subsequently results in vessel 

disintegration (Murakami et al., 2008). The aforementioned TIE2/ANG-1 signalling, 

Notch pathway and mechanical shear stress are also key in maintaining survival and 

quiescence (Potente et al., 2011).  

1.4.4 Dynamic regulation of angiogenesis 

Once a functional vascular bed is established, it remains under regulation by a variety 

of environmental stimuli. HIFs regulate perfusion of vessels by stabilising VEGF 

mRNA and enhancing VEGF signalling during hypoxia (Ema et al., 1997; Iyer et al., 

1998). In normoxic conditions, oxygen-sensing prolyl hydroxylase domain proteins on 

endothelial cells label HIFs for degradation, but in hypoxia this does not occur, 
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allowing them to dynamically regulate endothelial cells shape in low oxygen 

conditions (Majmundar et al., 2010).  

Metabolic stimuli can also regulate angiogenesis, and endothelial cell metabolism is 

currently a subject of considerable interest (Vandekeere et al., 2015). The observation 

that inhibiting mitochondrial respiration does not prevent angiogenesis challenged the 

notion that endothelial cells favour oxidative metabolism. Rather, upon stimulation by 

VEGF, endothelial cells increase the expression of the glycolytic activator 

phosphofructokinase-2/fructose-2,6-bisphosphatase 3. 85% of glucose metabolism in 

active endothelial cells is via glycolysis (De Bock et al., 2013). Blockade of this 

enzyme can also suppress pathological angiogenesis in ocular and inflammatory 

models (Schoors et al., 2014). This offers endothelial cells several advantages; it 

allows endothelial cells to vascularise anoxic tissues, which would otherwise be 

impossible with oxidative phosphorylation; it allows cells to quickly produce a larger 

yield of adenosine triphosphate (ATP) (per unit time glycolysis allows for increased 

ATP production, despite reduced glucose efficiency); and it also produces by-products 

suitable for increasing vessel biomass (Eelen et al., 2015; Vandekeere et al., 2015). 

Inhibition of 6-phosphofructo-1-kinase, a rate limiting enzyme of glycolysis, also 

suppressed tumour glycolysis and growth (Clem et al., 2008). Ongoing research is also 

likely to provide further insight into the importance of fatty acid oxidation in regulating 

angiogenesis (Schoors et al., 2015). 

1.4.5 Arteriogenesis 

Once a functional network is in place, some vessels undergo arteriogenesis. This 

involves further muscularisation of the vessel by migration and growth of recruited 

VSMCs. Flow is of great importance, as evidenced by the earlier muscularisation of 

coronary arteries proximal to the aorta as compared to veins (Jain, 2003). Pathological 

arteriogenesis can also occur, such as that seen in the 20-fold enlargement of collateral 

arterioles after occlusion of a supply artery (Schaper, 2009). This pathological 

response, and much pathological angiogenesis, requires the involvement of the 

inflammatory system. Contralateral flow induces monocyte migration and results in 

the breakdown of the vessel wall by proteinases. This is followed by an upregulation 

of factors that induce regrowth of smooth muscle and subsequent vessel enlargement. 
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The response of resistance arteries to flow is determined by vimentin and linked to the 

ECM (Carmeliet, 2000). 

1.4.6 Pathological angiogenesis 

Developmental angiogenesis forms the mature vasculature network. In adult life, 

physiological angiogenesis is limited to discrete processes, such as the menstrual 

cycle, pregnancy, skeletal growth and wound healing (Chung and Ferrara, 2011). 

Pathological angiogenesis is associated with conditions including PDR and age-related 

macular degeneration, rheumatoid arthritis, psoriasis, and tumour growth (Carmeliet, 

2003; Chung and Ferrara, 2011). In the case of pathological angiogenesis, reperfusion 

and restoration of adequate nutrients and oxygen does not resolve the angiogenic 

response, which can result in uncontrolled aberrant angiogenesis.  

Whilst both developmental and adult angiogenesis involve a highly coordinated 

cascade of stimulatory and inhibitory angiogenic factors (Chung and Ferrara, 2011), 

there are also key differences. Angiogenesis in adults must also remodel vessels that 

are quiescent and tightly encapsulated by smooth muscle as opposed to loosely 

assembled and active as during development. Inflammation is also frequently involved 

in pathological angiogenesis; monocyte/macrophages, platelets, mast cells and 

leukocytes are attracted to sites of inflammation, where they produce a variety of pro-

angiogenic factors (Möhle et al., 1997; Coussens et al., 1999; Schaper, 2009; Newman 

and Hughes, 2012). Pathological interaction with the tumour microenvironment is also 

of relevance is cancer; this is discussed further in Section 1.6.4.  

 Manipulating angiogenesis in pathology 

In the context of ischaemic injury, wound healing and obesity, enhanced angiogenesis 

can facilitate recovery (Vernieri et al., 2001; McSweeney et al., 2010; Michailidou et 

al., 2012; Tiganescu et al., 2013; Gordon et al., 2014), whilst anti-angiogenic therapies 

are required for the treatment of heavy menstrual bleeding, cancer and several diseases 

of the eye (Folkman et al., 1983; Rae et al., 2009). Attempts to manipulate 

angiogenesis therapeutically are challenging, due primarily to the immense complexity 

of the angiogenic response – targeting or promoting any single part of this process is 

unlikely to result in a solution (Koh et al., 2010).  
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 Promoting angiogenesis 

Previous attempts to promote angiogenesis therapeutically (for the treatment of 

coronary and peripheral artery disease) have focussed on manipulation of the VEGF 

pathway; however pro-angiogenic VEGF-based therapies have seen limited success 

due to the poor quality and disorganised nature of the neovasculature that forms (Mac 

Gabhann et al., 2010; Zachary and Morgan, 2011). More recent attempts to use 

therapeutic stem cell injection have shown more promise but are still in their infancy 

and remain controversial in terms of their mechanism of action (Hou et al., 2016). 

Shifting focus onto targets other than VEGF ligands may also improve the prospects 

of pro-angiogenic therapy in the future (Mac Gabhann et al., 2010). 

To consider increased vessel density alone as an indicator of successful pro-angiogenic 

therapy is overly simplistic, as increased vessel quality (integrity, perfusion, mural cell 

coverage) is also vital for effective revascularisation (Falcón et al., 2009). This is the 

principle behind the concept of vessel normalisation (Carmeliet and Jain, 2011; Goel 

et al., 2012), which has gained momentum in recent years. An increase in vessel 

density is only of long-term benefit to an ischaemic tissue if this vasculature matures 

appropriately (Eelen et al., 2013), and thus vessel normalisation involves stimulating 

those features of angiogenesis that promote mural cell recruitment and maturation of 

the vessel. This approach could potentially be effective in treating ocular conditions 

and, controversially, tumours; both are associated with an aberrant leaky vasculature 

which contributes to the pathology. In retinopathies, the tortuous, leaky nature of the 

vasculature leads to unresolved hypoxia and blindness, whilst in tumours it hampers 

the effectiveness of radiotherapy and drug delivery (Carmeliet and Jain, 2011). As 

mentioned above, targeting endothelial cell metabolism is currently the subject of 

much interest, after the observation that the majority of endothelial cell energy is 

generated by glycolysis (De Bock et al., 2013), and that inhibiting this process can 

suppress tumour growth (Clem et al., 2008).  

 Inhibiting angiogenesis 

Anti-angiogenic therapies have seen more success than pro-angiogenic therapies. 

Judah Folkman was the pioneer of the modern clinical approach to targeting tumour 

angiogenesis (Folkman, 1972). Several anti-angiogenic drugs are already in use for 
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treating cancer and eye diseases. The first of these was Bevacizumab, a VEGF-specific 

antibody, which improved overall survival in lung, colorectal and breast cancer 

patients (Jain et al., 2006). Several tyrosine kinase inhibitors that block VEGF receptor 

signalling in endothelial and cancer cells are also in use, and have shown improved 

survival in gastrointestinal stromal tumour, renal-cell-carcinoma and hepatocellular 

carcinoma patients (Ferrara, 2009). Unfortunately, anti-angiogenic therapies are still 

hampered by toxicity when delivered in combination with chemotherapy (Jain et al., 

2006) and are also ineffective in patients who are refractory or develop resistance 

(Carmeliet and Jain, 2011). Perhaps most worrying are reports of adaptation and 

increased cancer malignancy after inhibition/deletion of VEGF in pre-clinical models 

(Ebos et al., 2009; Pàez-Ribes et al., 2009). In pathologies other than cancer, 

Ranibizumab (an antibody that blocks the VEGF-A isoform) and pegaptanib (a VEGF 

aptamer) have both been approved (in 2006) for use in treating age-related macular 

degeneration (Ferrara, 2009; Carmeliet and Jain, 2011).  Overall, while not entirely 

unsuccessful, anti-angiogenic therapies have, as yet, failed to meet expectations in the 

clinic (McIntyre and Harris, 2015).    

1.5 11β-HSD1 inhibition and the vasculature 

1.5.1 11β-HSD1 inhibitors 

Clearly, manipulation of local glucocorticoid concentrations is a highly desirable 

clinical intervention in terms of enhancing glycaemic control, regulating local 

inflammation and treating cardiometabolic disorders generally. Inhibition of 11β-

HSD1 offers a novel therapeutic avenue for reducing tissue glucocorticoid exposure 

without risking affecting the systemic stress response.  

For centuries, Japanese herbal medicine made use of the liquorice plant extract, 

Glycyrrhizin, which is itself a potent 11β-HSD inhibitor and could explain some of the 

anti-tumour effects of such medicines (Motoo and Sawabu, 1994). In 1995, the non-

selective 11β-HSD inhibitor carbenoxolone was shown to improve insulin sensitivity 

in man via reduced binding of hepatic GR (Walker et al., 1995). Further beneficial 

effects have been shown on blood glucose (Alberts et al., 2002; Alberts et al., 2003) 

and lipid handling (Berthiaume et al., 2007) using the 11β-HSD1 selective inhibitors 
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BVT.2733 and compound A, respectively. As well as these general cardiometabolic 

benefits, 11β-HSD1 inhibition using compound 544 also markedly reduced the 

progression of atherosclerosis (Hermanowski-Vosatka et al., 2005).  

A number of 11β-HSD1 inhibitors progressed to clinical trial (reviewed extensively 

by Anderson and Walker, 2013), but have shown only mild improvements in terms of 

glycaemic control, lipid handling, blood pressure and weight loss. More recently, 11β-

HSD1 inhibitors are showing promise in the improvement of cognitive function (Sooy 

et al., 2010, 2015; Yau et al., 2015), with UE2343 (Xanamem) currently in Phase II 

clinical trials (Webster et al., 2017). In this section, the preclinical data on 11β-HSD1 

inhibition or deletion in the vasculature are introduced. 

 Atherosclerosis 

11β-HSD1 inhibition reduces atherosclerotic plaque formation in mice 

(Hermanowski-Vosatka et al., 2005; Nuotio-Antar et al., 2007). Though several 

studies report reduced low-density lipoprotein and improved glycaemic control, 

different inhibitors show variability; the 11β-HSD1 inhibitor 2922 showed no effect 

on atheroma (Lloyd et al., 2009).  

Though 11β-HSD1 deletion confers an atheroprotective phenotype in mice (Morton et 

al., 2001; Kipari et al., 2013), evidence suggests that the enzyme may have a direct 

role in regulating vascular inflammation distinct from plasma lipid profile and blood 

pressure. 11β-HSD1 KO Apolipoprotein E-deficient (11βHSD1-/-/apoE-/-) mice 

showed a significant reduction in plaque size, necrotic core area and macrophage 

content compared to apoE-/- mice (Garcia et al., 2013; Kipari et al., 2013). 

Transplantation of 11βHSD1-/-/apoE-/- bone marrow into apoE-/- mice conferred these 

atheroprotective features onto recipients, demonstrating the importance of leukocyte-

derived 11β-HSD1 in this process (Garcia et al., 2013; Kipari et al., 2013). 

Furthermore, extracted peritoneal macrophages from 11βHSD1-/-/apoE-/- mice had 

significantly reduced cholesterol content, although 11βHSD1 deletion did not affect 

inflammatory cell migration in this study (Garcia et al., 2013).  

Perhaps most interestingly, gene expression analysis revealed a decrease in toll-like 

receptor (TLR) signalling and an attenuation of the inflammatory state in 11βHSD1-/- 
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mice, with a reduction in the amount of pro-inflammatory cytokines (e.g. TNF-α, 

MCP-1) released by 11βHSD1-/- peritoneal macrophages in response to stimulation 

with oxidised low density lipoprotein (LDL) (Garcia et al., 2013). Similar data have 

been reported elsewhere, including reduced monocyte chemoattractant protein 1 

(MCP-1) and vascular cell adhesion molecule 1 (VCAM-1) expression, along with 

decreased T-cell infiltration into atherosclerotic plaques from 11βHSD1-/-/apoE-/- mice 

(Luo et al., 2012; Kipari et al., 2013). The effects of glucocorticoids on MCP-1 appear 

to vary between inflammatory cell types and VSMCs, where in contrast, GR binding 

has been shown to decrease MCP-1 expression (Dhawan et al., 2007). Overall, these 

findings strongly suggest that 11β-HSD1 influences inflammation in the vascular wall 

and that enzymatic inhibition may decrease inflammation in an atherosclerotic context.  

 Neointimal proliferation 

Restenosis after coronary angioplasty is a clinical problem when treating occlusive 

vascular disease. It is caused by neointimal proliferation of VSMCs and, thus, 

glucocorticoids have been considered to be of potential benefit based on their anti-

proliferative effects on VSMCs (Longenecker et al., 1982, 1984; Berk et al., 1988, 

1991; Goncharova et al., 2003). 11β-HSD1 inhibition in this context, therefore, could 

potentially be pathogenic. 

Cai et al. (2001) found that pro-inflammatory cytokines (IL-1β or TNF-α) induced 

greater expression of 11β-HSD1 in VSMCs, supporting a potential role for the enzyme 

in regulating local inflammation; although this finding could not be replicated in intact 

aortic tissue or in vivo (Dover et al., 2007).  Iqbal et al. (2012) demonstrated that both 

glucocorticoid binding to GR, and MR antagonism can reduce neointimal 

proliferation. Importantly, they also found that 11β-HSD1 deletion reduced neointimal 

proliferation, with an associated reduction in macrophage infiltration and increased 

collagen content. This effect was seen only in double KO (11β-HSD1-/- apoE-/-) mice 

with a hyperlipidaemic phenotype which promotes lesion formation, suggesting that 

this effect was due to systemic rather than local enzyme deletion. Overall, it is unlikely 

that 11β-HSD1 in the vascular wall affects neointimal proliferation. 
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 Promotion of angiogenesis 

Glucocorticoids are anti-angiogenic (Folkman et al., 1983). This manifests clinically 

as poor wound healing associated with Cushing’s disease (Gordon et al., 1994) and 

increased risk of heart failure associated with chronic glucocorticoid therapy 

(Souverein et al., 2004). Given these effects and the potential role for 11β-HSD1 in 

regulating vascular inflammation, 11β-HSD1 inhibition or deletion was hypothesised 

to enhance angiogenesis. Small et al. (2005) were the first to test this using 

physiological concentrations of glucocorticoids. Ex vivo aortic rings showed reduced 

vessel outgrowths after exposure to both 11-DHC and corticosterone, an effect that 

was blocked with GR antagonist RU38486 but not the MR antagonist spironolactone. 

Both carbenoxolone and 11β-HSD1 deletion protected aortic rings from the angiostatic 

effects of 11-DHC, suggesting that conversion of the inactive substrate results in 

angiostasis. In vivo subcutaneous sponges showed enhanced angiogenesis after mice 

were given RU38486 and reduced angiogenesis when sponges were impregnated with 

cortisone or cortisol. In 11β-HSD1 KO animals, cortisone did not inhibit sponge 

angiogenesis, and both RU38486 and 11β-HSD1 deletion increased angiogenesis in 

dermal wounds. These data support the ex vivo observations and suggest they are 

highly relevant in vivo. Of note, Terao et al. (2011) also reported enhanced wound 

healing after 11β-HSD1 inhibition; however, they attribute this effect to increased 

proliferation of keratinocytes rather than enhanced angiogenesis. 

The most striking data concerning angiogenesis comes from studies using the induced 

myocardial infarction (MI) model in mice. Both GR antagonism (Small et al., 2005) 

and 11β-HSD1 deletion increase myocardial revascularisation after coronary artery 

ligation resulting in improved recovery (Small et al., 2005; McSweeney et al., 2010; 

White et al., 2015; Mylonas et al., 2017). The same finding has been reproduced using 

the selective 11β-HSD1 inhibitor UE2316 delivered at the time of injury (McGregor 

et al., 2014). Given the clinical burden of heart failure after MI, these results show 

promise for 11β-HSD1 inhibitors.  

Inflammatory cells play a crucial role in angiogenesis. After myocardial injury, 

macrophages secrete pro-angiogenic TGF-β and VEGFA, and promote angiogenesis, 

myofibroblast infiltration and collagen deposition (van Amerongen et al., 2007). 11β-
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HSD1 KO mice showed increased recruitment of neutrophils (McSweeney et al., 

2010; Mylonas et al., 2017) and macrophages to the healing infarct after coronary 

artery ligation, with an increase in MCP-1 and IL-8 mRNA and an increased number 

of ‘alternatively activated’ YM-1-positive macrophages, suggesting a pro-reparative 

phenotype (McSweeney et al., 2010). Enhanced neutrophil recruitment was associated 

with reduced expression of C-X-C chemokine receptor 4 (CXCR4) in neutrophils in 

11β-HSD1 KO mice, a cell surface receptor which enhances bone marrow retention of 

neutrophils (Mylonas et al., 2017). After 28 days, vessels in the healing infarct had 

increased α-SMA coverage in 11β-HSD1 KO mice, suggesting maturity and stability. 

The beneficial effect of 11β-HSD1 inhibition/deletion on recovery post-MI cannot be 

attributed to 11β-HSD1 expressed in vascular smooth muscle or cardiomyocytes, as 

mice with targeted deletion of the enzyme in these cell types did not recover faster 

than wild type control mice after myocardial injury (White et al., 2015; Mylonas et al., 

2017). Experiments using bone marrow chimeric 11β-HSD1 KO mice confirmed the 

importance of the enzyme in host tissues rather than donor myeloid cell lineages 

(Mylonas et al., 2017). Cardiac fibroblasts from the infarcted hearts 11β-HSD1 KO 

animals expressed more CXC-motif ligand (CXCL) 2 and CXCL5 than WT controls, 

and exposure of these cells in culture to corticosteroids reduced expression of CXCL2 

and CXCL5 (Mylonas et al., 2017). Thus, the mechanism for enhanced recovery after 

MI is likely to involve enhanced expression of chemoattractant proteins from cardiac 

fibroblasts as a result of reduced GR binding, resulting in enhanced neutrophil 

recruitment and polarisation of macrophages towards a pro-reparative phenotype. 

Potentially the enhanced angiogenesis seen in the myocardium is a consequence of an 

altered inflammatory environment rather than a direct influence of 11β-HSD1 on 

vascular remodelling. Indeed, the 11β-HSD1 inhibitor compound A has been shown 

to reverse cardiac hypertrophy in a VEGF-based transgenic model intended to 

uncouple reversal of hypertrophy from neovascularisation (Gordon et al., 2014). In 

these studies, 11β-HSD1 expression was increased in hypertrophied myocardium and 

its inhibition was proposed to alter cardiac muscle myofilament composition. Thus, 

there remains some debate surrounding cardiac mechanisms, and the importance of 

angiogenesis in this context is unclear. 
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11β-HSD1 KO mice with diet-induced obesity show increased angiogenesis, resulting 

in reduced hypoxia and reduced fibrosis in their adipose tissue (Michailidou et al., 

2012). HIF-1α signalling, Col1a1 mRNA, picrosirius red staining and α-SMA staining 

were all reduced in adipose tissue of 11β-HSD1 KO animals. In vivo, 11β-HSD1 KO 

adipose tissue showed a greater vessel-to-adipocyte ratio.  Ex vivo, aortic rings showed 

a greater angiogenic response when exposed to 11β-HSD1 KO periaortic fat 

conditioned media (PACM) compared to WT PACM. In keeping with these findings, 

11β-HSD1 KO adipose tissue also showed increased expression of pro-angiogenic 

mediators VEGF, apelin and angiopoietin-like protein 4 (ANGPTL4), expression of 

which was further increased by the addition of a peroxisome proliferator-activated 

receptor-γ (PPAR-γ) agonist (Michailidou et al., 2012). Interestingly, 11β-HSD1 

expression in mouse embryonic fibroblasts is decreased by HIF-1α (Lee et al., 2013), 

and fibroblastic preadipocytes show enriched 11β-HSD1 expression in adipose tissue, 

suggesting once again that this enzyme may be of particular importance in fibroblasts. 

It is important to note the distinction in proposed mechanism between MI (an acute 

ischaemic event) and obesity (a chronic inflammatory environment). Although 

enhanced angiogenesis is reported in both scenarios, reported data concerning 

inflammation are polarised. In the myocardium, enhanced neutrophil and macrophage 

recruitment are at the centre of the improved functional recovery. In adipose tissue 

from 11β-HSD1 KO animals, a decrease in inflammatory signalling (MCP-1 

expression, T-cell infiltration and macrophage infiltration) has been reported (Wamil 

et al., 2011), similar to that seen in atherosclerosis (Luo et al., 2012). Itoi et al. (2013) 

observed enhanced IL-6 production after exposing keratinocytes to a low cortisol 

concentration (0.1 pM) but attenuated IL-6 levels when using a high cortisol 

concentration (10 µM). Thus the context of inflammation may be pivotal in predicting 

the response to 11β-HSD1 inhibition (this concept is reviewed more thoroughly in 

Chapman et al., 2013a). An important similarity to note in both contexts is that of 

altered fibrosis and the potential importance of 11β-HSD1 in fibroblasts.  

1.5.2 11β-HSD1 inhibition and pathological angiogenesis 

Whilst angiogenesis can promote recovery and attenuate ischaemia, it can also 

contribute to the pathology of a disease. The involvement of local glucocorticoid 
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metabolism has been examined in three such contexts. Endometrium from women 

experiencing heavy menstrual bleeding was found to express higher levels of 11β-

HSD2 and reduced levels of the anti-angiogenic factor thrombospondin-1 (TSP-1) 

(Rae et al., 2009). The angiostatic effects of cortisol on endothelial tube-like structure 

formation were blocked with the addition of siRNA against TSP-1, presenting a 

possible mechanism – increased 11β-HSD2 in endometrial stromal cells reduces the 

amount of glucocorticoids accessing the GR in adjacent endothelial cells, causing them 

to secrete less TSP-1 and, thus, enhancing pathological angiogenesis. Note that the 

proposed mechanism here has a paracrine action, unlike the autocrine hypotheses 

suggested in the myocardium and adipose tissue. 

Recently, 11β-HSD1 inhibition has been investigated in the context of the retina to 

assess its potential for worsening PDR. Surprisingly, the 11β-HSD1 inhibitor 

compound 544 reduced pathological neovascularisation in the retinas of neonatal mice 

exposed to hypoxic conditions, despite the absence of the enzyme from the retinal 

vasculature (Davidson et al., 2017), possibly as a result of off-target effects. Critically, 

no differences were seen in retinal vasculature between 11β-HSD1 KO and WT mice, 

suggesting that 11β-HSD1 inhibitors are unlikely to exacerbate PDR.  

Inflammatory arthritis is characterised by pathological angiogenesis as the expansion 

of the synovium increases the demand for nutrients and oxygen (Paleolog, 2002). 

Zhang et al. (2017) recently demonstrated that resolution of joint inflammation was 

impaired in mice with macrophage-specific deletion of 11β-HSD1 compared to WT 

littermates, to a similar degree as was previously seen in global 11β-HSD1 KO animals 

(Coutinho et al., 2012). This was associated with a two-fold increase in VE-cadherin 

mRNA, suggesting a potentially altered vessel phenotype, although no changes were 

seen in VEGF mRNA (also the case in previous papers reporting increased 

angiogenesis, such as McSweeney et al. (2010)). The same mice showed an enhanced 

angiogenic response on subcutaneous insertion of a polyurethane sponge, suggesting 

that myeloid 11β-HSD1 plays an important role in the pro-angiogenic phenotype after 

enzyme inhibition. 

Aberrant angiogenesis is also a hallmark of cancer (Hanahan and Weinberg, 2011) and 

its induction occurs during the transition from hyperplasia to neoplasia (Folkman et 
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al., 1989). Solid tumours, like healthy tissue, require a system of nutrient transfer to 

thrive. Above a few millimetres in size, this transfer must be in the form of vasculature 

as distances are too great for simple diffusion to suffice (Folkman, 1995). A concern 

is that 11β-HSD1 inhibition could enhance tumour angiogenesis, leading to increased 

tumour growth and metastasis. This concern has barely been addressed in the literature 

thus far. Liu et al. (2016) reported an anti-angiogenic and anti-tumour effect of 11β-

HSD1 overexpression in murine hepatocellular carcinoma (HCC), both in vitro and in 

vivo.  The same study also demonstrated reduced 11β-HSD1 expression in malignant 

tissue compared to non-neoplastic liver (a commonly reported phenomenon), and 

argued that loss of 11β-HSD1 in malignancy enhances glycolysis and subsequent 

tumour growth.  

1.6 Cancer  

1.6.1 Hallmarks of cancer 

Cancer describes a collection of diseases characterised by uncontrolled cell 

proliferation and invasiveness.  As one of the leading cause of death globally (after 

ischaemic heart disease and stroke), it is the focus of intense research to reduce the 

impact it has on wellbeing and the burden it places on health organisations.  Cancers 

can affect almost any tissue in the body, but are considerably more common in highly 

proliferative tissues. Cancers with high mortality include lung, liver, colorectal, 

stomach and breast cancer, and progression to metastasis greatly decreases the chances 

of long-term survival after treatment (World Health Organisation, 2017). 

In 2000, Hanahan and Weinberg (2000) published their seminal paper ‘Hallmarks of 

Cancer’ which defined the common features of malignancy. Those hallmarks are 

cancerous tissue’s ability to: sustain proliferative signalling; evade growth 

suppressors; activate invasion and metastasis; enable replicative immortality; resist 

cell death; and induce angiogenesis. In 2011, this paper was updated to reflect the 

progress made over the previous decade. Emerging hallmarks now also include the 

ability to deregulate cellular energetics and to avoid immune destruction (Hanahan and 

Weinberg, 2011). Targeting these hallmarks offers the best chance of curing cancer, 

though the picture is complicated immensely by the vast heterogeneity between cancer 
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types and subtypes, and by the resistance and adaptation many cancers show in 

response to therapy. 

1.6.2 Tumour formation 

Typically, cancerous tissues arise from healthy tissues through a series of genetic and 

environmental insults, resulting in loss-of-function mutations in tumour suppressor 

genes and gain-of-function mutations in oncogenes, driving a malignant phenotype 

(Weinberg et al., 1999), with associated replicative immortality linked to telomerase 

expression (Blasco, 2005). This process has been likened to Darwinian evolution, in 

the sense that mutations conferring a survival advantage to cells are typically 

maintained and lead to clonal selection of a tumour cell population (Nowell, 1976; 

Hanahan and Weinberg, 2000). TP53, for example, is a prototypical tumour suppressor 

gene; it integrates signals relating to cell stress (oxygen and glucose availability, DNA 

damage, etc.) and can halt progression of the cell cycle if quality standards are not met 

(Hanahan and Weinberg, 2011). 

Leukaemias (cancers of the blood), do not typically form solid tumours, whereas 

cancer in other tissues results in the formation of a primary tumour, comprised of 

tumour cells and an array of supporting mesenchymal, inflammatory and vascular cell 

types that form the tumour microenvironment. Interest in the tumour 

microenvironment has intensified in the last decade, and has provided new avenues for 

treatment that target more subtle components of the tumour (Hanahan and Coussens, 

2012). In this section, the components of the tumour microenvironment, and their 

influence on tumour growth, will be introduced.  

1.6.3 Tumour angiogenesis 

During the very early stages of development, tumours can achieve nutrient and waste 

exchange via simple diffusion. As the tumour grows beyond 1-2 mm in size however, 

an ‘angiogenic switch’ (Hanahan and Folkman, 1996b) is required and the tumour 

must develop its own blood supply to maintain its growth and to successfully 

metastasise. A powerful driver for this process are the HIFs, which stimulate cells of 

the tumour to release VEGF (Dayan et al., 2008). HIF can become upregulated in 

tumours as a result of mutations in tumour-suppressor genes or oncogenes (Chung and 
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Ferrara, 2011), leading to sustained high levels of VEGF and pathological 

angiogenesis. The resultant vasculature is tortuous, hyper-permeable and lacking in 

sufficient mural cell coverage, creating regions of hypoxia and necrosis which in turn 

stimulate further angiogenesis (Verdegem et al., 2014). Unlike physiological 

angiogenesis, tumour angiogenesis is not self-limiting (Polverini and Leibovich, 

1984). 

Vessels in tumours are heterogenous, with six classifications of vessel types now in 

use; mother vessels; three types of daughter vessels; feeder arteries and draining veins 

(reviewed by Nagy et al., (2010)). Whilst it is not within the scope of this introduction 

to describe each type individually, the vasculature overall is characterised by irregular 

vessel diameter, thin walls comprised of abnormally shaped endothelial cells with 

compromised basement membrane, and variable mural cell coverage. These features 

have been observed in a variety of preclinical models (Morikawa et al., 2002; Baluk 

et al., 2003; Ozawa et al., 2005; Hagendoorn et al., 2006) and in clinical samples (Less 

et al., 1997). Another process unique to tumour angiogenesis is vascular mimicry, 

whereby tumour cells are able to adopt an endothelial-like phenotype and form 

functional channels, creating ‘mosaic vessels’ and further complicating the therapeutic 

targeting of tumour angiogenesis (Hess et al., 2006; Lin et al., 2007). This vascular 

mimicry has principally been observed in melanoma (Hendrix et al., 2003). 

Cells can often be identified by markers they express on their surface. Tumour 

endothelial cells express different markers from their ‘normal’ counterparts, 

presenting an opportunity for targeted therapies (reviewed by Ruoslahti, (2002)). As 

well as the tumour and tumour endothelial cells, an array of stromal cells also release 

proangiogenic factors to further stimulate the angiogenic process. These include 

immune inflammatory cells, fibroblasts and pericytes.  

1.6.4 The tumour microenvironment  

Tumour cells are characterised by their unconstrained replication and invasiveness, the 

result of acquired mutations. While autocrine growth signals within tumour cells are 

dysregulated, the paracrine effects of other cell types within the tumour also have a 

powerful influence upon tumour growth (Hanahan and Weinberg, 2011). These cell 
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types include endothelial cells, fibroblasts and immune/inflammatory cell types. 

Whilst many of these supporting cells are likely to migrate from the surrounding 

healthy tissues, it is also now thought that bone-marrow-derived progenitor cells 

migrate into tumours and contribute to immune inflammatory, fibroblast and mural 

cell populations (Mishra et al., 2008; Fang and Salven, 2011; Quante et al., 2011). 

 Fibroblasts in tumours 

Fibroblasts comprise one of the most prevalent and important regulatory cell types in 

the stroma of carcinomas. Outside of cancer, fibroblasts may be categorised as one of 

two types: normal tissue-derived fibroblasts are responsible for laying down the 

fibrous ECM; myofibroblasts are a specialised cell type found in large quantities in 

wounds and at sites of chronic inflammation (Kalluri, 2016), where their role is to 

promote tissue repair. The majority of the fibroblasts forming part of the tumour 

stroma are referred to as cancer-associated fibroblasts (CAFs) (De Wever et al., 2008) 

though some normal fibroblasts are present and produce ECM that forms the palpable 

tumour mass. CAFs are similar to myofibroblasts; they display an ‘activated’ pro-

reparative phenotype, but in the chronic inflammatory setting of a tumour they can 

contribute to lesion growth through pathological stromal ECM deposition. Unlike 

typical myofibroblasts, which return to a ‘normal’ phenotype after resolution of 

inflammation, CAFs maintain their activated state to drive tumour progression (Shiga 

et al., 2015). The growth factors, chemokines and proteases they release can promote 

tumour cell proliferation, angiogenesis and metastasis (Orimo et al., 2005; Karnoub et 

al., 2007; Mishra et al., 2011; Quante et al., 2011; Dumont et al., 2013; De Wever et 

al., 2014; Kalluri, 2016). 

Evidence exists to suggest CAFs promote an immunosuppressive tumour 

microenvironment (Harper and Sainson, 2014). Yet evidence to the contrary also 

exists, and there is now debate as to whether CAFs could in fact promote anti-tumour 

immune cell infiltration (Özdemir et al., 2014; Rhim et al., 2014); CAFs adopt a pro-

inflammatory phenotype early during neoplasia development (Erez et al., 2010) and 

their depletion causes intra-tumour immunosuppression and enhanced tumour growth 

in carcinomas (Özdemir et al., 2014), highlighting the importance of appreciating the 
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complex interplay between different components of the tumour microenvironment and 

their impact on tumour growth.   

 Inflammatory and immune cells in tumours 

Cells of both the innate and adaptive immune systems infiltrate tumours, much as they 

would a wound. Tumours can be thought of as wounds that do not heal and, as such, 

present a chronic inflammatory situation (Flier et al., 1986). Chronic inflammatory 

conditions themselves are a risk factor for later dysplasia (Schäfer and Werner, 2008). 

While acute inflammation functions to clear cellular debris and repair tissue, chronic 

inflammation in cancer is associated with pathological fibrosis, angiogenesis and 

neoplasia. A vast array of immune and inflammatory cell types are present within 

tumours, and these are review extensively by Grivennikov et al. (2010). 

The immune system, when functioning correctly, eradicates threats within the body, 

including many tumour types. Avoiding this anti-tumour response is a feature of 

malignancy (Hanahan and Weinberg, 2011), and tumours that do form have found a 

way to evade immune destruction. An abundance of evidence exists to support anti-

tumour immunity (see Kim et al., 2007; Cirillo et al., 2017). Evidence for this is seen 

in the increased incidence of cancers, in particular those associated with oncogenic 

viruses but also several with no infectious cause, after immunosuppression (Vajdic and 

van Leeuwen, 2009). Immunosuppression for renal transplant has been associated with 

increased incidence of non-melanoma skin cancer (such as squamous cell carcinoma) 

(Glover et al., 1997; Euvrard et al., 2003; Moloney et al., 2006). In one study, this was 

associated with reduced circulating CD4+ T-cells (Ducloux et al., 1998). In rare cases, 

transmission of donor malignancy to the immunocompromised host via organ 

transplant has been reported, suggesting that the immunocompromised host was 

unable to destroy the transmitted tumour cells (Strauss and Thomas, 2010). 

In preclinical models of tumourigenesis, depletion of immune cell populations (such 

as cytotoxic T-cell and natural killer (NK) cells) also increases the growth of some 

tumour types (Kim et al., 2007). IFN-γ secreted by cells of the innate immune system 

(cytotoxic T-cells) and NK cells is able to destroy tumour cells, and IFN-γ-insensitive 

tumour cells showed increased in vivo growth and reduced rejection when implanted 
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into mice (Dighe et al., 1994).  Similarly, mice lacking IFN-γ or all of the IFN family 

members showed enhanced tumourigenicity and more rapid tumour growth compared 

to immunocompetent WT mice (Kaplan et al., 1998), suggesting the existence of an 

IFN-γ-dependent tumour surveillance system. Further studies using transgenic mice 

have demonstrated the importance of an interplay between lymphocytes and IFN-γ in 

mediating anti-tumour immunity (Shankaran et al., 2001). PDV cells (a squamous cell 

carcinoma cell line) also grew more readily in mice lacking γδ T-cells (Girardi et al., 

2001). 

Immune and inflammatory cells can also promote tumour progression. M1 

macrophages and neutrophils are the major cell types associated with the classical 

inflammatory response, while M2 ‘alternatively’ activated macrophages and myeloid 

progenitor cells are associated with a reparative phenotype. It is the latter of these two 

responses that is thought to enhance tumour growth (Mantovani et al., 2002). Cells of 

the innate immune system, including macrophages, neutrophils and dendritic cells, can 

promote tumour progression by producing myriad growth factors, cell survival signals, 

angiogenic factors, cytokines and chemokines, ECM modifying proteases and 

inductive signals (reviewed by Coffelt et al., 2010; DeNardo et al., 2010). Mast cells 

and tumour associated macrophages (TAMs) encourage tumour angiogenesis directly 

through release of angiogenic factors and proteinases (e.g. MMP 9, IL-6 and TNF-

alpha) which remodel the ECM (Hori et al., 1996). They also indirectly stimulate 

tumour cells to release their own proangiogenic molecules (Sica et al., 2002; 

Carmeliet, 2003). The lymphocytes of the adaptive immune system may play an 

important role in recruiting such tumour-promoting myeloid cells.  

As well as these differentiated immune inflammatory cells, an important emerging 

player is the myeloid-derived suppressor cell (MDSC), a myeloid progenitor 

associated with suppression of anti-tumour immunity. Through production of arginase 

1 (ARG1) and inducible nitric oxide synthase (iNOS), these MDSCs promote tumour 

progression by reducing the anti-tumour function of NK cells and cytotoxic T cells 

(Murdoch et al., 2008). These cells exhibit functional and phenotypic crossover with 

Tie-2 expressing monocytes (TEMs); both cell types are known to promote tumour 

angiogenesis, suggesting that myeloid cells can both stimulate tumour growth by 
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increasing blood supply and by suppressing anti-tumour immunity (De Palma et al., 

2005; Qian and Pollard, 2010). Furthermore, Varga et al. (2008) found that 

glucocorticoids upregulated monocytes with a phenotype similar to MDSCs – 

immunosuppressive and anti-inflammatory. Such cells are thought to contribute to 

tumour progression (Sica and Bronte, 2007). 

In mice lacking monocytes, tumour growth is drastically reduced (Sica et al., 2002) 

and NSAIDs have also been shown to reduce tumour angiogenesis (Dermond and 

Ruegg, 2001). The story is complicated by evidence that macrophages can inhibit 

angiogenesis in some contexts (Carmeliet, 2003), possibly via TSP-1 (Salvesen and 

Akslen, 1999). Mast cells too have been shown to increase with an accompanying 

reduction in angiogenesis in haemangiomas treated with glucocorticoids (Hasan et al., 

2000).  

 Vascular cell types in tumours 

Whilst endothelial cells in the adult vasculature are normally maintained in a quiescent 

state, tumour angiogenesis involves an ‘angiogenic switch’ which renders vessels 

constantly active and stimulates continual sprouting angiogenesis (Hanahan and 

Folkman, 1996a). This switch is often tripped in the pre-malignant stages of 

tumourigenesis, suggesting it is an important target from an early stage (Menakuru et 

al., 2008). Tumours typically alter the balance of angiogenic factor expression to 

favour pro-angiogenic factors (e.g. VEGF-A) over anti-angiogenic factors (e.g. TSP-

1) (Baeriswyl and Christofori, 2009). Increased expression of VEGF-A, as well as 

other growth factors such as the FGFs, can be driven by both the hypoxic environment 

in a tumour or by oncogenic activation (Carmeliet, 2005a). This chaotic unbalanced 

angiogenic stimulus results in tortuous, leaky vessels that branch excessively, are often 

enlarged, and are prone to microhaemorrhage (Nagy et al., 2010). 

Patterns of neovascularisation vary drastically between tumour types. Pancreatic 

ductal adenocarcinoma (PDAC) tumours grown in mice, for example, display large 

avascular regions and are overall hypovascularised (Olive et al., 2009) whereas other 

tumour types (such as renal carcinomas) are highly angiogenic (Hanahan and 

Weinberg, 2011). The source of major angiogenic stimuli can also vary between 
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tumour types, with immune inflammatory cells having a greater influence over 

angiogenesis in certain tumours, whilst in others tumour cells themselves stimulate the 

process.  

Bone marrow-derived cells, including cells of the innate immune system 

(macrophages, mast cells, neutrophils), can also powerfully stimulate pathological 

angiogenesis and the tripping of the angiogenic switch (De Palma et al., 2007; Qian 

and Pollard, 2010). Necrosis within tumours can lead to the recruitment of immune 

inflammatory cells, which can in turn stimulate angiogenesis and tumour growth. 

Bone-marrow-derived vascular progenitor cells may also become intercalated within 

vessels and contribute to angiogenesis, though the extent of this contribution is now 

thought to be minimal (Patenaude et al., 2010; Fang and Salven, 2011). 

Supporting pericytes also function differently between normal and cancerous blood 

vessels. Mural cell coverage is markedly reduced in most tumours, as the chaotic 

nature of tumour angiogenesis does not result in functional maturation. Pericytes, 

however, do associate with tumour vessels and may in fact play an important role in 

angiogenesis (Raza et al., 2010). Whilst pericytes are recruited to tumour vessels, they 

do not adhere as tightly as in normal vessels, and remain slightly detached (Morikawa 

et al., 2002; Abramsson et al., 2003). Tumour vessels are highly dependent on pericyte 

coverage for their integrity and provision of endothelial survival factors like VEGF 

(Reinmuth et al., 2001). Inhibiting pericyte PDGFβ receptor signalling with kinase 

inhibitors prevents the binding of PDGF-B (released from endothelial cells), a vital 

signal for recruiting pericytes (Gaengel et al., 2009). This approach has been shown to 

reduce growth in several tumour models by reducing coverage and stability of tumour 

vessels (Shaheen et al., 2001; Bergers et al., 2003). Whilst these results are promising, 

there is a risk that compromising vessel integrity could encourage metastasis, and 

overexpression of PDGFβ has been shown to reduce tumour growth in models of 

pancreatic and colorectal cancer (McCarty et al., 2007). 

1.6.5 Glucocorticoids and tumours 

Glucocorticoids have been in used for the treatment of lymphoid cancers for over 70 

years (Pearson and Eliel, 1950; Inaba and Pui, 2010). Synthetic glucocorticoids, such 
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as dexamethasone, are effective in this setting but their associated side-effects 

(metabolic disorder, muscle wasting, osteoporosis etc.) limit their usefulness (Pufall, 

2015). In treatment of these haematopoietic cancers, the curative mechanism is thought 

to be predominantly upregulation of pro-apoptotic signalling pathways such as Bim 

(Wang et al., 2003; Pufall, 2015). In terms of other cancer types, glucocorticoids have 

shown moderate beneficial effects in the treatment of endocrine responsive tumour 

types (breast and prostate cancer), either as monotherapy or in conjunction with 

cytotoxic drugs (Lin and Wang, 2016). These beneficial effects are poorly understood 

but may involve cooperation between GR and the estrogen receptor (ER, breast cancer) 

(Karmakar et al., 2013) or the androgen receptor (AR, prostate cancer) (Sahu et al., 

2013).  

As well as their use to treat malignancy itself, glucocorticoids are also commonly 

prescribed for the side effects associated with chemo- and radiotherapy, such as loss 

of appetite and weight, fatigue, vomiting and pain (Lin and Wang, 2016). 

Controversially, many preclinical studies suggest that dexamethasone inhibits the 

apoptotic effects of chemotherapy. This has been seen in tumours or tumour cells from 

a range of cancer types, predominantly carcinomas. These include: bladder, renal and 

testicular carcinoma (Zhang et al., 2006b); glioma (Gorman et al., 2000; Benedetti et 

al., 2003); breast (Mikosz et al., 2001; Wu et al., 2004) and ovarian cancer (Sui et al., 

2006); cervical carcinoma (Rutz et al., 1998; Kamradt et al., 2000); HCC and 

colorectal cancer (Zhang et al., 2006b); lung carcinoma (Bergman et al., 2001; Gassler 

et al., 2005; Gündisch et al., 2012) and pancreatic cancer (Zhang et al., 2006a). A 

comprehensive study of multiple solid tumour types by Zhang et al. (2007) led to the 

conclusion that dexamethasone induces chemotherapy resistance in the majority of 

solid tumours. No clinical studies have been able to validate these pre-clinical 

observations as yet (Lin and Wang, 2016). It is also important to bear in mind that the 

majority of these studies used pharmacological doses of dexamethasone (which is 

itself highly potent and selective for the GR), thus the same cannot necessarily be 

assumed when manipulating systemic glucocorticoids at physiologically relevant 

concentrations. 
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GC-mediated resistance to cell death in breast cancer was found to be via upregulation 

of survival factors such as serine/threonine survival kinase 1 (Mikosz et al., 2001; Wu 

et al., 2004). Feng et al. (2012) also found that chronic restraint stress led to the 

induction of serum- and glucocorticoid-induced protein kinase, which attenuated p53 

tumour-suppressor function and promoted tumour colorectal cancer xenograft growth. 

As well as influencing cell survival, glucocorticoids are also likely to alter the anti-

tumour immune response (Flint et al., 2017). The concept of glucocorticoids 

influencing immunological resistance to tumours stretches back over 40 years (Rettura 

et al., 1973). The complexity of anti-tumour immunity is vast and a huge amount 

remains to be discovered. However, the last decade has seen great progress (Fearon, 

2017; Flint et al., 2017). CXCR3 is now considered a vital mediator of T-cell migration 

into tumours (Mikucki et al., 2015). The interaction of key chemokines such as 

CXCL9-11, and their various receptors, are central to the process of immune control 

in cancer. Cancer cells, myeloid cells, endothelial cells and CAFs may all be involved 

(reviewed by Fearon (2017)). Colorectal cancer can generate immunoregulatory 

glucocorticoids to reduce anti-tumour immunity (Sidler et al., 2011). Furthermore, 

administration of physiologically-relevant levels of corticosterone abolished the 

beneficial effects of immunotherapy on murine pancreatic cancer (Flint et al., 2016). 

Both studies suggest that manipulation of physiological glucocorticoids could affect 

anti-tumour immunity.  

IL-6 stimulates the growth of cancer cells, promotes tumour angiogenesis and is 

influenced by cortisol (Bernabé et al., 2011), making it an important therapeutic target. 

This is particularly true of squamous cell carcinoma (SCC), discussed in more depth 

in Section 1.6.5.1.1. Bernabé et al., (2011) found that stress levels of corticosterone 

elevated IL-6 levels, while pharmacological levels decreased IL-6 expression in SCC. 

Elevated IL-6 levels predict poor prognosis in SCC (Duffy et al., 2008). Reducing the 

disruptive influence of IL-6-producing pro-inflammatory CAFs on downstream 

chemokine signalling has been proposed in PDAC (Flint et al., 2016), a tumour type 

with a relatively high proportion of CAFs (Öhlund et al., 2017). The same approach 

has shown promise in melanoma (Jobe et al., 2016).   
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Tumour cells undergo a shift towards aerobic glycolysis during their transition towards 

malignancy (Hanahan and Weinberg, 2011); a process termed the Warburg effect 

(Warburg, 1956). The impact of glucocorticoids on glucose availability is therefore a 

concern, as the increased amount of available glucose could stimulate enhanced 

glycolysis and increased proliferation of cancer cells. This has been suggested to occur 

during treatment of glioblastoma with corticosteroids (Seyfried et al., 2010) although 

it has not yet been thoroughly investigated. The same argument is of relevance to 

tumour angiogenesis, as endothelial cells are also highly glycolytic (De Bock et al., 

2013; Vandekeere et al., 2015) and inhibiting glycolysis suppresses tumour growth 

(Clem et al., 2008). 

Determining the influence of glucocorticoids on intra-tumour immunity and 

inflammation is highly complex, not only because of the sometimes contrasting effects 

of immune inflammatory cells on tumour progression, but also due to the differential 

effects of glucocorticoids on inflammation, depending on concentration (Bernabé et 

al., 2011; Itoi et al., 2013) and inflammatory context (Chapman et al., 2013a). 

Likewise, different cancer subtypes express variable levels of GR and of the 11β-

HSDs, affecting their sensitivity to glucocorticoids (reviewed by Azher et al., (2016)). 

Viaje et al. (1977) demonstrated the anti-tumour effects of synthetic glucocorticoids 

in preventing the induction of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced 

mouse skin cancer, but did not examine the role of anti-inflammatory steroid in 

established carcinoma progression. 

Despite this large body of evidence suggesting that glucocorticoids can promote 

tumour progression, there are also findings in the contrary. Over three decades ago, 

Folkman et al., (1983) performed their pioneering experiments demonstrating the 

angiostatic and anti-metastatic effects of glucocorticoids (in combination with heparin) 

on tumours. More recently, Yano et al. (2006) demonstrated that dexamethasone (1-

1000nM) suppressed VEGF and IL-8 production via binding at the GR in vitro, and 

glucocorticoids have shown suppressive effects in preclinical models of ovarian cancer 

via activation of mIR-708, leading to suppressed metastasis (Lin et al., 2015). 

Furthermore, mice injected with 1µg dexamethasone showed reduced growth of 

xenograft tumours in vivo, though potential metastases were not investigated. Work by 
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Schiffelers et al. (2005) also found that prednisolone encapsulated in liposomes could 

accumulate within colon-carcinoma and melanoma-derived tumours and inhibit their 

growth. Of note, these studies, like others (Crowley et al., 1988), did not observe an 

inhibitory effect of glucocorticoids on tumour cell growth in vitro and did not see a 

change in tumour vessel number, potentially implicating other cells of the 

microenvironment (immune inflammatory cells/fibroblasts) in the anti-tumour 

process. The role of local glucocorticoid signalling within the tumour 

microenvironment has been subject to increasing interest in recent years (for reviews 

see Volden and Conzen, 2013; Azher et al., 2016; Lin and Wang, 2016).  

In some circumstances, it is overly simplistic to view the effects of glucocorticoids on 

tumour as ‘positive or negative’ alone. In bladder cancer, for example, dexamethasone 

binding at the GR was shown to, on the one hand, inhibit apoptosis and slightly 

augment the growth of xenografts in mice, but on the other hand it reduced the 

expression of MMP 2/9 and IL-6, and prevented epithelial-mesenchymal-transition 

(EMT), leading to reduced invasiveness (Zheng et al., 2012).  

 11β-HSDs and tumours 

An abundance of evidence indicates that glucocorticoids can affect tumour growth. 

However, the majority of this work has focussed on delivery of pharmacological doses 

of synthetic glucocorticoids, as opposed to manipulation of endogenous levels. The 

role of the 11β-HSDs in tumour growth has only attracted relatively recent interest 

(Azher et al., 2016; Liu et al., 2016; Cirillo et al., 2017). Glucocorticoids exert a 

powerful influence on the immune system, the inflammatory response, fibrosis and 

ECM deposition, and angiogenesis. Thus, 11β-HSD1 inhibition and subsequent 

changes in local glucocorticoid levels could affect almost every aspect of the tumour 

microenvironment, as well as potentially glucose handling in the highly metabolically-

active tumour cell population (Figure 1.4).  

Review of cancer genomics data sets available via the cBioPortal for Cancer Genomics 

(Cerami et al., 2012) reveals amplification of HSD11B1 expression in 8-10% of breast 

and hepatobiliary cancer studies, while around 8% of cutaneous melanomas show 

either mutation (4%) or amplification (4%) of the gene. Altered expression of 
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HSD11B1 is also apparent in around 5% of studies on endometrial cancers, non-

Hodgkin lymphomas, non-small cell lung cancers and melanomas. Of note, around 3-

5% of oesophageal and lung SCC studies and around 2% of PDAC studies show 

amplified HSD11B1 expression. Examination of HSD11B2 in the same data sets 

reveals amplification of the gene in 2-3% of adrenocortical carcinoma and bladder 

cancer studies, loss of the gene in around 2% of prostate and ovarian cancers and 

altered gene expression in 1.5-2% of esophogastric, breast and endometrial cancers. 

Overall, alterations in expression are marginally more common for HSD11B1 (3.3% 

of samples) than for HSD11B2 (1.1% of samples). 

Only one recent study has directly addressed the impact of 11β-HSD1 overexpression 

on tumour growth (Liu et al., 2016). In this study, decreased 11β-HSD1 expression 

was seen in HCC samples as compared to healthy liver tissue, and was predictive of 

poor prognosis. The liver is a key glucocorticoid-sensitive organ involved in regulating 

systemic glucose homeostasis (Kuo et al., 2015). Liu et al., (2016) report that 11β-

HSD1 overexpression impaired glucose uptake and glycolysis in HCC cells in vitro, 

and also reduced angiogenic sprouting and HUVEC migration, in keeping with the 

known physiological effects of glucocorticoids (Small et al., 2005; Kuo et al., 2015). 

In terms of direct effects on tumour cells, overexpression of 11β-HSD1 (via lentivirally 

induction) significantly decreased HCC cell mobility and invasiveness in vitro. 11β-

HSD1 overexpression also attenuated growth potential of HCC cells, an effect that was 

reversed by the GR antagonist mifepristone, suggesting it was mediated via increased 

cortisol availability. Injection of 11β-HSD1 overexpressing HCC cells into Balb/C 

nude mice resulted in decreased tumour growth, weight, vessel density and 18F-

fludeoxyglucose (FDG) accumulation in vivo (Liu et al., 2016). Analysis of factors 

expressed by cells showed that 11β-HSD1 overexpression reduced HIF-1α and VEGF 

expression, as well as several MMPs (2, 3, 9, 12 and 14) and ANGPTL4, suggesting 

an anti-angiogenic effect likely as a result of increased glucocorticoid levels. These 

findings strongly implicate glucose homeostasis as a mechanism, though a significant 

shortcoming of this study is the use of Balb/C mice; although necessary for use in 

conjunction with human cells, these mice lack a functional T-cell response and thus 

conclusions cannot be drawn relating to the inflammatory immune response. This is 

especially important in light of recent evidence demonstrating that locally produced 
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cortisol binds GR to inhibit anti-tumour CD8+ T-cell proliferation (Cirillo et al., 

2017). It is likely that 11β-HSD1 inhibition will have differential effects on different 

tumour types depending on the function of the original healthy tissue. 

Alterations in the expression of the 11β-HSD isozymes is likely to be of great 

importance in malignancy. Rabbitt et al. (2002) generated osteosarcoma cell lines 

which overexpressed either 11β-HSD1 or 2 and saw decreased or increased 

proliferation, respectively, leading them to conclude that activated glucocorticoids 

constrain tumour cell proliferation, and that the 11β-HSDs provide pre-receptor 

control of this process. A second group has published similar findings (Woitge et al., 

2001). Of note, these changes in enzyme expression and proliferative potential were 

not accompanied by a change in GR expression.  These findings suggest that a switch 

in enzyme expression may occur as part of both pathophysiology and normal 

development. 11β-HSD2 for example is expressed in bone during development 

(Condon et al., 1998), while 11β-HSD1 expression increases with age (Cooper et al., 

2002). The opposite may be true in malignant tissues; a consistent observation across 

a variety of tumour types is that expression of the type I isozyme is decreased and the 

type II isozyme increased in comparison to healthy tissue. 11β-HSD2 has even been 

suggested as a putative oncogene that enhances proliferative and neoplastic potential 

in GR-rich tissues, while gene therapy to increase 11β-HSD1 expression could prove 

effective as an anti-tumour therapy (Rabbitt et al., 2003b).  

This pathophysiological ‘switch’ has been reported in adrenal carcinoma and adenoma 

(Coulter et al., 1999), colon carcinoma (Pácha et al., 2002; Takahashi et al., 2008), 

myeloid leukaemia (Gingras and Margolin, 2000), prostate (Dovio et al., 2009), 

osteosarcoma (Bland et al., 1999; Cooper et al., 2000) and HCC (Liu et al., 2016).  In 

breast (Hundertmark et al., 1997; Koyama et al., 2001) and endometrial (Koyama and 

Krozowski, 2001) cancer cell lines, the same patterns have been reported and 

inhibition of 11β-HSD2 activity reduced cell proliferation (Hundertmark et al., 1997; 

Koyama and Krozowski, 2001). High 11β-HSD2 activity is also seen in ovarian cancer 

(Temkin et al., 2006) and potentially enhances tumour progression by reducing the 

anti-inflammatory effects of cortisol. Importantly, the same effect has been observed 

in human pituitary tumours (Korbonits et al., 2001; Rabbitt et al., 2003a). This is of 
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particular relevance as the pituitary is responsible for negative regulation of ACTH 

release; thus enhanced inactivation of cortisol by elevated 11β-HSD2 is likely to blunt 

negative feedback and increase systemic cortisol levels. This process has been 

implicated in the pathophysiology of Cushing’s syndrome (Korbonits et al., 2001). A 

notable exception are the SCCs; in these cancers, 11β-HSD1 expression is reduced 

compared to healthy skin, but is still detectable (Gronau et al., 2002) whereas 11β-

HSD2 (and the MR) are undetectable (Suzuki et al., 2000).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 – Potential tumour-promoting effects of 11β-HSD1 inhibition. The tumour 

microenvironment is composed of tumour cells (TCs), cancer associated fibroblasts (CAFs), 

immune/inflammatory cells, and blood vessels (comprised of endothelial cells (ECs) and their 

supporting mural cells (pericytes/smooth muscle cells)). Most of these cell types contain 11β-

HSD1, and the supporting literature suggests that inhibition of the enzyme may promote TC 

glycolysis and proliferation, a loss of tumour constraining extracellular matrix and anti-tumour 

immunosurveillance, and promotion of angiogenesis via increased inflammatory stimuli and 

possibly direct vascular interaction. Adapted from Hanahan and Weinberg, 2011. 
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 11β-HSD1 and skin cancer 

11β-HSD1 expression was originally described in the skin by Teelucksingh et al. 

(1990). Over the last decade, the role of de novo steroidogenesis and steroid 

regeneration by 11β-HSD1 in skin, both healthy and diseased, has proven to be of 

particular importance (Cirillo and Prime, 2011; Slominski et al., 2014; Azher et al., 

2016; Terao and Katayama, 2016). 11β-HSD1 is expressed in all layers of the 

epidermis, as well as in dermal fibroblasts (Terao et al., 2011; Tiganescu et al., 2011). 

Pharmacological doses of glucocorticoids potently induce skin atrophy, associated 

with decreased Type I and III collagen deposition (Oishi et al., 2002). Reducing 

physiological levels of glucocorticoids by 11β-HSD1 inhibition/deletion stimulates 

fibrosis (Tiganescu et al., 2013). This is likely the result of increased fibroblast 

proliferation, as 11β-HSD1 inhibition/deletion was seen to increase fibroblast 

proliferation and dermal thickness in mice (Tiganescu et al., 2013; Terao et al., 2014). 

It is worth noting that Terao et al. (2014) did not observe increased fibroblast 

proliferation in vivo in 11β-HSD1 KO mice, only in WT mice given an 11β-HSD1 

inhibitor. This could either suggest off-target effects or that acute inhibition of enzyme 

function may sometimes confer an alternative phenotype to chronic deletion. 11β-

HSD1 inhibition also promoted keratinocyte proliferation and enhanced wound 

healing in mice (Terao et al., 2011). 11β-HSD1 content in skin has been shown to 

increase with age (Tiganescu et al., 2011) and after inflammatory stimuli (Itoi et al., 

2013), and 11β-HSD1 KO mice are protected from the adverse effects of skin aging 

(Tiganescu et al., 2013). Together, the studies above suggest an important role for the 

enzyme in skin homeostasis.  

Binding of glucocorticoids to the GR is thought to be of more importance than binding 

at the MR in terms of keratinocyte proliferation, motility and migration, as transgenic 

overexpression of the GR in mice slows wound healing, reduces macrophage and 

granulocyte recruitment, and reduces IL-1β, TNF and VEGF expression (Stojadinovic 

et al., 2006; Sanchis et al., 2012). Importantly, this effect must be mediated by 

endogenous GCs rather than exogenous synthetic equivalents. Glucocorticoids 

suppress a huge range of IFN-γ related genes (Stojadinovic et al., 2006) and prolong 

epidermal turnover time (Choi et al., 2006). The discovery that keratinocytes contain 
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all the enzymes required for non-adrenal steroidogenesis, and that glucocorticoid 

availability in these cells is under regulation by the 11β-HSDs (Cirillo and Prime, 

2011), brings into question the importance of local glucocorticoid regeneration in skin 

cancer. Evidence suggests that the expression of GR is especially high across a variety 

of SCC cell lines (Budunova et al., 1997; Spiegelman et al., 1997), and is even 

sometimes upregulated in SCC compared to normal epidermis (Budunova et al., 

1997), emphasising the potential glucocorticoid sensitivity of this cancer type. GR 

function may be compromised in tumours, based on the lack of changes in 

metallothionein 1 (Budunova et al., 1997; Spiegelman et al., 1997) and connexin 26 

(GR-regulated genes) (Budunova et al., 1997) after exposure to glucocorticoids in 

tumour cells. Budunova et al. (1997) also saw GR mRNA was decreased in tumour 

cells after exposure to glucocorticoids, an effect interestingly absent in the surrounding 

skin.  

The skin responds dynamically to inflammatory stimuli, with physiologically-relevant 

glucocorticoid concentrations inducing IL-6 expression in keratinocytes and 

pharmacological doses attenuating IL-6 release (Itoi et al., 2013). The same 

differential effects of low and high dose corticosteroids have been seen in SCC cells 

(Bernabé et al., 2011), with low doses stimulating IL-6 release and enhancing tumour 

cell proliferation. IL-6 is associated with angiogenesis and tumour progression 

(Heikkilä et al., 2008) and is correlated with poor prognosis in SCC of the head and 

neck (Duffy et al., 2008), suggesting that manipulating local glucocorticoid levels may 

affect SCC progression. Furthermore, inflammatory mast cells, which express 11β-

HSD1 (Coutinho et al., 2013), are known to promote fibroblast recruitment, 

angiogenesis and tumour progression in SCC (Coussens et al., 1999). There is also 

evidence to suggest that steroid synthesised de novo by malignant keratinocytes may 

promote anchorage independence and promote invasiveness (Kennedy et al., 2015).  

In terms of enzyme expression, basal cell carcinoma (BCC), SCC and seborrheic 

keratosis all show reduced (but detectable) levels of 11β-HSD1 compared to healthy 

skin, potentially due to their hyperproliferative state (Terao et al., 2013). 11β-HSD2 is 

elevated in SK and BCC compared to healthy skin, but is barely detectable in SCC 

(Cirillo et al., 2012; Terao et al., 2013), again highlighting the unusual glucocorticoid 
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regulation in this particular class of cancers. Cirillo et al. (2017) recently reported 

detection of both 11β-HSD1 activity and low levels of 11β-HSD2 in human SCC by 

immunohistochemistry, and argue that inhibition of the type 2 isozyme affects the 

invasiveness of some SCC cell lines; however, they were only able to demonstrate an 

effect on cell behaviour in one of the three SCC lines tested.   

The phenotype and metastatic potential of a tumour is influenced by the non-cellular 

ECM network of the tumour microenvironment (Cretu and Brooks, 2007). Elevated 

11β-HSD1 increases local glucocorticoid availability which reduces collagen 

deposition, which may enhance tumour progression and metastasis (Willhauck et al., 

2006; Cretu and Brooks, 2007). Thus 11β-HSD1 inhibition may promote collagen 

deposition and enhance ECM integrity. Enhancing ECM integrity has previously been 

shown to have a beneficial anti-tumour effect; stromal modulation inhibited tumour 

angiogenesis and the invasiveness of SCC cells – the fibrotic tissue induced led to the 

accumulation of myofibroblasts and collagen and enhanced the production of an intact 

basement membrane (Willhauck et al., 2006). The beneficial alteration in tumour 

phenotype was not related to altered tumour cell proliferation, but was due rather to 

increased ECM condensation and reduction of peritumoural protease activity. VEGFR 

expression was altered, and a corresponding increase in TSP-1 and endostatin 

suggested an additional powerful anti-angiogenic phenotype. This ECM normalisation 

highlights the importance of the non-cellular TME and further implicates 11β-HSD1 

in SCC progression (Tiganescu et al., 2013). 

1.7 Hypothesis and Aims 

The work described in this thesis was designed to test the following hypothesis: 

11β-HSD1 inhibition will promote tumour angiogenesis and, consequently, enhance 

solid tumour growth.  

Specifically, the experiments presented were designed with the following primary 

aims: 
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1. To determine whether pharmacological inhibition or genetic ablation of 11β-

HSD1 promote tumour growth and angiogenesis in murine models of 

squamous cell carcinoma and pancreatic ductal adenocarcinoma. 

2. To determine the effects of pharmacological 11β-HSD1 inhibition and 

exogenous glucocorticoids on ex vivo angiogenesis, and in vitro tumour cell 

growth. 

3. To determine the effects of 11β-HSD1 inhibition on the tumour 

microenvironment and investigate mechanisms by which glucocorticoid 

manipulation might influence tumour growth.
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2 Materials and Methods 

2.1 Materials 

2.1.1 Chemicals and reagents 

Unless otherwise stated all chemicals and reagents were purchased from Sigma-

Aldrich (Gillingham, UK). All High-Performance Liquid Chromatography (HPLC)-

grade chemicals were purchased from VWR (Lutterworth, UK). Scintillation fluid 

(Pro-flow G+) was purchased from Meridian Biotech (Tadworth, UK).  

2.1.2 Buffers  

C buffer:  63g Glycerol, 8.77g NaCl, 186mg Ethylenediaminetetraacetic acid (EDTA), 

3.03g Tris, made up to 500mL with distilled H2O and pH adjusted to 7.7. Stored at 

4°C.    

Phosphate Buffered Saline (PBS): 10 x PBS tablets (Thermo-Fisher Scientific, 

Renfrew, UK) dissolved in 1L dH2O. Stored at room temperature.  

Tris-Buffered Saline (TBS): 6.05g Tris, 8.76g NaCl made up to 800mL with distilled 

H2O and pH adjusted to 7.6. Made up to 1L with distilled H2O and stored at 4°C. 

Homogenisation buffer: 100g Glycerol, 300mg Tris, 186mg EDTA, made up to 

500mL with distilled H2O and pH adjusted to 7.5. Stored at 4°C. 7.7mg 1,4-

Dithiothreitol (DTT) added per 50mL before use. 

Citrate buffer:  Prepared and stored as a 10x solution - tri-sodium citrate (dehydrate) 

29.4g, 1000mL distilled H2O. Diluted 1:10 in distilled H2O, pH adjusted to 6.0 and 

0.1% Tween-20 added before use. 

EDTA 

0.5M solution prepared by adding 93.05 grams EDTA disodium salt dissolved in 

400mL distilled H2O and pH adjusted to 8.0 with sodium hydroxide (NaOH). When 

salt dissolved, solution made up to 500mL with distilled H2O. 
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TAE buffer 

50x stock solution: 242 grams of Tris base dissolved in 750mL distilled H2O + 57.1 

mL glacial acid and 100 milliliters of 0.5 M EDTA. Made up to a final volume of 1L 

with distilled H2O.  

2.1.3 Drugs 

 11β-HSD1 inhibition in vivo 

Studies used the 11β-HSD1 inhibitor UE2316 ([4-(2-chlorophenyl-4-fluoro-1-

piperidinyl][5-(1H-pyrazol-4-yl)-3-thienyl]-methanone), synthesised by High Force 

Ltd (Durham, UK) (Webster et al., 2011).  For in vivo studies, UE2316 was delivered 

ad libitum to animals via an adjusted RM1 diet (175mg/kg UE2316) prepared by 

Special Diet Services (Essex, UK). UE2316 has an IC50 of 162nM for mouse 11β-

HSD1 (Sooy et al., 2010) and no significant off-target activities in selectivity 

screening, including against 11β-HSD2, 17β-HSD1 and GR (Yau et al., 2015). 

 11β-HSD1 inhibition in vitro 

 For in vitro studies, a 20mM UE2316 stock solution was stored at -20°C and diluted 

incrementally to give an appropriate final concentration in experimental solvent. The 

novel 11β-HSD1 inhibitor UE2341 (High Force Ltd.) (Webster et al., 2011) was used 

as an internal standard for mass spectrometry studies. 

 Systemic glucocorticoid manipulation 

Metyrapone (Cambridge Bioscience, Cambridge, UK) was used to inhibit adrenal 

corticosteroid synthesis in mice; the drug was dissolved in saline solution (10mg/mL) 

for intraperitoneal injection and used the same day. Corticosterone was delivered to 

animals via drinking water; 100mg corticosterone was added to 8mL ethanol and 

topped up with 392mL H2O to give a 10x holding stock (250µg/mL) which was diluted 

1/10 (drinking water was replaced every 2-3 days).  

2.1.4 Corticosteroids 

11-dehydrocorticosterone (Kendall’s compound ‘A’) and corticosterone (Kendall’s 

compound ‘B’) were purchased from Steraloids (Newport, USA) and stored at -20°C 
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as 20mM stocks made up in ethanol (for in vitro studies) or methanol (for use in mass 

spectrometry). [9,11,12,12-2H4]cortisol was used as an internal standard in mass 

spectrometry studies. Stocks were diluted incrementally to an appropriate final 

concentration in experimental solvent. Tritiated steroid stocks (corticosterone and 

cortisone) were purchased from PerkinElmer (Wokingham, UK). For systemic 

glucocorticoid manipulation studies, corticosterone was delivered to animals via 

drinking water; 100mg corticosterone was added to 8mL ethanol and topped up with 

392mL H2O to give a 10x holding stock (250µg/mL) which was diluted 1/10 (drinking 

water was replaced every 2-3 days). 

2.1.5 Software 

Table 2.1 shows software details. 

Software Use Manufacturer 

Zen Blue edition 
Slide Scanner/LSM 710 

confocal microscope 

Carl Zeiss 

Microscopy 

(Cambridge, UK) 

ImageJ Image analysis See PMID 22743772 

MCID Basic 7.0 Non-fluorescent microscopy MCID 

Lightcycler 480 software 

v1.5.1.62 
RT-qPCR 

Roche Diagnostics 

(Welwyn Garden 

City, UK) 

Nanodrop 100 software 

v3.8.1 
Nanodrop RNA quality ThermoScientific 

Chromeleon v6.5 SP4 

Build 1000 
HPLC output ThermoScientific 
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Analyst software with 

MultiQuant v3.0.2 
Mass spectrometry 

SCIEX (Washington, 

USA) 

Incucyte software 
Incucyte Zoom live cell 

imaging 

Essen Bioscience 

(Welwyn Garden 

City, UK) 

Softmax Pro 4.8 Plate reader software Molecular Devices 

Cufflinks software 
RNA sequencing 

bioinformatics 
See PMID 20436464 

Prism v7 Statistical analysis 
Graphpad (San Diego, 

USA) 

Table 2.1 – Software. Software used throughout project 

2.1.6 Plastics 

All sterile tissue culture plastic-ware was purchased from Corning (Wiesbaden, 

Germany). 

2.2 Animals 

C57BL6/J and FVB/N mice were purchased from Envigo (Blackthorn, UK) or Charles 

River (Elphinstone, UK). C57BL6/J mice globally deficient for 11β-HSD1 (Del1) 

were bred in house at the University of Edinburgh (Zhang et al., 2017). All 

experimental animals were female, and aged 9-14 weeks. Groups were age-matched. 

Animals were group housed (5 mice per cage maximum) and given free access to food 

and water unless otherwise stated. All procedures were carried out by a licensed 

individual and in strict accordance with the Animals (Scientific Procedures) Act 1986, 

under project Licence 70/8897 or 60/4523.         



Chapter 2 – Materials and Methods 

82 

 

2.3 Methods        

2.3.1 Cell culture 

 Preparation of reagents 

All reagents were stored in sealed containers according to manufacturer’s advice and 

opened only inside a sterile Class 2 fume hood. Before use, foetal calf serum (FCS; 

Gibco (Invitrogen, Carlsbad, USA) was heat-inactivated by incubation for 30 minutes 

in a 57°C water bath. Where required, FCS was stripped by adding 1g of dextran 

charcoal to 50mL serum and incubating at 4°C on a gentle shaker overnight. Serum 

was spun by centrifuge (180 RCF x 5 min) and passed through a sterile 0.2µm filter 

(Merck-Millipore, Cork, Ireland) three times to minimise particulate contamination. 

Aliquots (1mL) were stored at -20°C. 

 Source of cells 

Studies made use of three immortalised murine cancer cell lines. Two SCC cell lines, 

WT-SCC cells (Serrels et al., 2012) and SCC-B6-1 cells, were generated in-house by 

Dr Alan Serrels using a two-stage 7,12-Dimethylbenz[a]anthracene (DMBA)/TPA 

chemical carcinogenesis protocol as previously described (McLean et al. 2004). 

Squamous cell carcinoma was selected based on multiple reports of altered local 

glucocorticoid profile in this cancer type (Azher et al., 2016). WT-SCC are 

syngeneically compatible with FVB/N mice, however the transgenic mouse line 

available in our group (Del1 - global 11β-HSD1 knockout) are bred on a C57BL6/J 

background. SCC-B6-1 cells served as an SCC cell-line compatible with Del1 mice to 

investigate the effects of enzyme deletion and inhibition. A PDAC cell line, Panc043 

cells, were provided by the Beatson Institute in Glasgow – these cells were originally 

derived from tumours developed using the KrasLSL.G12D/+; p53R172H/+; 

PdxCretg/+ (KPC) model (Hingorani et al., 2005) and were selected as an alternative 

tumour type that grow on the C57BL6/J background.  
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 Cell culture media 

 Panc043  

Panc-043 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with 10% FCS.  

 WT-SCC  

WT-SCC cells were maintained in Glasgow Minimum Essential Medium (GMEM) 

supplemented with 10% FCS, 2mM L-Glutamine, 1mM sodium pyruvate, MEM non-

essential amino acids (Thermo-Fisher) and MEM vitamins. SCC-WT cells are Focal 

Adhesion Kinase (FAK) KO cells which have had FAK re-expressed using 

electroporation, and require selection via the addition of 0.25 mg/mL hygromycin B 

to media. 

 SCC-B6-1  

SCC-B6-1 cells were maintained in Glasgow Minimum Essential Medium (GMEM) 

supplemented with 10% FCS, 2mM L-Glutamine, 1mM sodium pyruvate, MEM non-

essential amino acids (Thermo-Fisher) and MEM vitamins. 

 Freezing media 

Cells were stored at -80°C in the appropriate cell culture medium (see above) + 20% 

FCS + 10% dimethyl sulfoxide (DMSO). 

 Cell maintenance 

 Serial passaging   

All cells were serially passaged (split 1/10 WT-SCC/Panc043 and 1/5 SCC-B6-1, 

every 2-3 days) and maintained at 37°C/5% CO2 in 25mL media in T150 flasks 

(Corning). All cell lines were adherent and were split by replacing media with 4mL 

trypsin (Thermo-Fisher Scientific) and incubating for 5 min at 37°C. Once cells were 

detached, trypsin was inactived by diluting 5:1 with medium, and an appropriate 

volume taken into a new flask. All experimental cells were used at <20 passages.  
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 Cell storage, thawing and freezing 

Cells were stored in liquid nitrogen when not in use. Cells were frozen by trypsinising 

a >70% confluent flask, pelleting the resulting cells by centrifuge (5 min x 180 RCF) 

and re-suspending in 10mL freezing media. 1mL aliquots were added to cryovials and 

stored at -80°C for 24 hours before transfer to liquid nitrogen for long-term storage. 

Cells were thawed quickly in a 37°C water bath and added to 25mL normal cell culture 

medium in a T150 flask. Cells were transferred to a 50mL Falcon tube, pelleted by 

centrifugation (5 min x 180 RCF) and resuspended in 25mL cell culture medium for 

transfer into a T150 flask.  

2.3.2 Solid tumour model 

In vivo studies of tumour growth used a model of subcutaneous tumour development 

(described previously in Serrels et al., 2015). 

 Diet alteration 

Diet was changed 5 days prior to cell injection for all experiments, to allow animals to 

adjust to the new diet. Diet and animals were weighed every 2-3 days from the point 

of diet change.  

 Cell injection 

Tumour cells in suspension were pelleted by centrifugation (180 RCF x 5 min) and re-

suspended in 20mL sterile PBS twice to remove media. Cells were counted by 

haemocytometer before pelleting and re-suspension in Hank’s Balanced Salt Solution 

(HBSS) to give a concentration of 10 x 106  cells/mL. Hair was removed from the 

flanks of mice by shaving and 100µL of cell suspension (1x106 cells) injected 

subcutaneously into each flank to produce 2 tumours per animal. As this procedure is 

relatively non-invasive, no analgaesia is required. 

 Tumour development 

Tumours were allowed to develop over the subsequent 1-6 weeks during which they 

were measured by callipers every 2-3 days. Tumour volume was calculated as the 

volume of an ellipsoid (0.5*length*breadth2). Mice and diet were weighed and mice 
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checked for any unexpected signs of ill health every 2-3 days. Tumour growth data is 

the mean ± SEM of the 2 tumours per animal. For UE2316-diet groups, diet was 

changed 5 days prior to cell injection and mice were weighed from the point at which 

diet was changed. Calliper measurements were blinded where possible by masking of 

cage labels and randomisation of cages by a second individual. 

 Tissue collection 

At the end of the experiment, mice were culled by cervical dislocation and tissues 

harvested. Blood was collected rapidly from the thoracic cavity using a syringe without 

a needle and stored in anti-coagulant EDTA-treated tubes (Sarstedt, Leicester, UK). 

Plasma was separated from whole blood by centrifugation (2000 RCF x 10 min at 4°C) 

for storage at -20°C. Tumours were weighed upon removal and halved (one half was 

snap frozen in liquid nitrogen for storage at -80°C, the other half was fixed in formalin 

for 24 hours before transfer to 70% ethanol before processing and embedding in 

paraffin wax). All other required tissues were removed and snap frozen in liquid 

nitrogen before storage at -80°C. 

2.3.3 Immunohistochemistry 

 Section preparation 

Paraffin embedded tissues were sectioned by microtome (5µm) and dried at 37°C 

overnight on electrostatically-adherent microscope slides (Superfrost plus, Thermo-

Fisher Scientific). 

 Hydration and dehydration of tissue sections 

Sections were rinsed in xylene (2 x 5 min), rehydrated through serial dilutions of 

ethanol (100% x 20s, 100% x 20s, 95% x 20s, 80% x 20s, 70% x 20s) and washed in 

H2O. Basic stains were rehydrated through serial dilutions of ethanol (50% x 20s, 75% 

x 20s, 95% x 20s, 100% x 20s) and rinsed in xylene (5 min) before mounting. 



Chapter 2 – Materials and Methods 

86 

 

 Haematoxylin and Eosin staining 

Rehydrated sections were immersed in Harris haematoxylin (2 min), acid alcohol 

(15s), Scott’s tap water (20s) and eosin (5s), with a thorough H2O rinse between each 

step. Slides were dehydrated and mounted with DPX mountant. 

 Immunofluorescent staining 

Heat-based antigen retrieval was performed by immersing sections in pH6 citrate 

buffer and pressure cooking (5 min). Sections were permeabilised by immersion in 

PBS + 0.4% Triton-X for 15 minutes. Slides were fitted into Sequenza cassettes 

(Thermo-Fisher Scientific) and rinsed with PBS before blocking with 200µL of 1% 

normal goat serum (Biosera, Nuaille, France) for 30 minutes. Slides were incubated 

with 200µL primary antibody (18h, 4°C) with the exception of a negative control, for 

which PBS was added in lieu of antibody. After primary incubation, slides were rinsed 

with PBS and incubated with 200µL secondary antibody (1 hour, room temperature). 

After secondary incubation, slides were rinsed with PBS and incubated with DAPI 

(1/1000 in deionised water x 5 min) before a thorough final rinsing with deionised 

water. Slides were mounted using Fluoromount G (SouthernBiotech, Cambridge, UK) 

and stored at 4°C.  

 Imaging 

Slides were scanned at 200x magnification using an Axioscan.Z1 (Zeiss) digital slide 

scanner. Higher magnification images were obtained using the LSM710 confocal 

microscope (Zeiss). Gain and digital offset values were adjusted using negative control 

samples to remove background autofluorescence, and the same settings then used to 

image all specimens. 

2.3.4 Specific staining protocols 

  Vessel staining 

 CD31/α-SMA immunofluorescent co-stain 

Paraffin-embedded tumours (all types, 2 sections per tumour spaced 50µm apart, 

N=6/group) were stained using the basic protocol described in Section 2.3.3.4, using 

the antibodies detailed in Table 2.2.  
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Antibody Dilution Catalogue # 

CD-31 (primary) 1/300 Ab28364 (Abcam, 

Cambridge, UK) 

Goat anti-Rabbit IgG, 

Alexa Fluor 488 

(secondary) 

1/1000 A-11034 (Molecular 

Probes, Eugene, USA) 

α-SMA-cy3 (conjugated 

primary antibody) 

1/1000 – added with 

secondary antibody 

C6198 (Sigma) 

Table 2.2 – Antibodies used for vessel staining. Antibodies diluted in 200µL 1% goat 

serum/PBS. The conjugated primary and secondary antibodies were co-diluted and added to 

samples simultaneously.    

 CD31 DAB stain 

CD31 staining was performed by L. Boswell based at the Shared University Research 

Facility (SuRF). Staining was performed using the Leica BOND-III automated 

staining system and the Leica Bond Polymer Refine detection kit (Leica, Milton 

Keynes, UK). Rehydrated slides underwent citrate buffer antigen retrieval as above, 

followed by: bond wash (buffer solution purchased from Leica; 10 min), peroxidase 

blocking (5 min, 4% hydrogen peroxide, room temperature), bond wash, CD31 (Table 

2.2) antibody incubation (60 min), polymer incubation (15 min), bond wash, dH2O 

rinse, 3,3′-Diaminobenzidine staining (DAB; 10 min) and haematoxylin 

counterstaining (5 min), bond wash. Sections were then dehydrated and mounted with 

DPX mountant. 

 Vessel quantification 

 Manual vessel counts 

Tumour sections (prepared as described in Section 2.3.4.1.1) were imaged using the 

Axioscan.Z1 slide scanner (Zeiss). Vessels showed a relatively even distribution 

across the tumour, with no consistently predictable region associated with high 

vascular density, leading to the decision to use randomly generated fields of view for 

quantification. Zen Blue software (Zeiss) was used to demarcate 10 randomly selected 
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0.1mm2 fields of view from which vessels were manually quantified. CD31-positive 

only vessels and CD31/α-SMA positive vessels were both quantified to allow the ratio 

of vessels with smooth muscle coverage to be calculated. Two sections from the centre 

of the tumours, spaced 50µm apart, were quantified per tumour. Quantification was 

performed blinded to treatment group. 

 Chalkley counts 

As a secondary measure of vessel density, sections stained for CD31 (prepared as 

described in Section 2.3.4.1.2) were quantified by Chalkley count using the method 

described previously (Hansen et al., 2000). One section (three hotspots) was quantified 

per tumour. Quantification was performed blinded to treatment group. 

 Hotspot quantification 

As a tertiary measure of vessel density, sections were stained for CD31 (prepared as 

described in Section 2.3.5.1.2) and vascular hotspots identified for manual 

quantification (using an adapted version of the protocol described by Weidner, 2008). 

Hotspots were 0.74mm2 in area. Quantification was performed blinded to treatment 

group.  

 Identification of proliferating cells - Ki-67  

 Staining 

Ki67 staining was performed using the general methods described in Section 2.3.3.4 

using the antibodies described in Table 2.3.  

Antibody Dilution Catalogue # 

Ki-67 (primary) 1/100 Ab15580 (Abcam) 

Goat anti-Rabbit IgG, 

Alexa Fluor 488 

(secondary) 

1/1000 A-11034 (Molecular 

Probes) 

Table 2.3 – Antibodies used for Ki67 staining. Antibodies diluted in 200µL 1% goat 

serum/PBS.  
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 Quantification 

Whole section 

Sections were imaged by slide scanner (x20 magnification) and quantified 

automatically using ImageJ. Whole section images were duplicated and one copy 

converted to binary. This binary imaged was used to create a region of interest 

encompassing the entire section, which was then applied to the original image. The 

‘Measure’ function was then used to generate a read out of stain intensity. 

Fields of view 

Ki67-stained sections were also quantified semi-automatically; 2 sections/tumour 

were scanned at 200x magnification and the most proliferative region selected (this 

was performed by a blinded observer). This region was then imaged at 400x 

magnification and nuclei number calculated by ImageJ. Ki67-positive cells were then 

quantified manually per hotspot by a blinded observer and expressed as a percentage 

of total cells. 

 Identification of inflammatory cells - F4/80  

 Staining 

F4/80 staining was optimised by L. Boswell based at the Shared University Research 

Facility (SuRF). Staining was performed using the Leica BOND-III automated 

staining system and the Leica refine detection kit (Leica). Rehydrated slides underwent 

trypsin-based antigen retrieval (10 min, 37°C, 0.5mg/mL), peroxidase blocking (5 min, 

4% hydrogen peroxide, room temperature), serum blocking (30 min, anti-rat impress 

blocking serum; Vector labs, Peterborough, UK), primary antibody incubation 

(eBiosciences, cat no. 14-4801, 1:300, 30 min), ImmPRESSTM anti-rat Ig reagent 

incubation (30 min, Vector labs), 3,3′-Diaminobenzidine staining (DAB; 10 min) and 

haematoxylin counterstaining (5 min). Sections were then dehydrated and mounted 

with DPX mountant. 
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 Quantification 

F4/80 stained sections were imaged by slide scanner and whole sections were 

automatically quantified using ImageJ software. 

 Identification of T-cells – CD3 staining 

 Staining 

CD3 staining was performed by L. Boswell based at the Shared University Research 

Facility (SuRF). Staining was performed using the Leica BOND-III automated 

staining system and the Leica Bond Polymer Refine detection kit (Leica). Rehydrated 

slides underwent citrate buffer antigen retrieval as above, followed by: bond wash (10 

min), peroxidase blocking (5 min, 4% hydrogen peroxide, room temperature), bond 

wash, CD3 antibody incubation (Santa-Cruz, Dallas, USA; cat no. sc-20047, 60 min), 

polymer incubation (15 min), bond wash, dH2O rinse, 3,3′-Diaminobenzidine staining 

(DAB; 10 min) and haematoxylin counterstaining (5 min), bond wash. Sections were 

then dehydrated and mounted with DPX mountant. 

Whole section 

Sections were imaged by slide scanner (x20 magnification) and quantified 

automatically using ImageJ. Whole section images were duplicated and one copy 

converted to binary. This binary imaged was used to create a region of interest 

encompassing the entire section, which was then applied to the original image. The 

‘Measure’ function was then used to generate a readout of stain intensity. 

Hotspots 

1 section/tumour was scanned at 100x magnification and the two most intense regions 

of signal identified and imaged (this was performed by a blinded observer). Images 

were thresholded and percentage stain area measured on ImageJ. Data presented are 

the average of the two hotspots per tumour.   
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 Picrosirius-red staining 

 Staining 

Picrosirius red staining was performed by Debbie Mauchline (Shared University 

Research Facilities).  Working solutions of Direct red (0.1%) and Fast green (0.1%) 

were combined in equal parts and added to picric acid (1:9 ratio for a working 

solution). This solution was then filtered and stored at room temperature in the dark. 

Slides were dewaxed and rehydrated then rinsed in tap water. Slides were incubated in 

the PSR solution (2 hours at room temperature) in a covered box to reduce light 

exposure. After incubation, slides were rinsed in tap water and very briefly rinsed in 

100% ethanol (<5s). Slides were then allowed to dry before mounting with DPX 

mountant.  

 Quantification 

Slide scanner images were obtained and quantified automatically using ImageJ.   

 Second Harmonic Generation imaging 

 Image acquisition 

To visualise Type-I collagen specifically, Second Harmonic Generation (SHG) 

microscopy was performed by Dr Martin Lee on WT-SCC tumours (N=6/group), 

Panc043 tumours (N=3/group) and SCC-B6-1 tumours (Day 28 N=6/group, Day 41 

N=3/group). A tunable pump laser (720–990 nm, 7 ps, 80 MHz repetition rate) and a 

spatially overlapped second beam, termed the Stokes laser (1064, nm, 5–6 ps and 

80 MHz repetition rate), were both provided by a picoEmerald (APE) laser. The pump 

laser used 50 mW power (measured at the objective) and was tuned to 816.8 nm. The 

Stokes laser used 20 mW power (measured at the objective). This laser was inserted 

into an Olympus FV1000 microscope coupled with an Olympus XLPL25XWMP N.A. 

1.05 objective lens. The objective lens used a short-pass 690 nm dichroic mirror 

(Olympus). A series of filters (FF552-Di02, FF483/639-Di01 and FF420/40) were 

used to filter the Second Harmonic Generation signal.  

 Image analysis 

SHG images were quantified automatically using Image J. 
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2.3.5 Unsuccessful immunohistochemistry 

 Identification of fibroblasts - Vimentin  

 Staining 

In an attempt to quantify fibroblasts, WT-SCC tumours from control and UE2316-

diet-fed mice (N=6/group) were stained with vimentin. Vimentin staining was 

performed using the general methods described in Section 2.3.3.4 using the antibodies 

described in Table 2.4.  

Antibody Dilution Catalogue # 

Vimentin (primary) 1/100 5741 (Cell Signalling 

Technology, Danvers, 

USA) 

Goat anti-Rabbit IgG, 

Alexa Fluor 488 

(secondary) 

1/1000 A-11034 (Molecular 

Probes) 

Table 2.4 – Antibodies used for vimentin staining. Antibodies diluted in 200µL 1% goat 

serum/PBS.  

Unfortunately, this stain proved ineffective, as although it produced a strong 

cytoplasmic stain, it was expressed almost ubiquitously across the tumour (see Figure 

2.1) rendering it unhelpful for quantifying fibroblasts. 
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Figure 2.1 - Vimentin positive cells in WT-SCC tumours. Adding secondary antibody to 

tumours in the absence of primary antibody resulted in no immunoreactivity (A), while 

addition of the primary vimentin antibody produced a strong cytoplasmic stain (green) in most 

of the cells in the tumour (B and C). Blue counterstain = DAPI. Scale bar = 50µm. 
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 11β-HSD1 staining 

Early attempts to optimise staining for 11β-HSD1 using the protocol described in 

Section 2.3.3.4 proved ineffective, with positive signal masked by excessive 

background. An alternative method was optimised on the BOND automated staining 

system by Lyndsey Boswell and emulated at the bench using an adapted protocol by 

combining both an Immpress HRP Anti-Goat Ig (Peroxidase) Polymer detection kit 

(Vector Labs) and tyramide signal amplification. Slides were dewaxed, rehydrated, 

antigen retrieved and permeabalised as described in Section 2.3.3.4 (with TBS used 

instead of PBS to reflect BOND staining conditions). Blocking was performed using 

2.5% horse serum (30 min) before incubation with 11β-HSD1 antibody (developed in-

house by Dr Scott Webster, sheep-raised anti-rodent/human, diluted 1/200 in TBS + 

1% BSA) for 1 hour at room temperature. Slides were then incubated with goat 

Immpress polymer (30 min) followed by Cy-3 conjugated tyramide (10 min 1/50 

dilution, Perkin-Elmer) and counterstained with DAPI (1/1000 in distilled water). 

Slides were washed thoroughly with TBS between incubations, and with distilled 

water before mounting with aqueous mountant (Fluoromount-G, Southern Biotech) 

for imaging on an LSM710 confocal microscope (Zeiss). 

The 11β-HSD1 staining protocol was used to stain liver tissue from wild-type FVB/N 

and 11β-HSD1 knockout (Del1) mice, and tumour tissue from wild-type FVB/N mice. 

Unfortunately, imaging on the LSM710 microscope showed that non-specific binding 

was apparent in the tissue of the knockout animals (Figure 2.2), confirming that this 

protocol was ineffective. 11β-HSD1 immunostaining was subsequently abandoned in 

favour of enzymatic transcript and activity measurements. 
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Figure 2.2 – 11β-HSD1 immunofluorescent staining. 11β-HSD1 staining was performed on 

tumour tissue from wild-type (WT) FVB/N mice (top), and liver tissue from wild-type FVB/N 

mice (middle) and 11β-HSD1 knockout (Del1) mice (bottom). Whilst primary antibody-

negative controls did not show immunoreactivity, binding was apparent in all antibody-

positive tissues, including in the knockout animals. Tissues imaged at 400x magnification, 

scale bar = 50µm. 
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2.3.6 Real-time qPCR 

 RNA extraction 

Cell lines were grown to >70% confluence in a 6-well plate (Corning) and lysed for 2 

minutes using 600µL Qiazol (Qiagen, Manchester, UK). A cell scraper was used to 

ensure cells were detached before Qiazol was transfered to 1.5mL Eppendorf tubes. 

For tissues (except sponges, described below), 30mg of frozen tissue was homogenised 

in 600µL of Qiazol reagent in a 1.5mL Eppendorf tube using a tissue homogeniser 

(T10 Basic, IKA, Staufen, Germany) and allowed to settle at room temperature for 5 

minutes. 120µL of chloroform was added to samples which were vortexed and allowed 

to settle (2 min). Samples were subjected to centrifugation (12000 RCF x 15 min at 

4°C) and the resultant aqueous phase mixed with an equal volume of 70% ethanol. All 

subsequent on-column steps were performed as per the RNeasy manufacturer protocol. 

RNA concentration and integrity were assessed using the Nanodrop 1000 (Thermo-

Fisher Scientific).  

 RNA extraction from subcutaneous sponge tissue 

Sponges required an alternative extraction protocol due to their fibrous nature. Tissues 

were thoroughly homogenised in 700μl of Qiazol (2 min disruption followed by 

splitting of sample across two Eppendorf tubes, addition of a further 350μl of Qiazol 

and a further 1 min disruption). Samples were incubated at room temperature (5 min) 

before 200μl chloroform was added. They were then mixed by vortex and incubated 

at room temperature (2 min) before being spun (12000 x g, 15 min, 4°) and the aqueous 

phases for the same samples combined and added to an equal volume of 70% ethanol. 

Where the aqueous phase was insufficient, a further 200μl Qiazol was added and 

samples re-spun. All subsequent on-column steps were performed as per RNeasy 

protocol. 

 cDNA generation 

cDNA was generated from RNA using the QuantiTect Reverse Transcription Kit 

(Qiagen) as per manufacturer’s protocol. For the PCR reaction, samples were 

incubated at 42° for 15 minutes followed by 95° for 3 minutes in a Thermal cycler 
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(Techne-Cole-Palmer, Staffordshire, UK). A H2O control (H2O replacing RNA) and 

no-RT control (H2O replacing reverse transcriptase) were also prepared.  

 qPCR 

cDNA was diluted 1/40 in RNase-free water and a standard curve constructed by 

pooling 2μL of each sample and serially diluting. In triplicate on a 384-well plate, 2μL 

of sample was combined with 5µL of Lightcyler 480 Probes Master mastermix 

(Roche), primers (0.1μl/sample Forward and Reverse), probe (0.1μl/sample) and 

RNase-free water to make up to 10μL total volume. Plates were spun (420 RCF x 2 

min on LCM-3000 plate centrifuge (Grant Instruments, Royston, UK) before analysis 

on the Light Cycler 480 (Roche). Samples were run for 50 cycles (10s at 95° and 30s 

at 60°).  

Primer sequences and UPL probes are detailed in Table 2.5. All data were normalised 

to the average of two housekeeping genes (GAPDH and TBP) (Figure 2.3A and 2.3B 

and Figure 2.4) with the exception of one experiment which was normalised to 

GAPDH only (Figure 2.3C).  

Gene/accession number Sequence UPL 

Gapdh (glyceraldehyde 3-phosphate 

Dehydrogenase) - NM_008084.3 

cctgcttcaccaccttcttg 

80 

tgtccgtcgtggatctgac 

Tbp (TATA-binding protein) -NM_013684  

gatgggaattccaggagtca 

97 

gggagaatcatggaccagaa 

Vegfa (vascular endothelial growth factor alpha) - 

NM_009505.4 

ggttcccgaaaccct 

4 

gcagcttgagttaaacgaacg 

cagtggtactggcagctagaag 68 
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Vegfr2 (vascular endothelial growth factor receptor 

2) - NM_010612.2 
acaagcatacgggcttgttt 

Il6 (interleukin 6) - NM_031168.1 

ccaggtagctatggtactccagaa 

6 

gctaccaaactggatataatcagga 

Hif1a (hypoxia inducible factor 1 alpha) - 

NM_010431.2 

cgctatccacatcaaagcaa 

95 

gcactagacaaagttcacctgaga 

Thbs1 (thrombospondin 1) - NM_011580.3 

gcaacaggaacaggacaccta 

22 

cacctctccgggttactgag 

Gli3 (zinc finger protein GLI3) - NM_008130.2 

caccaaaacagaacacattcca 

71 

ggggtctgtgtaacgcttg 

Nr3c1 (nuclear receptor subfamily 3 group C 

member 1 - glucocorticoid receptor) - NM_008173.3 

ggccgctcagtgttttctaa 

17 

gcagagtttgggaggtggt 

Nr3c2 (nuclear receptor subfamily 3 group C 

member 2 -mineralocorticoid receptor) - 

NM_001083906.1 

gcaggggtatggcatgtct 

5 

gccggcatgaacttagga 

HSD11B1 (11β-hydroxysteroid dehydrogenase type 

I) - NM_008288.2 

catgctgaagcagagcaatg 

63 

tgcagagtagggagcaatca 

HSD11B2 (11β-hydroxysteroid dehydrogenase type 

II) - NM_008289.2  

cactcgaggggacgtattgt 

95 

ccctcttctgggctctgg 
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Col1a1 (type I collagen) – NM_007742.3 

ccgctggtcaagatggtc 

1 
ctccagcctttccaggttct 

Cxcl9 (chemokine (C-X-C motif) ligand 9) - 

NM_008599.4 

gcatcgtgcattccttatca 

1 

cttttcctcttgggcatcat 

TNF (tumour necrosis factor) - NM_013693.3  

ctgtagcccacgtcgtagc  

25 

 

ttgagatccatgccgttg 

Acta2 (alpha smooth muscle actin) - NM_007392.3 

atttaaaaagtctcactatgcacctg 

69 

ggatgttggccaaaggag 

Tlr9 (toll-like receptor 9) - NM_031178.2  

ctcggaacaacctggtgact 

106 

actggaggcgtgagagattg 

Cxcl2 (chemokine (C-X-C motif) ligand 2 - 

NM_009140.2  

aaaatcatccaaaagatactgaacaa 

26 

ctttggttcttccgttgagg 

Itga10 (integrin alpha-10) - NM_001302471.1 

gtgcttcaagctgacatgga 

1 

cagcactttctgtcgtccac 

Tnfrsf9 (tumor necrosis factor receptor superfamily 

member 9) - NM_001077509.1 

ttgaggggaatcttcagagc 

2 

tgaaaagcctgacacagagg 
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Tnfrsf21 (tumor necrosis factor receptor superfamily 

member 21) - NM_178589.3 

catgctgcatatcctgaacc 

17 

tcagcctggggaatctctt 

Tnfrsf23 (tumor necrosis factor receptor superfamily 

member 23) - NM_024290.4 

ccataatgatgccccaatgt 

4 

ttgataataaaagaataaggggtgatg 

Ccl11 (C-C motif chemokine 11) - NM_011330.3 

cacggtcacttccttcacct 

4 

tggggatcttcttactggtca 

Pf4 (platelet factor 4) - NM_019932.4 

catctcctctgggatccatct 

9 

ccattcttcagggtggctat 

Fas (tumour necrosis factor receptor superfamily 

member 6) - NM_007987.2 

caagtgcaagtgcaaaccag 

2 

gggttccatgttcacacga 

Csf1 (colony stimulating factor 1) - NM_007778.4 

cagcctccttcctgttgtct 

1 

ccagagcttgtgacaggaca 

Dcn (decorin) - NM_001190451.2  

gagggaactccacttggaca 

3 

ttgttgttgtgaaggtagacgac 

Stat2 (signal transducer and activator of transcription 2) 

- NM_019963.1 

gggtgttactaccaggaaaaagtta 

6 

cagctcgtccacctgtctg 
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Angptl2 (angiopoietin-like 2) - NM_011923.4 

ctggacagggaccatgatgt 

88 

ggagtgagcacaggcgttat 

Cspg4 (Chondroitin Sulfate Proteoglycan 4) - 

NM_139001.2 

ccacttcgacctctctgacg 

2 

gccaccactcggaagaaat 

Nos2 (nitric oxide synthase (inducible) - 

NM_010927.4  

ggagcctttagacctcaacaga 

3 

aaggtgagctgaacgaggag 

Arg1 (Arginase) - NM_007482.3  

gaatctgcatgggcaacc 

2 

gaatcctggtacatctgggaac 

Table 2.5 – Details of primers and UPL probes used for qPCR. Forward (upper row) and 

reverse (lower row) primers are shown. UPL number refers to the probe used for the assay. 
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Figure 2.3 – Averaged housekeeping gene expression. GAPDH and TBP were selected and 

averaged to give housekeeping gene concentrations to which other gene expression could be 

normalised. A and B) No differences were seen between treatment groups within SCC tumour 

types, however higher expression was seen in SCC tumour cells. C) No differences were seen 

between treatment groups within Panc043 tumour types, and Panc043 cell expression did not 

differ from tumour.  

A 
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Figure 2.4 – Averaged housekeeping genes. GAPDH and TBP were selected and averaged 

to give housekeeping gene concentrations to which other gene expression could be normalised. 

No differences were seen between any of the tissues or treatment groups. 
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2.3.7 ELISA 

To measure corticosterone in murine plasma, a corticosterone ELISA kit (Enzo Life 

Sciences) was used as per manufacturer’s instructions. Plates were read using a 

microplate reader (OPTImax; 405-580nm, 22.1°C).  

2.3.8 Enzyme activity assays 

 Protein assay 

Tissue samples were homogenised in homogenisation buffer (Section 2.1.2) and 

diluted (1/20). A BioRad protein DC assay (BioRad, Hemel-Hempsted, UK) was 

performed as per manufacturer’s instructions to determine protein concentration. 

Homogenates were stored undiluted at -80°C until needed. 

 Dehydrogenase activity assay for tissue homogenate 

Samples were prepared in duplicate and kept on ice. Samples were diluted in C buffer 

(Section 2.1.2) to the required concentration in a 250µL final volume, but made up to 

190µL in C buffer. For the final assay, 10µL 3H-B (250nM), 50µL NADP+ (2mM; 

Cambridge Bioscience) and 190µL sample were added to 12x75mm borosilicate glass 

culture tubes, which were covered with parafilm and incubated in a shaking water bath 

(37°C) (three controls were run at each time-point: a protein-free control; a co-factor 

free control; and a protein/co-factor free control; with buffer used in lieu). After 

incubation, samples were placed on ice, mixed with 1mL ethyl acetate by vortex and 

allowed to settle. The top layer was transferred by glass pipette to a Chromacol vial 

(Thermo-Fisher) and condensed under nitrogen gas at 60°C. Samples were re-

suspended in 600µL mobile phase (65% water, 15% acetonitrile, 25% methanol) and 

sealed. Based on optimisation experiments, protein concentration and incubation time 

differed between WT-SCC (0.5mg/mL, 90 min), Panc043 (0.5mg/mL, 24 hours) and 

SCC-B6-1 (0.125mg/mL, 90 min) tumour homogenates. The following controls were 

also prepared in duplicate: Buffer + B (buffer replacing protein and co-factor), no 

protein (buffer replacing protein) and no cofactor (buffer replacing cofactor). 
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 Reductase activity assay for intact tissue 

 Intact tissue incubation 

Whole liver and aorta were excised from mice killed by cervical dislocation. Liver was 

cut into small pieces and weighed (10-20mg). Aortae were weighed then sectioned 

into four rings (~3mm length). 4 pieces were cut from liver using sterile dissection 

equipment and weighed (5-20mg). Single liver pieces and whole aortae (four rings) 

were placed in wells of a 12 well plate in 1mL treatment media and incubated for 24 

hours (5% CO2, 37°C). Treatments were applied to each mouse in duplicate. UE2316-

treated liver pieces (N=6) were cultured in 1mL DMEM-F12 medium containing 

12.5nM 3H-cortisone and1µM cold cortisone and 300nM UE2316. Control liver pieces 

(N=6) were cultured in the above medium with vehicle added in lieu of UE2316. All 

wells had a final DMSO concentration of 0.3%. The following controls were also 

prepared: blank media; treatment control (+ treatment, no tissue); standard control 

(+0.5µl substrate in 1mL media). Media was aspirated after incubation and stored in 

7mL glass bijous (samples could be frozen at this point for later extraction). All 

samples were run in duplicate. 

 Extraction 

Samples were passed through Sep-Pak C-18 cartridges (Waters, Elstree, UK); Sep-

Paks were inserted into 20-position extraction manifold chamber (Waters) and a 5mL 

syringe used to prime columns with 5mL methanol, followed by 5mL HPLC-grade 

H2O. Samples (1mL) were added to the column, washed with 5mL HPLC-grade H2O 

and eluted with 2mL methanol for collection into 13 x 75mL tubes. These samples 

were dried down (N2, 60°C), resuspended in 200µL HPLC-grade H2O and ethyl 

acetate extraction performed (10:1, vortex sample with 2mL ethyl acetate and remove 

upper phase to 12.x75mL tube) to remove phenol red contamination. Samples were 

dried down, resuspended in 600µL mobile phase (60% water, 40% methanol), 

transferred to chromacol vials, and sealed.  

 High-Performance Liquid Chromatography 

Samples were detected by HPLC with online scintillation counting. Set-up consisted 

of an autosampler (717 plus) maintained at 4°C, a mobile phase pump (pump600, 
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Berthold, Harpenden, UK), a column heater and a radioflow detector (LB509, 

Berthold) connected to a scintillation fluid pump (flow: 2ml/min). 

 Elution of steroids 

200μL of sample were injected into the HPLC system, equipped with a C-18 Sunfire 

symmetry column (15cm length, 4.6mm diameter, pore size μm; Water, Edinburgh, 

UK). A run time of 35 minutes (60:15:25 mobile phase, 1.5ml.min flow, 35°C column 

temperature) was required to detect 11-DHC (elution time: 15.8 min) and 

corticosterone (elution time: 23.4 min). Detected peaks had a width <2 minutes and 

were at least 3x higher than background. A run time of 35 minutes (60:40 mobile 

phase, 1.2mL/min flow, 34°C column temperature) was used to detect cortisone 

(elution time: 22.9 min) and cortisol (elution time: 28.7 min).  

 Quantitation 

Peaks were manually integrated and converted to % substrate and product formed. 

Amount of product formed (nmol) was then calculated from the known amount of 

substrate and data were expressed as the reaction velocity (product formed per unit 

incubation time per unit protein concentration; nmol/min/mg).   

2.3.9 Liquid chromatography tandem mass spectrometry 

Initially, optimisation of a dual-extraction method for corticosteroids and UE2316 was 

attempted to conserve plasma. This approach proved problematic due to differences in 

the extraction efficiencies between compounds/solvents (superior recovery of steroids 

was achieved using chloroform, while UE2316 recovery was better with ethyl acetate). 

Thus separate extractions were performed for corticosteroids and UE2316.  

 Liquid-liquid extraction of corticosteroids from plasma samples 

A 12-point aqueous extracted standard curve was prepared in 100µL HPLC-grade H2O 

(0 - 50ng A/B) alongside plasma samples. 2.5ng internal standard (d4F) was added to 

all samples/standards and a double blank was prepared (no internal standard). 

Samples/standards were mixed with a 10x volume of chloroform, vortexed and 

allowed to settle. The upper solvent phase was transferred by glass pipette into a 3.5mL 

vial. Samples were concentrated under nitrogen gas at 60°C before resuspension in 
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70µL mobile phase (70:30 water/acetonitrile) and transfer to liquid chromatography 

(LC) vials (Waters).  

 Liquid-liquid extraction of UE2316 from plasma samples 

A 12-point aqueous-extracted standard curve was prepared in 150µL human plasma 

(0 - 500ng UE2316) alongside plasma samples. 2.5ng internal standard (UE2341) was 

added to all samples/standards and a double blank was prepared (no internal standard). 

Samples/standards were mixed with a 10x volume of ethyl acetate, vortexed and 

allowed to settle. The upper solvent phase was transferred by glass pipette into a 3.5mL 

vial. Samples concentrated under nitrogen gas at 60°C before resuspension in 70µL 

mobile phase (70:30 water/acetonitrile) and transfer to LC vials (Waters).  

 Liquid-liquid extraction of UE2316 and corticosteroids from liver 

and tumour samples 

 Tissue homogenisation 

200-400mg liver tissue (weights recorded) or tumour tissue (whole tumour, ~30-

50mg) was homogenised in 1mL Krebs buffer (Section 2.1.2) in 1.5mL Eppendorf 

tubes using a tissue homogeniser. Tissue was homogenised at full speed for 20s, 

allowed to settle, then homogenised for a further 10s to ensure complete tissue 

disruption. The homogeniser was cleaned with ethanol and 2 x distilled H2O rinses 

between samples. 10µL of a 250ng/mL UE2341/d4f internal standard combined stock 

was added to samples.  

 Tissue extraction 

Samples were spun by centrifuge (15 min x 16,100 x g, 4°C) and supernatant (approx. 

1mL) removed to a 13 x 100mm vial. A 5x volume of ethyl acetate was added and 

samples vortexed for 20s. Samples were then spun by centrifuge (2 min x 1000 x g, 

4°C) and the top (clear) layer transferred to a new 13 x 100mm vial by glass pipette 

(this step was performed twice). Samples were condensed under nitrogen gas at 60°C 

and resuspended in 2mL 30% methanol/H2O. These were then passed through Sep-

Pak C18 cartridges (5mL methanol prime, 5mL water prime, 2mL sample, 5mL water 

wash, elution with 2mL methanol), collected into 13 x 100 mL vials and condensed 
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under nitrogen gas at 60°C. Samples were then resuspended in 100µL of mobile phase 

(70:30 water:acetonitrile). 

A 10 point standard curve was prepared and extracted as described above in 1mL 

Krebs in the absence of tissue.  

 Optimisation of tissue extraction 

The method for extracting corticosteroids and UE2316 from tissue required 

optimisation to achieve clean samples with sufficient analyte detectability. 

Ethyl acetate extraction 

The optimal ratio of ethyl acetate to sample, and the number of ethyl acetate extractions 

required, were both determined by testing a range of ratios (3:1, 5:1 and 10:1 compared 

to unextracted analytes) and performing the extraction either once, twice or three 

times. Extractions were performed on 1mL H2O samples spiked with 10ng of 

A/B/UE216/2341/d4F, with samples in triplicate for each condition. Ethyl acetate 

extractions were performed and samples then condensed and resuspended in 100µL 

mobile phase (70:30 water:acetonitrile). Samples were measured as described in 

Section 2.3.8.4. As shown in Figure 2.5A, maximum recovery was achieved using a 

5:1 double extraction.   

Sep-Pak recovery 

Initial attempts to extract tissue without the addition of solid phase extraction resulted 

in cloudy samples with a fat-like contaminant. Solid phase extraction was thus 

considered as a clean-up step. To assess recovery with solid phase extraction, Sep paks 

were primed with 5mL methanol and 5mL H2O, followed by the addition of 5mL H2O 

spiked with 10ng A/B/UE2316/2341/d4F. Columns were washed with 5mL H2O wash, 

and samples eluted with 2mL methanol. Eluted samples were then condensed (nitrogen 

gas, 60°C) and resuspended in 100µL mobile phase (70:30 water:acetonitrile) and run 

alongside an unextracted preparation of 10ng A/B/2316/2341/d4F (run conditions as 

described in Section 2.3.8.4). Recovery was calculated by dividing extracted peak area 

by unextracted peak area. Solid phase extraction resulted in reduced recovery of all 

analytes, though all were still well within the limits of detection (Figure 2.5B). 
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Extraction recovery and matrix recovery 

To determine the relative contribution of the extraction process and the tissue matrix 

to signal loss, the recovery after solid phase extraction was calculated, as well as the 

matrix suppression caused by the tissue itself. This was determined by preparing, in 

triplicate; pre-spiked livers; post-spiked livers; and unextracted standards. Livers were 

from FVB/N mice. 10ng of analyte mixture (A/B/UE2316/UE2341/d4F) in 10µL 

methanol) was spiked onto pre-spiked liver, and extractions performed as described in 

Sections 2.3.9.3.1-2 (internal standard was only added as part of the pre-spike 

mixture). Post-spiked livers had the analyte mixture added in 100µL mobile phase 

(70:30 water:acetonitrile) after the extraction process. Unextracted standards were 

10µL of the analyte mixture condensed (nitrogen gas, 60°C) and resuspended in 100µL 

mobile phase. Extraction recovery was calculated by dividing pre-spike peak area by 

post-spike peak area. Matrix recovery was calculated by dividing post-spike peak area 

by unextracted peak area. A/d4F/UE2316 showed similar extraction and matrix 

recovery, while B showed superior recovery compared to other analytes (Figure 2.5C). 

UE2341 showed 41% signal attenuation in the presence of matrix however as an 

internal standard this was not considered problematic as levels were consistent 

between samples. 
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Figure 2.5 - Tissue extraction optimisation for mass spectrometry. A) Analyte recovery 

plateaus at a 5 to 1 double extraction, identifying this approach as optimal. B) Recovery of 

analytes in water after sep-pak extraction, as expressed as % of unextracted sample. C) 

Extraction and matrix recovery were acceptable for all analytes, though signal attenuation is 

apparent for UE2341 in the presence of matrix. All extractions performed in triplicate.  
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 Tandem mass spectrometry 

Mass spectrometry staff (Dr Natalie Homer, George Just and Dr Karen Sooy) operated 

the mass spectrometer and decided upon appropriate analytical parameters for all mass 

spectrometry experiments. The mass spectrometry system used was a Nexera LC-

30AD Ultra High-Performance Liquid Chromatograph (UHPLC) connected to a 

Nexera SIL-30 AC autosampler (Shimadzu, Kyoto, Japan). The mass spectrometer 

was a QTRAP 6500+ operated with an electrospray ionisation Turbo V source 

(SCIEX, Framingham, USA). 30µL sample was injected onto a C18-AR column (Ace 

Excel, 2μm, 150x2.1mm). Analytes were eluted under a gradient of 30% acetonitrile 

increasing to 90% over 9 minutes at a flow rate of 0.5mL/min at 40°C.  Column 

temperature was 40°C and sample temperature 10°C. Ionisation was achieved by 

positive ion electrospray, using a spray voltage of 5500 V, temperature of 700°C, 

curtain gas pressure of 40 psi, ion source gas 1 40psi, ion source gas 2 60psi and 

entrance potential 10. Analytes were measured by multiple reaction monitoring 

(declustering potential, collision energy, cell exit potential): corticosterone m/z 

347→121 (66, 69, 8V); 11-DHC m/z 345→121 (51, 133, 8V); UE2316 m/z 389→177 

(100, 39, 15V); UE2341 (internal standard) m/z 356→177 (85, 37.5, 17V); D4F 

(internal standard) m/z 367→121 (121, 25, 20V). Peaks area ratios were compared 

with corresponding standards.  

2.3.10 Genotyping of Del1 animals 

Genomic DNA isolation was performed using a GeneJET genomic DNA purification 

kit (Thermofisher) as per manufacturer’s instructions.  

Primers (100µM stocks, Table 2.6) were combined in equal proportions to make a 

primermix solution. A mastermix solution was prepared (12.5µL biomix red (Bioline, 

London, UK) + 8.5µL dH2O per sample). 3μL primermix solution was added to 1μlL 

DNA/sample in a 0.2mL tube. Samples were transferred to a thermal cycler for initial 

denaturation (5 min x 95°C). 21µL mastermix was then added to each sample to give 

a total reaction volume of 25µl. Samples underwent 30 cycles (1 min x 95°C, 1 min x 

61°C, 2 min x 72°C) and a final extension step (10 min x 72°C). Samples were then 
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run on an agarose gel (1% agarose in TAE buffer, 120V, 45 min) and imaged on a UV 

transilluminator. 

Primer code Sequence (5’-3’) 

Yuri2oligo4 CAC TGC ATT CTA GTT GTG GTT TGT CC 

Ex1-3F1 TTC TTC GTG TGT CCT ACA GG 

Ex1-3R1 CCC GCC TTG ACA ATA AAT TG 

Table 2.6 - Genotyping primers.  

2.3.11 Aortic ring assay 

 Tissue collection 

8-12 week old female mice were culled (exposure to increasing concentration of CO2) 

and the thoracic aorta dissected out and trimmed of adipose tissue and branching 

vessels. Mice were pinned out and fur washed with ethanol. The thoracic cavity was 

opened and the lungs and oesophagus removed using dissection scissors and forceps. 

The aorta was severed proximal to the diaphragm and 0.5mL Opti-MEM (Thermo) 

was injected into the heart to flush blood out of the aorta. The aorta was then removed 

by applying gentle tension to the vessel and cutting through the perivascular fat and 

connective tissue with micro scissors and fine tip forceps. Isolated aortae were 

transferred to opti-MEM and trimmed of perivascular fat and smaller branching 

vessels, then sectioned into 18 rings (1mm length) using micro scissors and fine tip 

forceps. 

 Tissue culture 

Aortic rings were cultured in 96-well plates, prepared as follows; rat tail collagen 

(EMD Millipore, Massachusetts, USA) was diluted to 1mg/mL in Opti-MEM and pH 

adjusted using 10µl/mL 1N NaOH to give a pink colour. Collagen was stored on ice 

throughout the process. 50µL of collagen was added to wells and aortic rings 

embedded using forceps (this was performed quickly to prevent premature 

polymerisation of collagen). Rings were orientated so that the vessel lumen was 
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parallel to the bottom of the well. Plates were incubated for one hour at 37°C to allow 

collagen to set, after which 150µL of media was added. Treatments were added to 

rings in 150µl of Opti-MEM supplemented with 2% FCS (days 0-3), 0.5U/mL heparin 

and 5ng/mL VEGF. Media were changed on days 3 and 5 and vessels were imaged 

and quantified on day 7. An equal concentration of ethanol/DMSO was present in all 

wells (0.3%). 

 Vessel quantification 

Vessels were counted manually using the 10x objective lens on a culture microscope 

(Olympus CK40, Olympus, Southend-on-Sea, UK) on day 7, using the method 

described by Nicosia & Ottinetti (1990). For the 11-DHC curve in Section 4.2.1, 

vessels counts from day 6/7 were pooled as equipment failure necessitated early 

conclusion of the study, however growth was sufficiently healthy to allow for this. 

2.3.12 Optimisation of the aortic ring assay 

In order to confirm the ideal experimental conditions under which to measure the 

effects of glucocorticoids and UE2316 on ex vivo angiogenesis, the standard lab 

protocol was optimised.  

 Tissue collection 

Aortic rings were harvested from C57BL6/J mice (female, aged 10-12 weeks). For 

optimisation studies, a single mouse was used for each study. 

 Tissue culture 

 Basal media conditions optimisation 

Rings were cultured as described in Section 2.3.10.2, with treatments (Table 2.7) 

added to rings in 150µL opti-MEM. Exposures were performed in triplicate. Media 

were added at day 0, and changed on days 3, 5 and 7. Vessel counts were performed 

on days 5, 7 and 10. 
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Condition Day 0-3 Day 4-7 

FCS + VEGF 2% FCS + 5ng/mL VEGF 5ng/mL VEGF 

FCS only 2% FCS 2% FCS 

VEGF only 5ng/mL VEGF 5ng/mL VEGF 

Blank  - - 

Table 2.7 - Media conditions for aortic ring assay optimisation. Exposures were replicated 

in triplicate. 150μL of media were added to each well. Media were added at day 0 and changed 

on days 3, 5 and 7. Vessels were quantified on days 5, 7 and 10.  

2% FCS + 5ng/mL VEGF caused sustained vessel growth that continued to day 10. 

Removal of VEGF from media led to a peak vessel count at day 7, after which vessels 

began to regress. 5ng/mL VEGF or opti-MEM alone led to poor growth with vessels 

beginning to regress after day 5 (Figure 2.6). Comparison of vessel counts performed 

at day 7 suggests that 2% FCS + 5ng/mL VEGF stimulate the most vessel growth (62.7 

± 22 vessels), leading to selection of these conditions for future experiments. Day 7 

was selected as the optimal day for quantification. 
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Figure 2.6 - Aortic ring assay optimisation. A) Aortic rings respond differently to different 

basal media conditions. Foetal Calf Serum (FCS) was used only between days 0-3 while VEGF 

was maintained throughout. Stimulation with both VEGF and FCS caused enhanced growth 

that was sustained for 10+ days (i), while stimulation with FCS alone led to a growth peak at 

day 7 (ii). VEGF (iii) and opti-MEM (iv) alone led to poor growth with vessel growth peaking 

at day 5 before regression. Images taken at day 7. B) Day 7 counts indicate that 2% FCS + 

5ng/mL VEGF is the optimum basal media for the investigation. N=1, treatments in triplicate. 
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 Effect of heparin on vessel growth 

The presence of heparin is reportedly required to facilitate the angiostatic effects of 

glucocorticoids (Folkman et al., 1983). In preliminary experiments (not shown), 

higher concentrations of heparin (60U/mL) were found to inhibit vessel growth. Thus 

the present optimisation experiment was performed to determine the optimal 

concentration of heparin required. Rings were cultured as described in Section 

2.3.10.2, with treatments (Table 2.8) added to rings in 150µL opti-MEM media + 2% 

FCS (days 0-3) and 5ng/mL VEGF. Exposures were performed in triplicate. Media 

was added at day 0, and changed on days 3 and 5. Vessels were counted on day 7 only. 

 Heparin optimisation study 

Condition Vehicle/Corticosterone Heparin 

(U/mL) 

Vehicle 0.3% ethanol - 

Vehicle + low heparin 0.3% ethanol 1 

Vehicle + high heparin 0.3% ethanol 10 

Corticosterone 300nM corticosterone - 

Corticosterone + low heparin 300nM corticosterone 1 

Corticosterone + high heparin 300nM corticosterone 10 

Table 2.8 - Media conditions for heparin optimisation. Exposures were performed in 

triplicate. 150μL of media + 2% FCS (days 0-3) + 5ng/mL VEGF were added to each well. 

Media were added at day 0 and changed on days 3 and 5. Vessels were quantified on day 7.  

Aortic rings were cultured in the presence of vehicle or 300nM corticosterone, in 

media containing 0-10U/mL heparin (Figure 2.7). Increasing heparin concentration 

reduced vessel number. Adding 1U/mL heparin to aortic rings reduced vessel number 

in all rings by day 7 and amplified the reduction in vessels in the presence of 

corticosterone. Increasing the heparin concentration to 10U/mL caused severe 
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angiostasis in all ring to the degree that the angiostatic effects of corticosterone were 

slightly masked (61% decrease). Thus, a low concentration of heparin (0.5U/mL) was 

selected for future studies. 

 

 

 

 

 

 

 

 

 

Figure 2.7 - Optimising heparin conditions for glucocorticoid aortic ring assays. A high 

concentration of heparin in aortic ring medium reduced the number of vessel outgrowths at 

Day 7, while removing heparin altogether appears to reduce the degree of corticosterone-

mediated angiostasis. 1U/mL causes a lesser degree of growth inhibition while still facilitating 

steroid-mediated angiostasis. N=1, treatments in triplicate. 
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2.3.13 Cell growth analysis  

 Manual cell counts 

Cells were seeded into 6-well plates at a density of 30,000 cells per well (number 

determined by preliminary experiment), topped up with 2mL media and left to adhere 

over 12 hours. Once cells were adhered, media was replaced with treatment media 

(vehicle control and UE2316 at 37.5nM, 75nM, 150nM, 300nM and 600nM). All 

treatments were in duplicate and each well contained an equal concentration of DMSO 

(0.6%). After 48 hours cells were trypsinised and pelleted by centrifugation (1000rpm 

x 5min) then resupended in 1mL media for counting. Counts were performed by 

haemocytometer - all data were expressed as % of control.  

 Live cell imaging and alamarBlue assay 

100µL cells in standard media (charcoal stripped FCS was used in these experiments, 

Section 2.3.1.1) were seeded into 96-well plates (Bio-Greiner) and left for 16 hours to 

adhere before media was replaced with 100µL of treatment media. Cells were seeded 

at a density of 10000 cells/mL (SCC-B6-1 and Panc-043) or 5000 cells per well (WT-

SCC). All treatments were in sextuplet and all wells contained an equal concentration 

of ethanol/DMSO (0.6%) as vehicle controls for corticosteroids and UE2316 

respectively. Plates were imaged over the subsequent 72 hours (1 image per three 

hours) using the Incucyte ZOOM Live-cell analysis system (Essen BioScience) and a 

threshold applied to provide a measure of confluence (Segmentation 0.4, cutoff 

400µm). After 72 hours, samples were incubated with 10µl of alamarBlue cell viability 

dye (Thermo-Fisher) for 3 hours and read by plate reader (Envision Multilabel, Perkin 

Elmer; filter settings of 560EX nm/590EM. Room temperature) to provide a secondary 

measure of viable cell number.  

2.3.14 Systemic corticosterone manipulation 

 Cell injection 

WT-SCC cells were prepared and injected subcutaneously into both flanks of FVB/N 

mice. Treatments began on the same day as tumour implantation and the final 
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injections were delivered 24 hours before the cull. Injection volume did not exceed 

0.3mL.  

 Tumour development 

Tumours were allowed to develop over the subsequent 14 days during which they were 

measured by callipers every 2-3 days. Measurements were blinded where possible by 

masking of cage labels and randomisation of cages by a second individual. Mice and 

diet were weighed and mice checked for any unexpected signs of ill health every 2-3 

days.  

 Tissue collection 

At the end of the experiment, mice were culled by cervical dislocation and tissues 

harvested. Blood was collected rapidly from the thoracic cavity using a syringe without 

a needle and stored in anti-coagulant EDTA-treated tubes (Sarstedt). Plasma was 

separated from whole blood by centrifugation (2000 RCF x 10 min at 4°C) for storage 

at -20°C. Tumours were weighed upon removal and halved (one half was snap frozen 

in liquid nitrogen for storage at -80°C, the other half was fixed in formalin for 24 hours 

before transfer to 70% ethanol before wax processing). All other required tissues were 

removed and snap frozen in liquid nitrogen before storage at -80°C. 

2.3.15 RNA-sequencing 

RNA was sequenced using a combination of paired and single-end RNA-sequencing 

by GATC Biotech (Constance, Germany).  

Bioinformatics analysis was kindly performed by Dr Stuart Aitken. Raw data (fastq 

files) were processed using Tophat2 (Trapnell et al., 2009), which was used to map 

reads to the mouse mm10 reference genome. Mapped data (bam files) were then 

processed using Cuffdiff (Trapnell et al., 2012), which was used to analyse differential 

gene expression between groups. A Principle Component Analysis (PCA) was 

performed to assess variance between samples (both between and within groups). 

DEseq2 (Love et al., 2014) was used for the PCA. 
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Gene ontology analysis was performed using the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) v6.8, which uses a modified Fisher 

Exact test to determine whether the proportion of genes in a given list is significantly 

associated with a pathway compared to the murine genome. 

2.4 Data analysis and statistics 

All statistics were performed using Prism software v6/7 (Graphpad). Data are 

presented as mean ± S.E. Outliers were identified using a Grubbs test and excluded 

appropriately. All data sets were tested for normality using the Shapiro-Wilk or 

Kolmogorov-Smirnov tests (dependent on sample size) and analysed appropriately 

based on the result. Non-parametric data were transformed where possible to allow for 

the use of parametric tests. Where this was not possible, non-parametric tests were 

used. Repeated-measures data with 2 or more independent variables were compared 

using repeated measures 2-way ANOVA, with Tukey’s post-hoc test where 

appropriate.  Two independent samples were compared using the independent samples 

t-test (or Mann-Whitney U test where data had a non-parametric distribution). Three 

or more independent samples were compared using one-way anova with Tukey’s post-

hoc test. The Kruskal-Wallis test was used to compare 3 or more independent groups 

of non-parametric data, with Dunn’s post-hoc test used to make specific comparisons. 

N number refers to the number of animals per group in an experiment, with the 

exception of cell culture studies, in which N number refers to biological repeats on 

separate days using the same cell line.  A P value of <0.05 was considered significant, 

a value of 0.05-0.15 was considered a trend. 
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3 11β-HSD1 inhibition and tumour growth 

3.1 Introduction 

11β-HSD1 catalyses the conversion of inert glucocorticoids (11-

dehydrocorticosterone, cortisone) and their active counterparts (corticosterone, 

cortisol) (Seckl and Walker, 2001). Selective 11β-HSD1 inhibitors have been 

developed to improve glycaemic control in diabetic patients (Anderson and Walker, 

2013) and to improve cognitive function (Sooy et al., 2015). In addition to their 

beneficial effects on glucose homeostasis and cognition, 11β-HSD1 inhibition and 

deletion has been shown to increase angiogenesis, an effect that promotes wound 

healing and recovery after induced myocardial infarction in rodents (Small et al., 2005; 

McSweeney et al., 2010). 

The mechanisms behind this proangiogenic effect remain largely unknown. 

McSweeney et al. (2010) showed that increased recruitment of pro-reparative 

macrophages preceded enhanced angiogenesis, while Logie et al. (2010) found that 

glucocorticoids induced cytoskeletal changes and increased thrombospondin 1 (TSP-

1) expression in cultured endothelial cells. Although promotion of angiogenesis can 

be beneficial, there is a concern that 11β-HSD1 inhibitors could promote pathological 

angiogenesis such as that seen in tumour growth and proliferative diabetic retinopathy 

(PDR).  

Investigation of the retina in mice with systemic 11β-HSD1 inhibition/global deletion 

did not find evidence of enhanced pathological neovascularisation (Davidson et al., 

2017), suggesting that it is unlikely to exacerbate PDR. 11β-HSD1 was not present in 

the retinal vessels, which may explain the lack of effect seen in this model. This does 

not mean, however, that inhibiting 11β-HSD1 would not increase angiogenesis in other 

conditions. There is very little in the literature examining the role of 11β-HSD1 

specifically in tumours. Liu et al. (2016) report that overexpression of the enzyme in 

hepatocellular carcinoma decreased metastasis, angiogenesis and tumour size in mice 

via reduced glycolysis, suggesting that increased generation of active glucocorticoids 

could reduce tumour growth. The present studies used an established murine model of 



Chapter 3 - 11β-HSD1 inhibition and tumour growth 

123 

 

subcutaneous solid tumour growth in conjunction with UE2316, a novel small 

molecule inhibitor of murine 11β-HSD1 developed at the University of Edinburgh 

(Sooy et al., 2015), to investigate this risk. 

The tumour cell lines used for these experiments have distinct genetic origins which 

may influence their response to 11β-HSD1 inhibition. Both SCC cell lines used were 

generated by using a two-stage DMBA/TPA chemical carcinogenesis protocol 

(McLean et al., 2004). This protocol primarily targets the Hras1 gene as an initiating 

mutation, predominantly in keratinocyte stem cells, while the promotion phase leads 

to trisomies of chromosomes 6 and 7 and mutations in the Trp53 gene in mutated cells 

(Abel et al., 2009). Of note, genetic background powerfully influences susceptibility 

to skin carcinogenesis; FVB/N mice are more sensitive than C57BL6/J mice to the 

chemical induction of SCC (Hennings et al., 1993). The PDAC cell line used in these 

experiments is derived from the KPC mouse, a transgenic model with targeted 

mutations in the Kras and Trp53 genes leading to the development of invasive PDAC 

(Hingorani et al., 2005). Prediciting the influence of tumour cell genetics on 11β-

HSD1 sensitivity is challenging given the lack of previous studies examining Ras 

mutations in the context of glucocorticoid exposure. The anti-angiogenic effects of 

glucocorticoids are mediated via the GR (Small et al., 2005), and glucocorticoids cause 

a reduction in VEGF (Yano et al., 2006) and an increase in the anti-angiogenic 

glycoprotein TSP-1 (Logie et al., 2010), thus these factors are likely to be of relevance 

to 11β-HSD1 inhibition. The expression of the glucocorticoid receptor (GR) and 

mineralocorticoid receptor (MR) and the two 11β-HSD isozymes in tumours may 

confer varying degrees of sensitivity; high levels of both 11β-HSD1 and GR have been 

reported in squamous cell carcinomas (SCCs) (Azher et al., 2016), identifying them as 

a tumour type potentially ‘at risk’ from 11β-HSD1 inhibition. 

Hypotheses 

The work described in this chapter addressed the hypotheses that: 

- 11β-HSD1 inhibition/deletion will increase vessel density in, and the growth of, 

subcutaneous murine tumours  
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- Tumours with higher levels of 11β-HSD1 and GR will be more responsive to 11β-

HSD1 inhibition than those with low levels of 11β-HSD1 and GR, showing a more 

rapid increase in size  

Objectives 

The specific aims of this work were: 

(1) To determine whether inhibition/deletion of 11β-HSD1 increased:  

(i) the size of subcutaneous tumours in mice 

(ii) vascular density within murine tumours 

(iii) mRNA levels of pro-angiogenic factors within murine tumours 

(2) To determine whether expression of GR and 11β-HSD1 in tumours predicts 

sensitivity to 11β-HSD1 inhibition 

(3) To determine the tissue distribution of UE2316 delivered via diet in different 

mouse strains 
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3.2 Results 

3.2.1 11β-HSD1 inhibition enhances WT-SCC tumour growth 

To investigate the effect of 11β-HSD1 inhibition on WT-SCC tumour growth, mice 

were injected with WT-SCC cells and fed either control or UE2316-RM1 diet. In the 

first of two experimental repeats, WT-SCC cells were injected into FVB/N mice 

(female, aged 10 weeks) fed either control or UE2316 diet (N=3/group). Tumours were 

grown for 16 days but began to regress after 11 days, resulting in poor quality tissue 

that could not be used for downstream analysis. Therefore, a second study was 

performed (N=6/group) using an identical protocol but with a pre-defined endpoint 

(day 11 after implantation). Data up to day 11 were pooled and reported as N=9/group 

(Figure 3.1) with all subsequent downstream analyses performed using tissue from the 

second study (N=6/group). WT-SCC tumours from UE2316-diet fed animals grew 

rapidly from day 4 onwards and reached a greater final volume (0.126 ± 0.029 cm3) 

than mice fed standard RM-1 diet (day 11, 0.050 ± 0.006cm3) (Figure 3.1A). UE2316- 

and control diet fed groups consumed similar quantities of diet (3.58 ± 0.21g RM-1 vs 

3.30 ± 0.20g UE2316-RM1) and did not differ in weight throughout the experiment 

(Figure 3.1B and C). The estimated dosage achieved in the present studies (based on 

diet consumed per cage per 2-3 days) was 25-30mg/kg/mouse/day.       
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Figure 3.1 – The 11β-HSD1 inhibitor UE2316 enhanced squamous cell carcinoma 

tumour growth. A) Enhanced tumour growth was apparent from day 4 onwards in UE2316 

diet-fed mice injected with the squamous cell carcinoma cell line WT-SCC. B) Mice consumed 

both UE2316 and control diets in comparable quantities. C) Neither WT-SCC cell injection 

(day 5) nor UE2316-diet introduction affected mouse weight. N=9/group. ** P<0.01. Data 

represent mean ± standard error and were compared by 2-Way ANOVA. 
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 11β-HSD1 inhibition does not increase vessel density in WT-SCC 

tumours 

To investigate the effect of 11β-HSD1 inhibition on vessels in tumours, experimental 

WT-SCC tumours were sectioned and stained for CD31/α-SMA-positive structures 

(Figure 3.2), which were quantified. Vessels staining positive for CD31 only were 

quantified separately to allow for the proportion of vessels lacking smooth muscle 

coverage to be quantified, providing an indication of vessel maturity. H+E section 

shown in Figure 3.2C. 

 

 

 

 

 

 

 

 

 

Figure 3.2 – Identification of vessels in WT-SCC tumours. A) Tumour tissue from WT-

SCC tumours; endothelial cells are stained green (CD31 visualised with Alexa-Fluor 488) and 

smooth muscle cells are stained red (α-SMA visualised with Cy3). Nuclei are stained blue 

(DAPI). Tumours had densely packed nuclei and vessels were typically distinct from one 

another rather than forming complex branching networks. 200x magnification. Scale bar 

50µm. B) CD31 was also visualised with diaminobenzidine (DAB) for Chalkley counts. 200x 

magnification. Scale bar 50µm.C) Haematoxylin and eosin-stained WT-SCC tumour tissue, 

demonstrating chaotic tissue organisation and high nuclear-density. 100x magnification. Scale 

bar 200µm. 
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The number of blood vessels per field of view did not differ between control (28.6 ± 

1.3 vessels/mm2) and UE2316-treated tumours (30.0 ± 1.9 vessels/mm2) (Figure 3.3A). 

The proportion of vessels lacking smooth muscle coverage did not differ between 

control (47 ± 6%) and UE2316-treated tumours (51 ± 4%) (Figure 3.3B). Vessel 

number as determined by Chalkley counts did not differ between control (6.1 ± 0.5 

counts) and UE2316-treated (6.0 ± 0.6 counts) mice (Figure 3.3C). Vascular hotspots 

did not differ in vessel number between control (179.4 ± 10.8) and UE2316-treated 

tumours (190.3 ± 21.7) (Figure 3.3D). 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 – UE2316 does not affect vessel density in WT-SCC tumours. Vessels in WT-

SCC tumours from controls and UE2316-treated mice were quantified using multiple methods. 

A)  No difference was seen in manually quantified vessel density between groups. B) There 

were no differences in the proportion of vessels lacking smooth muscle coverage (CD31 only). 

Chalkley counts (C) and hotspot quantification (D) were used to confirm vessel density – no 

differences were identified with either approach. Columns show mean ± standard error. 1 

section/tumour, N=6 animals/group. Data compared by independent samples t-test for panels 

A/B/D, Mann-Whitney U test for Panel C. 
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 Vessel density is not a predictor of tumour volume in UE2316-

treated tumours 

To determine whether vessel number correlated with tumour size, total vessel number 

per tumour was extrapolated by multiplying vessel density by section area. Total vessel 

number did not differ between control (1577 ± 458 vessels/section) and UE2316-diet 

fed mice (2520 ± 615 vessels/section; Figure 3.4A) and did not correlate with tumour 

size (Figure 3.4B).   

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 – Total vessel number per tumour does not differ significantly between control 

and UE2316-treated tumours and does not predict tumour volume. A) The total vessel 

number per tumour section (calculated by multiplying vessel density by section area) did not 

differ between control and UE2316-treated WT-SCC tumours. Columns represent mean ± 

standard error. N=6/group; data compared by independent samples t-test. B) No relationship 

was found between tumour volume and absolute vessel number in either group. 1 

section/tumour, N=5-6/group. Data compared by Spearman’s rank correlation.  
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3.2.2 11β-HSD1 inhibition does not affect vessel density 

during early tumour development 

To address the concern that an earlier period of enhanced angiogenesis may have been 

missed, a short-term WT-SCC tumour study was performed. WT-SCC cells were 

injected into female FVB/N mice (aged 8 weeks) and tumours taken at the first 

palpable point (day 4 after injection). Tumour size in the UE2316-treated group did 

not differ significantly from controls at the day 4 time point (Figure 3.5A). 

Representative images of control (Figure 3.5B) and UE2316-treated tumours (Figure 

3.5C) are shown. Tumours in this study were small enough to allow for complete 

manual quantification across the tissue section (no randomised fields of view used). 

Vessel density showed a trend towards being decreased in UE2316-treated tumours 

(P=0.1089) (Figure 3.5D), while the proportion of vessels lacking α-SMA coverage 

showed a strong trend towards being increased in UE2316-treated tumours (P=0.0526) 

(Figure 3.5E). Neither of these results reached significance; power calculations (80% 

power target) suggested that a sample size of 15/group would detect a difference of 

this magnitude with the given variance. 
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 Figure 3.5 – The effect of UE2316 on early vessel density in WT-SCC tumours. A) WT-

SCC tumours grown for four days showed no difference in size after UE2316 treatment. 

Representative images of CD31 (green)/α-smooth muscle actin (SMA; red) co-stained control 

(C) and UE2316-treated (D) tumours are shown – diagonal white arrows = vessels lacking 

smooth muscle coverage, horizontal arrows = larger vessels with smooth muscle coverage. 

The number of vessels in UE2316-treated tumours showed a trend towards being reduced (D), 

while the number of vessels lacking smooth muscle coverage showed the opposite trend (E). 

1 section/tumour. N=4-6 animals/group; Data represent mean ± standard error and were 

compared by independent samples t-test.  
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3.2.3 Effect of 11β-HSD1 inhibition on Panc043 tumour size 

and vessel density 

 11β-HSD1 inhibition does not affect Panc043 tumour growth 

The effects of 11β-HSD1 inhibition in an alternative cell line, Panc043, was next 

investigated. Based on the observation that Panc043 cells formed tumours more 

rapidly than WT-SCC tumours (A Serrels, personal communication), 0.25 x 106 

cells/flank were initially injected into C57BL6/J mice (female, aged 10 weeks) fed 

either control or UE2316 diet (N=6/group), as rapid tumour growth risks ulceration. 

Palpable tumours formed by day 4 and grew at an exponential rate until day 15 when 

the experiment was ended due to tumour ulceration. Tumour growth was not affected 

by UE2316 (Figure 3.6A). Mouse weight remained stable throughout the study and 

did not differ between groups (Figure 3.6B). Tumours ulcerated before reaching their 

expected volume (based on previous observations in the lab group). As reducing cell 

number did not appear to prevent ulceration after two weeks, for future experiments it 

was decided that 1 million cells/flank would be injected to maximise tumour volume. 
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Figure 3.6 – Initial Panc043 tumour growth curve (0.25 x 106 cells/flank). A) Pancreatic 

Ductal Adenocarcinoma (Panc043) tumours grew rapidly between days 4-15 but ulcerated at 

this point. Administration of UE2316 in the diet (approximately 25-30 mg/kg/mouse/day) did 

not affect the growth of Panc043 tumours. B) Tumour cell injection and UE2316-diet did not 

affect mouse weight (first weights taken one day before cell injection). N=3-6/group. Data 

represent mean ± standard error and were compared by 2-way ANOVA. 
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In the second study, Panc043 cells (1 x 106/flank) were injected into C56BL6/J mice 

(female, aged 10 weeks) fed either control or UE2316 diet (N=6/group). Tumours grew 

rapidly and achieved greater volumes than those produced in the initial experiment in 

a similar timeframe. No differences were seen in the growth dynamics or final (day 

14) volume of tumours growing in wild-type mice fed control diet (0.299 ± 0.035 cm3) 

or UE2316 diet (0.251 ± 0.044 cm3) (Figure 3.7A). Mice ate on average less UE2316-

diet per day (2.92 ± 0.16 g) than control RM1-diet (3.58 ± 0.12g, P<0.01, Figure 3.7B) 

but this did not affect mouse weight (Figure 3.7C).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 – The 11β-HSD1 inhibitor UE2316 does not affect Panc043 tumour growth. 

A) Administration of UE2316 in diet did not affect the growth of subcutaneously implanted 

Pancreatic Ductal Adenocarcinoma (Panc043) tumours. B) Mice consumed slightly less 

UE2316-diet than control RM-1 diet. **P<0.01. Data compared by independent samples t-

test. C) Neither Panc043 cell injection (day 5) nor UE2316-diet affected mouse weight, despite 

the difference in food consumed. N=6/group. Data represent mean ± standard error. 
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 11β-HSD1 deletion does not affect Panc043 tumour growth 

The growth of Panc043 tumours in mice globally deficient in 11β-HSD1 was 

investigated. Del1 mice (bred on a C57BL6/J background) are homozygous for a 

deletion of exon 3 of the hsd11b1 gene (see Zhang et al., (2017)). Genomic DNA 

isolation was performed on liver samples (WT vs Del1, N=6/group). Mice were 

genotyped and deletion of the 11β-HSD1 enzyme confirmed (Figure 3.8). Panc043 

cells were injected into wildtype C57Bl6/J mice (female, aged 11-13 weeks) fed either 

control or UE2316 diet, and into Del1 mice on control diet (N=6/group). No 

differences were seen in the growth dynamics or final (day 16) volume of Panc043 

tumours growing in wild-type mice fed control diet (0.623 ± 0.107 cm3), Del1 mice 

fed control diet (0.573 ± 0.071 cm3) or wild-type mice fed UE2316 diet (0.722 ± 0.122 

cm3) (Figure 3.9A). Tumour weights confirmed this finding (Figure 3.9B). Diet did 

not affect mouse weight but age-matched Del1 mice were found to be significantly 

heavier than wild-type controls (average weight across experiment - Del1 23.84 ± 

0.11g vs control 20.61 ± 0.1g; P<0.01), a difference apparent from the experimental 

onset and throughout the protocol (Figure 3.9C). No differences were seen in the 

amount of diet consumed between groups (data not shown). 
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Figure 3.8 – Del1 mice lack 11β-HSD1. A) Genotyping demonstrated the deletion of the 11β-

HSD1 gene in Del1 animals. Primers flanking the wildtype (WT) allele produced a 255 base 

pair (bp) product, while primers flanking the hsd11b1 knockout allele produced a 363bp 

product. B) qPCR for 11β-HSD1 in liver from wild-type (WT) and Del1 (11β-HSD1 

knockout) mice confirmed genetic deletion of this enzyme. N=6/group; data are mean ± 

standard error and were compared by independent samples T-test.  
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Figure 3.9 – Panc043 tumour growth is unaffected by 11β-HSD1 inhibition or deletion.  

A) Panc043 cells, a pancreatic ductal adenocarcinoma cell line, grew rapidly over 16 days. 

Neither administration of an 11β-HSD1 inhibitor (UE2316) in the diet nor genetic deletion of 

11β-HSD1 affected tumour growth. B) Tumour weights at day 16 reflected this. N=6/group. 

P=0.20. Data represent mean ± standard error and were compared by one-way ANOVA. 

N=6/group. C) Del1 mice were heavier than control and UE2316 diet-fed mice despite age 

matching. * P<0.01. N=6/group. Data represent mean ± standard error and were compared by 

repeated measures two-way ANOVA with Tukey’s post-hoc test. 
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 11β-HSD1 inhibition does not increase vessel density in Panc043 

tumours 

To determine whether 11β-HSD1 affected vessels in Panc043 tumours, experimental 

Panc043 tumours (H+E section shown in Figure 3.10A) were sectioned and stained 

for CD31/α-SMA-positive structures, which were considered vessels and quantified. 

CD31 Panc043 tumours contained a large number of cells with α-SMA 

immunoreactivity without associated CD31-positive structures, likely myofibroblasts 

(Figure 3.10B). The number of blood vessels per field of view did not differ between 

control (10 ± 1 vessels/mm2) and UE2316-treated tumours (10 ± 1 vessels/mm2) 

(Figure 3.10C). The proportion of vessels lacking smooth muscle coverage did not 

differ between control (29 ± 4%) and UE2316-treated tumours (26 ± 2%) (Figure 

3.10D).  
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Figure 3.10 – UE2316 does not affect vessel density in Panc043 tumours. A) Haematoxylin 

and eosin-stained section of control Panc043 tumour tissue. 100x magnification. Scale bar 

200µm. B) Panc043 tumour tissue with endothelial cells stained green (CD31 visualised with 

Alexa-Fluor 488) and smooth muscle cells stained red (α-SMA visualised with Cy3). Nuclei 

stained blue (DAPI). Solid white arrows = non-vascular α-SMA immunoreactivity, likely in 

cancer-associated fibroblasts. Dashed white arrow = vessel with clear smooth muscle coating. 

Panc043 tumours were less vascularised than WT-SCC tumours. 200x magnification. Scale 

bar 50µm. C) No difference was seen in manually quantified vessel density between tumours 

from control and UE2316-diet fed mice. D) There were no differences in the proportion of 

vessels lacking smooth muscle coverage (CD31 only). 1 section/tumour, N=6 animals/group. 

Data represent mean ± standard error and were compared by independent samples t-test.  
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3.2.4 Effect of 11β-HSD1 inhibition on SCC-B6-1 tumour size 

and vessel density 

 11β-HSD1 inhibition or deletion does not affect SCC-B6-1 tumour 

growth 

11β-HSD1 inhibition and deletion were investigated using a second SCC cell line 

syngeneic on a C57BL6/J background. SCC-B6-1 cells were injected into wildtype 

C57Bl6/J mice (female, aged 13-14 weeks) fed either control or UE2316 diet, and into 

Del1 mice globally lacking 11β-HSD1 (N=6/group). SCC-B6-1 cells implanted into 

C57BL6/J mice (1x106 cells/flank) grew more slowly than WT-SCC and Panc043 

cells, achieving comparable volumes to WT-SCC tumours after 37 days. No 

significant differences were seen in the growth dynamics or final (day 37) volume of 

SCC-B6-1 tumours growing in wild-type mice fed control diet (0.221 ± 0.037 cm3), 

Del1 mice fed control diet (0.246 ± 0.031 cm3) or wild-type mice fed UE2316-

containing diet (0.289 ± 0.049 cm3) (Figure 3.11A). A pattern of increased tumour 

growth in UE2316-treated mice began from day 24 but did not reach significance 

before the study was ended for reasons of tissue integrity. 3 mice per group were taken 

to 37 days but tumour tissue at this time-point was unsuitable for further analysis. 

Subsequently, 6 mice per group were culled at day 28 – the time point at which the 

initial tumours had begun to show a potential size effect in relation to treatment. 

Consistent with these data, tumour weights did not differ between groups (Figure 

3.11B). The type of diet given to mice did not affect their weight but Del1 mice were 

found to be significantly heavier than wild-type controls (average weight across 

experiment - Del1 23.76 ± 0.08g vs control 21.63 ± 0.07g; P<0.01), a difference 

apparent from the experimental onset and throughout (Figure 3.11C). No differences 

were seen in the amount of diet consumed between groups (data not shown).  
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Figure 3.11 – SCC-B6-1 tumour growth is not substantially affected by 11β-HSD1 

inhibition or deletion.  A) Squamous cell carcinoma cells (SCC-B6-1 cell line) produced 

tumours that grew more slowly than the other two tumour types (WT-SCC and Panc043) over 

4-6 weeks. Administration of UE2316 in the diet, or genetic deletion of 11β-HSD1 did not 

affect tumour growth. B) Tumour weights at day 28 reflect this lack of effect. C) Del1 mice 

were heavier than control and UE2316 diet-fed mice despite age matching. * P<0.05. Data 

represent mean ± standard error and were compared by repeated measures two-way ANOVA 

with Tukey’s post-hoc analysis. 
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 The effect of 11β-HSD1 inhibition on vessel density in SCC-B6-1 

tumours 

SCC-B6-1 tumours (H+E image shown in Figure 3.12A) were highly vascularised and 

contained interconnected vascular network with many branching points (Figure 

3.12B). The number of blood vessels per mm2 did not differ between groups (Figure 

3.12C).  
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Figure 3.12 – SCC-B6-1 tumour vessels are unaffected by 11β-HSD1 inhibition/deletion. 

A) Haematoxylin and eosin stained section of SCC-B6-1 tumour. 100x magnification. Scale 

bar = 200µm. B) Tumour tissue with endothelial cells stained green (CD31 visualised with 

Alexa-Fluor 488) and smooth muscle cells stained red (α-SMA visualised with Cy3). SCC-

B6-1 tumours contained vascular networks that were more interconnected and branching than 

those seen in WT-SCC and Panc043 tumours. 400x magnification. Scale bar 50µm. B) Manual 

vessel counts found no differences between tumours from control, UE2316-diet fed, or Del1 

mice. 1 section/tumour. N=6 animals/group. Data represent mean ± standard error and were 

compared by independent samples t-test.  
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3.2.5 Tumour types have variable vascularity 

Pooling control and UE2316-treated tumour vessel density data and grouping by 

tumour type highlighted the significant (P<0.0001) differences in vessel density 

between WT-SCC (29.3 ± 1.1 vessels per field of view), Panc043 (10.0 ± 0.7 vessels 

per field of view) and SCC-B6-1 (19.7 ± 1.5 vessels per field of view) (Figure 3.13). 

 

 

 

 

 

 

 

 

Figure 3.13 – Vascular density differs between tumour types. Vessel density in tumours 

(control group) varied depending on the cell type used to induce tumour formation. WT-SCC 

had the highest vessel density, followed by SCC-B6-1 and then Panc043. N=12-17, P<0.0001. 

Data represent mean ± standard error and were compared by one-way ANOVA with Tukey’s 

post-hoc test. 
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3.2.6 Effect of 11β-HSD1 inhibition on expression of 

angiogenic factor mRNA 

 11β-HSD1 inhibition does not affect mRNA levels of known 

angiogenic factors in WT-SCC tumours 

To further determine the influence of UE2316 on angiogenesis, mRNA levels of a 

selection of angiogenic factors were measured by RT-qPCR in control and UE2316-

treated tumours, (N=6/group) and cultured tumour cells (N=6/type). No differences 

were seen in VEGFa, VEGFR2, IL-6, HIF-1α or TSP-1 mRNA levels between control 

and UE2316-treated tumours (Figure 3.14). Cellular mRNA levels were lower than 

tumour levels for all genes. Glucocorticoids have previously been shown to inhibit 

VEGF signalling, to reduce IL-6 production, and to increase TSP-1 expression, while 

11β-HSD1 deletion has been shown to increase HIF-1α expression (Hori et al., 1996; 

Logie et al., 2010; Michailidou et al., 2012; Wang et al., 2012). 
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Figure 3.14 – Expression of angiogenic factors in WT-SCC tumours. Control and UE2316 

groups indicate WT-SCC tumours from the latter experiment described in section 3.2.1, cells 

are from the WT-SCC cell line (passage<20). Expression of angiogenic factors in tumour cells 

was measured to ascertain the possible contribution of host/donor tissues. All genes were 

normalised to TBP/GAPDH housekeeping genes. No differences were found between tumours 

from control or UE2316-treated mice in the levels of A) VEGFa; B) VEGFR2; C) IL-6; D) 

HIF-1α or E) TSP-1. Cellular expression of all genes was lower than in tumours, and VEGFR2 

(B) and IL-6 (C) were not detected in cultured cells. Data are mean ± standard error and tumour 

data were compared by independent samples t-test.  N=6/group.  
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 11β-HSD1 inhibition reduces HIF-1α mRNA levels in Panc043 

tumours. 

The same investigations were also carried out in Panc043 tumours. HIF-1α mRNA 

levels were lower (P<0.05) in UE2316-treated Panc043 tumours (1.65 ± 0.34, arbitrary 

units) than in control tumours (0.72 ± 0.17). No differences were detected in VEGFa, 

VEGFR2 or TSP-1 mRNA levels (Figure 3.15) and IL-6 was not detected in Panc043 

cells or tumours. Cellular mRNA levels were lower than tumour levels for all genes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 - 11β-HSD1 inhibition and tumour growth 

148 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 – Angiogenic factor expression in Panc043 tumours. Control and UE2316 

groups indicate Panc043 tumours from the second experiment described in section 3.2.3.1, 

cells are Panc043 cell line (passage<20). Expression of angiogenic factors in tumour cells was 

measured to ascertain the possible contribution of host/donor tissues. All genes were 

normalised to TBP/GAPDH housekeeping genes. No differences were found between tumours 

from control or UE2316-treated mice in the levels of A) VEGFa; B) VEGFR2; C) TSP-1. D) 

HIF-1α was reduced in Panc043 tumours treated with UE2316. * P<0.05. Cellular expression 

of all genes was lower than in tumours, and VEGFR2 (B) was not detected in cultured cells. 

Data are mean ± standard error and tumour data were compared by independent samples t-test.  

N=6/group.  
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3.2.7 Glucocorticoid signalling in tumours 

 Glucocorticoid signalling profile differs between WT-SCC, 

Panc043 and SCC-B6-1 tumours 

The expression of key glucocorticoid receptors and metabolising enzymes was 

measured in tumours to provide an indication of their potential glucocorticoid 

sensitivity. GR, MR, 11β-HSD1 and 11β-HSD2 mRNA levels were measured in WT-

SCC and Panc043 tumours (control vs UE2316-treated, N=6/group) and SCC-B6-1 

tumours (control/UE2316-treated/Del1; N=6/group) and cells. GR was expressed in 

all tumour and cell types and was lower in UE2316-treated Panc043 tumours (1.47 ± 

032) compared to control tumours (0.51 ± 0.06). No change in GR expression was 

detected between control and UE2316-treated WT-SCC or SCC-B6-1 tumours. 

Cellular GR mRNA levels were lower than tumour levels (Figure 3.16). 

GR was more highly expressed (P<0.05) in WT-SCC tumours (1.52 ± 0.12) than in 

Panc043 (0.31 ± 0.06) and SCC-B6-1 tumours (0.29 ± 0.09) (Figure 3.17A). 11β-

HSD1 was more highly expressed (P<0.05) in SCC-B6-1 tumours (1.73 ± 0.42) than 

in WT-SCC (0.11 ± 0.02) and Panc043 tumours (0.0.022 ± 0.003) (Figure 3.17B). 

MR mRNA did not differ between Panc043 cells and tumours, and was not detected 

in other samples (Figure 3.18). 11β-HSD2 mRNA was not detected in any of the cells 

or tumour types.  

11β-HSD1 mRNA was detected in WT-SCC and SCC-B6-1 tumours, and was at the 

limit of detection for Panc043 tumours (cycles 34-36). 11β-HSD1 levels in WT-SCC 

tumours were lower in animals receiving UE2316 treatment compared to controls 

(0.69 ± 0.04 AU vs. 1.57 ± 0.28 AU, P<0.05; Figure 3.19A), and 11β-HSD1 levels in 

SCC-B6-1 tumours were unaffected by UE2316 treatment or genetic deletion of the 

enzyme in the host tissues (3.19B). Subcutaneous sponge implants (N=4, a kind gift 

from Dr Holly Stott) and control FVB/N liver (N=12) were also examined as a highly 

vascularised tissue and a tissue with high 11β-HSD1 expression respectively. 11β-

HSD1 levels were similar between WT-SCC tumours (0.156 ± 0.03) and 

subcutaneously implanted sponges (0.159 ± 0.06), whilst levels in liver were found to 

be 100-fold higher (15.02 ± 2.51) (Figure 3.20). 
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Figure 3.16 – GR mRNA levels in Panc043 tumours are reduced by UE2316 treatment. 

A) GR expression did not differ significantly between WT-SCC tumours from control and 

UE2316-treated mice. B) GR expression was lower in UE2316 treated Panc043 tumours 

compared with controls. * P<0.05. Data compared by independent samples t-test, N=6/group. 

C) GR expression did not differ between control and UE2316-treated SCC-B6-1 tumours, and 

SCC-B6-1 tumours grown in Del1 mice. Data compared by one-way ANOVA. N=6/group. 

Data represent mean ± standard error. 
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Figure 3.17 - GR and 11β-HSD1 mRNA in different tumour types. A) GR transcript levels 

were significantly greater in WT-SCC tumours compared to Panc043 and SCC-B6-1 tumours. 

B) 11β–HSD1 transcript levels were significantly greater in SCC-B6-1 tumours compared to 

WT-SCC and Panc043 tumours. * P<0.05. N=6/group. Data represent mean ± standard error 

and were compared by one-way ANOVA with Tukey’s post-hoc test.  
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Figure 3.18 - MR mRNA is only detectable in Panc043 tumours. MR mRNA did not differ 

between Panc043 tumours from control or UE2316-diet fed mice. MR levels were below the 

limit of detection in both SCC tumour types. N=6/group. Data represent mean ± standard error 

and were compared by independent samples t-test. 
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Figure 3.19 – 11β-HSD1 mRNA is expressed in SCC tumours. A) 11β-HSD1 mRNA was 

lower in WT-SCC tumours from UE2316-diet fed mice vs control diet-fed mice. 11β-HSD1 

mRNA was not detected in WT-SCC cells in culture. * P<0.05, data compared by independent 

samples t-test. N=5-6/group. B) 11β-HSD1 expression in SCC-B6-1 tumours was not affected 

by UE2316 or 11β-HSD1 deletion (note the injected cells are not from 11-HSD1 deficient 

mice). 11β-HSD1 mRNA was not detected in SCC-B6-1 cells in culture. Data represent mean 

± standard error and were compared by one-way ANOVA, N=6/group. 
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Figure 3.20 - 11β-HSD1 mRNA levels are similar between WT-SCC tumour and 

subcutaneous sponge. mRNA levels of 11β-HSD1 were similar between WT-SCC tumours 

and subcutaneous sponges implanted into mice, while both had 100-fold lower levels than in 

liver. N=6/group. Data represent mean ± standard error. 
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 11β-HSD1 activity differs between tumour types 

11β-HSD1 dehydrogenase activity was measured in control tumours (N=6/tumour 

type) to determine relative levels of enzyme activity between tumour types. Control 

liver from FVB/N animals acted as positive control tissue. 11β-HSD1 dehydrogenase 

activity in WT-SCC tumours was demonstrably lower than that in liver, with 

0.5mg/mL [protein] forming product more rapidly than 0.2mg/mL [protein] (Figure 

3.21A). A preliminary time course using WT-SCC tumours (0.5mg/mL [protein]) 

demonstrated that there was a linear relationship between incubation time and steroid 

conversion between 60 - 120 minutes, thus 90 minutes was selected as an appropriate 

time point for incubation. Similar experiments (data not shown) were used to optimise 

conditions for Panc043 and SCC-B6-1 tumours. When comparing 11β-HSD1 

dehydrogenase activity between tumour types, SCC-B6-1 tumours showed a 

considerably higher rate of product formation (1.798 ± 0.204 nmoles/min/mg) than 

both WT-SCC (0.291 ± 0.054 nmoles/min/mg) and Panc043 (0.038 ± 0.006 

nmoles/min/mg) (Figure 3.21B). 
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Figure 3.21 - 11β-HSD1 activity varies between tumour types. A) A preliminary time-

course experiment established that between 60 - 120 minutes, product conversion was linear, 

leading to the selection of a 90 minute incubation time at 0.5mg/mL [protein] as the conditions 

to measure WT-SCC activity. Liver was used as a positive assay control. Negative (protein-

free) controls were also run (not shown). B) Comparing enzyme activity between tumour 

types, SCC-B6-1 tumours had significantly greater 11β-HSD1 dehydrogenase activity than 

WT-SCC and Panc043 tumours. Experimental controls allowed for the subtraction of 

background signal. **** P<0.0001. N=6/group. Data represent mean ± standard error and were 

compared by one-way ANOVA with Tukey’s post-hoc.  
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3.2.8 UE2316 levels in tissues of experimental animals 

 UE2316 is detected in FVB/N and C57BL6/J plasma and liver 

To determine how much UE2316 delivered via diet had reached the tissues of mice, 

UE2316 levels were measured in the plasma and in the liver. Plasma from FVB/N 

mice fed control or UE2316-diet for 9 days (N=5/group) and C57BL6/J mice fed 

control or UE2316-diet for 19 days (N=5/group) were subject to liquid-liquid 

extraction. Liver and tumours were used from FVB/N mice (section 3.2.1.4.1) and 

C57BL6/J mice (section 3.2.1.4.2). UE2316 levels measured by LC-MS/MS were 

higher (P<0.05) in FVB/N mouse plasma (64.05 ± 30.45 ng/mL) than in C57BL6/J 

mouse plasma (5.60 ± 2.42 ng/mL) (Figure 3.22A). UE2316 was detectable in the liver 

of both C57BL6/J mice (130.7ng/g) and FVB/N mice (36.4 ng/g) (Figure 3.22B). 

UE2316 was not detected in tissues from animals receiving control diet from either 

strain. Both strains ate the same amount of UE2316-diet (Figure 3.22C). Tumour tissue 

was too small to allow LC-MS/MS analysis, thus it was not possible to measure 

UE2316 in extracts from tumours. 
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Figure 3.22 - UE2316 is detected in FVB and C57BL6/J mouse plasma and liver. A) LC-

MS/MS analysis of plasma from UE2316 diet-fed animals revealed higher levels in FVB/N 

mice compared to C57BL6/J mice. B) UE2316 was detected in liver tissue from both strains, 

while the drug was not detected in the liver of untreated animals. C) No strain difference was 

seen in the amount of UE2316 diet consumed. * P<0.05. N=5-6/group. Data represent mean ± 

standard error and were compared by Mann-Whitney U test for panels A/B and independent 

samples t-test for panel C.  
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3.3 Discussion 

The studies presented in this chapter addressed the hypothesis that 11β-HSD1 

inhibition, or deletion, would decrease local tissue glucocorticoid levels and thus 

increase the vessel density and subsequent growth of subcutaneous murine tumours. It 

was further postulated that tumours with higher levels of 11β-HSD1 activity and GR 

expression would show a more pronounced growth increase in response to 11β-HSD1 

inhibition, due to their increased glucocorticoid sensitivity. The data presented support 

the notion that 11β-HSD1 inhibition can promote tumour growth, as WT-SCC tumours 

grew more rapidly and reached a larger volume in FVB/N mice fed a diet containing 

the 11β-HSD1 inhibitor UE2316 than in mice fed a control diet. Enhanced growth after 

11β-HSD1 inhibition or deletion was not seen in Panc043 tumours, or in the alternative 

SCC-B6-1 cell line, suggesting that the risk of enhanced tumour growth may be 

specific to certain tumour types. SCC-B6-1 tumours exhibited significantly greater 

levels of 11β-HSD1 activity than both WT-SCC and Panc043 tumours, suggesting that 

high levels of 11β-HSD1 activity are not predictive of increased growth after 

inhibition. However, WT-SCC tumours expressed higher levels of GR than either of 

the non-responsive tumour types, highlighting GR levels as potentially important when 

assessing sensitivity to 11β-HSD1 inhibition. Crucially, vessel density and angiogenic 

factor expression were unaltered by 11β-HSD1 inhibition in all tumour types 

suggesting that an alternative mechanism mediates enhanced growth.  

11β-HSD1 inhibition and tumour growth 

Subcutaneous injection of WT-SCC or Panc043 cells produced tumours that were 

large enough for subsequent analysis after 1-2 weeks. In contrast, SCC-B6-1 cells took 

5-6 weeks to produce tumour of comparable volumes. Previous studies making use of 

the WT-SCC cells report tumour volumes of 0.06-0.08cm3 after 20 days growth in vivo 

(Serrels et al., 2012), suggesting the present studies achieved volumes appropriate to 

the study duration. Panc043 and SCC-B6-1 tumours are as yet unpublished elsewhere; 

however volumes achieved were consistent with observations within the lab group (M. 

Muir, personal communication). 11β-HSD1 inhibition enhanced growth in WT-SCC 

tumours. This effect was observed across a total of 9 animals per group across two 

technical repeats. One limitation of the present study was a failure to weigh tumours 
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from the original WT-SCC study. This parameter was introduced for later studies and 

added a confirmatory second measurement of tumour growth. The change in tumour 

size, however, was of sufficient magnitude as to be visually obvious to a secondary 

observer (M. Muir); thus this limitation is of relatively minor importance. 

WT-SCC are syngeneic on an FVB/N background, while the Del1 mice are 

backcrossed to a C57BL6/J background, rendering the cells non-compatible with the 

knockout. Panc043 tumours are non-responsive to both inhibition and deletion. SCC-

B6-1 cells are an alternative SCC type syngeneic on a C57BL6/J background, but their 

characteristics differ from WT-SCC in some key respects. The appearance of the WT-

SCC cells was spindle-shaped, whereas the SCC-B6-1 cells were cobblestone-like. 

Spindle-cell carcinomas are a more advanced and highly malignant variant of SCC 

which become more refractile, invasive and chemotactic (Klein-Santzo et al., 1989; 

Buchman et al., 1991). This aggressive variant has been termed ‘Class B’ SCC while 

the more typical SCC is termed ‘Class A’ (Wong et al., 2013). Thus the morphology 

of WT-SCC is indicative of them having undergone the epithelial-mesenchymal-

transition after their original generation by DMBA/TPA chemical carcinogenesis and 

gained a more aggressive and invasive ‘Class B’ phenotype (Usami et al., 2008; Huang 

and Balmain, 2014). The growth of SCC-B6-1 cells was considerably less aggressive, 

more typical of the ‘Class A’ phenotype. Tumours took around 2-3 times longer to 

reach sizes comparable to WT-SCC, by which point the tissue integrity was 

compromised and hindered histological preparation.  

The growth-enhancing effect of 11β-HSD1 inhibition could not be replicated using the 

Del1 mice in the present studies. No significant differences in tumour growth were 

detected between groups in the SCC-B6-1 studies, although a trend towards increased 

tumour size following UE2316 administration was apparent between days 28-37; an 

effect absent in tumours generated in Del1 mice. Power was a likely limitation in this 

study, but the aforementioned degradation of tumour tissue at later stages limited the 

usefulness of this experiment and informed the decision to impose a 28 day limit on 

the length of the study, at which point tumours were intact and could be examined 

histologically.  Given the discrepancy in SCC-B6-1 tumour growth after 11β-HSD1 

inhibition compared to deletion, it would be useful to repeat the study with the addition 
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of a UE2316-treated Del1 mouse group. The use of the inhibitor in global 11β-HSD1 

knockout mice would ensure that enzyme activity was absent in both host and donor 

cell types, as well as addressing any concerns regarding off-target effects. 

The only previous study to directly manipulate 11β-HSD1 expression in a solid tumour 

model demonstrated that 11β-HSD1 overexpression reduced the growth of HCC 

tumours in Balb/C nude mice (Liu et al., 2016). Overexpression of 11β-HSD1 in this 

model caused a similarly pronounced alteration in growth which was apparent from a 

very similar timepoint (3-5 days after cell injection). These and the present findings 

together support a role for 11β-HSD1 and local glucocorticoid metabolism in 

regulating tumour growth from an early stage, although important differences between 

the studies suggest alternative mechanisms may be involved. Different carcinomas 

were examined in these studies (HCC and SCC), though notably both are derived from 

tissues in which 11β-HSD1 is known to play a regulatory role (liver and skin) 

(Tiganuscu et al., 2011; 2013; Terao et al., 2011; 2014; Itoi et al., 2013; Kuo et al., 

2015). The use of Balb/C nude, rather than FVB/N, mice also removes the potential 

influence of the immune system on tumour growth in the study of Liu et al.. The use 

of a murine tumour cell line able to grow in mice with a functional immune system is 

a considerable strength of the present studies, as 11β-HSD1 deletion reduces T-cell 

infiltration in some inflammatory models (Wamil et al., 2011; Luo et al., 2012; Kipari 

et al. 2013) and is likely to influence the tumour microenvironment (Kim et al., 2007). 

Most importantly, Liu et al. (2016) saw a significant reduction in tumour angiogenesis 

(CD31/CD34 staining), attributed to reduced glycolysis, in tumours overexpressing 

11β-HSD1 compared to controls. This effect was notably absent from the present 

study, thus the mechanisms responsible in the HCC model of Liu et al. and in the 

present study models are likely different. 

11β-HSD1 inhibition and angiogenesis 

Contrary to the hypothesis, both vessel density and the proportion of vessels with 

smooth muscle coverage were unaltered by 11β-HSD1 inhibition. Small et al. (2005) 

were the first to demonstrate that deletion of 11β-HSD1 could promote angiogenesis 

in vivo.  In their studies, 11β-HSD1 KO mice had a greater angiogenic response than 

their wild-type litter mates across three separate models; subcutaneous sponge 
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implantation, chronic coronary artery ligation and dermal wound healing. Vessel 

density in both sponge and dermal wounds was quantified by Chalkley count, an 

established methodology for use in tumours (Hansen et al., 2000). Chalkley counts 

were one of three different vessel quantification methods used in the present studies, 

all of which demonstrated no difference between groups. As well as Chalkley counts, 

quantification of vessels from both random fields of view and from pre-selected 

vascular hotspots showed no difference in vessel density after 11β-HSD1 inhibition, 

demonstrating the robust nature of the observation.  

Vessel density has previously proven to be a valid measure of tumour angiogenesis. 

Yano et al. (2006) found that exposing mice to 1µg dexamethasone thrice weekly 

reduced prostate cancer-derived subcutaneous tumour size and vessel density, 

quantified using very similar methodology to that used in the present study. Of note, 

vessel counts in the prostate cancer tumours were considerably lower (30-50 vessels 

per 0.74mm2) than counts in WT-SCC tumours (150-200 vessels per 0.74mm2). While 

this may reflect a difference in quantification criteria, more likely it suggests that the 

WT-SCC tumours are a highly vascularised tumour type. Potentially, this may render 

them less sensitive to angiogenic manipulations, as the sheer magnitude of the 

angiogenic response could overwhelm any potential influence of altered 

glucocorticoid levels. This is further supported by the more pronounced difference in 

vessel density seen in WT-SCC tumours removed at day four compared with those 

removed at day 11; it is possible that the day four timepoint precedes an intensely pro-

angiogenic phase. As this observation did not reach significance, further investigation 

would be required before conclusions can be drawn. In the present project, alternative 

lines of investigation were pursued based on results presented in later chapters. Yano 

et al., (2006) also saw a decrease in VEGF-A mRNA levels corresponding to their 

reduced vessel density data; in the present study VEGF-A and VEGFR-2 were both 

unaffected by 11β-HSD1 inhibition, which does not support the original hypothesis.  

The main pathological models in which Small et al. (2005) saw enhanced angiogenesis 

were coronary artery ligation and dermal wound healing. Enhanced angiogenesis and 

recovery post-myocardial infarction has since been demonstrated a number of times, 

using both 11β-HSD1 knockout mice (McSweeney et al., 2010; White et al., 2015; 



Chapter 3 - 11β-HSD1 inhibition and tumour growth 

163 

 

Mylonas et al. 2017) and the 11β-HSD1 inhibitor UE2316 (McGregor et al., 2014). 

The reparative response to myocardial infarction is characterised by enhanced 

neutrophil and macrophage recruitment into the myocardium, a response that is 

enhanced by 11β-HSD1 inhibition (McSweeney et al., 2010; Mylonas et al., 2017). 

11β-HSD1 deficiency also increases acute inflammation in models of arthritis, 

peritonitis and pleurisy (Coutinho et al., 2012; 2016). This effect is not seen across all 

disease models; in adipose tissue and atherosclerotic plaques from 11β-HSD1 KO 

animals, inflammatory and immune cell infiltration is attenuated (Wamil et al., 2011; 

Kipari et al., 2013). Arguably, the chronic, non-resolving inflammation and hypoxia 

seen in obese adipose tissue and atheroma is more similar to the tumour 

microenvironment than ischaemic myocardium, thus mechanistically these models 

may be of more relevance. Furthermore, angiogenesis after induced myocardial 

infarction in rodents is a beneficial process and distinct from the aberrant non-

resolving hypoxia-driven angiogenesis seen in tumours (Carmeliet, 2003, Chung and 

Ferrara, 2011).   

Panc043 tumours were significantly less vascularised than WT-SCC tumours, an 

observation in keeping with the literature. Olive et al. (2009) report that pancreatic 

ductal adenocarcinoma (PDAC) specimens are hypovascularised and hypothesise that 

their vascular architecture limits the perfusion and drug delivery into PDAC. 

Importantly, the KrasLSL.G12D/+; p53R172H/+; PdxCretg/+ (KPC) mouse model 

used by Olive et al. (2009) to produce their murine PDAC tumours is the same used 

to generate the Panc043 cells used in the present study, making these findings highly 

comparable. PDAC has also been reported to be hypovascularised by groups using 

contrast-enhanced ultrasound to examine tumour perfusion (Sofuni et al., 2005; 

Sakamoto et al., 2008) and PDAC does not respond to the anti-angiogenic drug 

bevacizumab (Van Cutsem et al., 2009), further demonstrating that these tumours are 

relatively nonangiogenic or that their development is not dependent on angiogenesis. 

PDAC is also characterised by an abundant desmoplastic stroma comprising mainly 

α-smooth muscle actin-positive cancer-associated fibroblasts (CAFs) (Özdemir et al., 

2014; Öhlund et al., 2017), associated with excessive extracellular matrix (ECM) 

deposition and increased interstitial fluid pressure which are thought to further inhibit 

drug delivery (Provenzano et al., 2012; Whatcott et al., 2012). Thus it is possible that 
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poor perfusion led to compromised delivery of UE2316 into tumours. The present 

study is limited by the failure to quantify intra-tumour UE2316 levels; insufficient 

tissue was available to produce a robust result. While reduced perfusion could explain 

the lack of Panc043 response to UE2316-treament, it cannot explain the lack of 

response seen in the Del1 mice, suggesting that sensitivity to 11β-HSD1 manipulation 

is governed by more than just tissue architecture. However, tissue perfusion remains 

an important consideration as acute enzymatic inhibition may affect tumour growth 

differently to chronic deletion of 11β-HSD1. 

The surprising observation that Del1 mice were significantly heavier than the 

commercially purchased C57BL6/J mice that formed the control and UE2316 groups, 

despite age-matching, is difficult to explain. Although not the result of an experimental 

manipulation (weights differed from the beginning of the study), the difference was 

apparent across all experiments using the Del1 mice. No differences in the amount of 

diet consumed by Del1 mice were seen, thus the effect cannot be explained by 

increased feeding. The previous 11β-HSD1 knockout mice generated in-house did not 

differ in weight from their wild type litter mates (Kotelevtsev et al., 1997). The current 

knockout, Del1, has been back-crossed to the C57BL/6OlaHSD substrain (available 

from the Jackson Laboratory), the same substrain as the commercially purchased mice 

used in these experiments. Increased body weight is more perplexing still in light of 

reports that 11β-HSD1 deletion protects against, whereas overexpression promotes, 

obesity (Stimson and Walker, 2007; Morton et al., 2008; Harno et al., 2013). The 

difference is thus most likely to have arisen as a result of different housing conditions 

between in-house lines and commercial lines. The importance of mouse substrain has 

recently been highlighted as a consideration commonly neglected by researchers 

(Fontaine and Davis, 2016). Ideally littermate controls would be used for comparison 

in studies such as this, however as the available Del1 colony was entirely homozygous 

mutants, age-matched controls of an identical-substrain were selected as the most 

suitable option. 

11β-HSD1 inhibition and angiogenic factor expression 

The absence of an effect on vessel number in tumours led to the examination of 

angiogenic factor expression in tumours, to confirm that a more subtle effect had not 
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been overlooked. SCC-B6-1 were not included in these studies as the considerable 

differences seen between WT-SCC and SCC-B6-1 tumour growth limited the 

usefulness of this comparison. Panc043 tumours were analysed and presented as a non-

responsive comparison to the WT-SCC tumours. No differences were seen in 

expression of VEGFA, VEGFR2 or TSP-1 in WT-SCC or Panc043 tumours. VEGFA 

and VEGFR2 are central to the process of endothelial cell migration, and are pre-

requisites for the coordinated Notch-DLL4 signalling that dictates stalk and tip cell 

identity (Carmeliet and Jain, 2011). Glucocorticoid-mediated alterations in 

angiogenesis are often reflected in VEGF mRNA levels (Nauck et al., 1998; Gille et 

al., 2001; Pufe et al., 2003; Wen et al., 2003; Yano et al., 2006; Michailidou et al., 

2012), though a change in VEGF transcript does not always accompany changes in 

angiogenesis. Hasan et al. (2000) found glucocorticoids were able to promote 

haemangioma regression without an accompanying reduction in VEGF. Logie et al., 

(2010) also saw no effect of cortisol on VEGFA or VEGFR2 transcript expression in 

HUVECs, though they did observe a significant increase in the anti-angiogenic 

glycoprotein TSP-1. Reduced TSP-1 expression and increased 11β-HSD2 signalling 

were also seen in women with heavy menstrual bleeding (Rae et al., 2009), suggesting 

this protein may play a mechanistic role in the regulation of angiogenesis by 

glucocorticoids. 11β-HSD1 knockout mice show increased angiogenesis in models of 

MI and inflammatory arthritis without an accompanying increase in VEGFA mRNA 

(McSweeney et al., 2010; Zhang et al., 2017), leading to the proposition that enhanced 

angiogenesis after 11β-HSD1 deletion is mediated by tissue resident macrophages 

downstream of VEGF (Zhang et al., 2017).  

HIF-1α expression in WT-SCC tumours was unaltered by administration of UE2316, 

whereas in Panc043 tumours its expression was reduced by UE2316 treatment. This 

suggests that, despite not affecting tumour growth, 11β-HSD1 inhibition may still be 

exerting an effect on the tumour microenvironment. Whether this effect is systemic or 

mediated within the tumour cannot be determined by the present data. The finding that 

HIF-1α was decreased by UE2316 in Panc043 tumours is at odds with the reduction 

in HIF-1α and VEGF protein seen in 11β-HSD1 overexpressing HCC tumours (Liu et 

al., 2016), and, without an associated change in angiogenesis cannot be attributed to 

reduced hypoxia within the tumour. In keeping with the present observation, 
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Michalidou et al. (2012) observed decreased HIF-1α expression in adipose tissue from 

11β-HSD1 knockout mice, likely the result of reduced tissue hypoxia and 

inflammation. The lack of impact that UE2316 had on Panc043 tumour size suggests 

that these observations are not of major relevance to tumour progression, but they 

highlight the myriad influences glucocorticoid manipulation may have on tumour 

biology. Given the role of HIF-1α in promoting metastasis (Masoud and Li, 2015), 

such findings may warrant further investigation.  

IL-6 is a pro-angiogenic inflammatory cytokine (Gopinathan et al., 2015). In 

keratinocytes it is regulated by glucocorticoids in a biphasic manner, whereby 

physiological stress level of cortisol elevate its expression while pharmacological 

levels suppress it (Bernabé et al., 2011). The angiostatic effects of glucocorticoids have 

been linked to reduced production of IL-6 in vivo (Hori et al., 1996; Hasan et al., 

2000). Given that high IL-6 levels are predictive of poor prognosis in squamous cell 

carcinoma (Duffy et al., 2008) and are seen to be regulated by glucocorticoids in 

glucocorticoid-sensitive cancers (such as prostate; Nishimura et al., 2001), it was 

investigated as a potential mechanistic factor; however IL-6 levels did not differ 

between WT-SCC tumours and transcript could not be detected in Panc043 tumours. 

Glucocorticoid sensitivity of different tumour types 

A research question for this chapter was whether the glucocorticoid profile of a tumour 

(11β-HSD1/2, GR and MR levels) was predictive of tumour sensitivity to 11β-HSD1 

inhibition. Findings suggest that GR levels may be important, as WT-SCC tumours 

expressed significantly more GR than either of the other tumour types. The absence of 

MR transcript from WT-SCC tumours strongly suggests that GR is of more 

mechanistic importance (notwithstanding the possibility of a systemic mechanism 

mediated outwith the tumour). The present findings are in agreement with other studies 

that report SCC express particularly high levels of GR (Budunova et al., 1997; 

Spiegelman et al., 1997) and lack MR (Suzuki et al., 2000), though data from this 

chapter did not examine receptor function. As GR levels are a key determinant of tissue 

sensitivity to glucocorticoid action (Vanderbilt et al., 1987; Lin and Wang, 2016), this 

suggests that SCC may be a glucocorticoid-sensitive tumour type. GR expression in 

Panc043 tumours, but not in SCC tumours, was reduced by UE2316 treatment, 
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additional evidence that 11β-HSD1 inhibition may be altering this tumour type in a 

manner that does not affect growth. This finding is unexpected; 11β-HSD1 inhibition 

would be expected to decrease tumour glucocorticoid levels, and glucocorticoids 

downregulate GR mRNA expression in many tissues including tumours (Rosewicz et 

al., 1988; Vedeckis et al., 1989; Budunova et al., 1997; Freeman et al., 2004); notable 

exceptions include some lymphoid cell lines (Eisen et al., 1988). Thus this finding is 

difficult to interpret without further investigation.  

The relevance of absolute enzyme levels is unclear; SCC-B6-1 tumour type expressed 

large amounts of 11β-HSD1 mRNA and a high degree of activity compared to WT-

SCC tumour, but did not respond to 11β-HSD1 inhibition. The cell types expressing 

11β-HSD1 within tumours remain to be identified. Understanding cell-specific 

distribution of this enzyme may clarify the apparent paradox of a tumour with high 

11β-HSD1 activity not responding to 11β-HSD1 inhibition. The present data suggest 

that 11β-HSD1 expression in SCC-B6-1 tumour cells is induced after they are injected 

into animals, as the Del1-grown tumours had transcript present, despite the gene being 

deleted in host tissues. Induction of 11β-HSD1 expression may be a consequence of 

exposure to inflammatory cytokines (Chapman et al., 2013a). The same could 

theoretically have occurred in the other tumour types, but it is possible that enzyme 

expression in tumour cells is less important than expression within 

immune/inflammatory or fibroblast cell populations. The concept that 11β-HSD1 

expression is important in a specific subset of cells would somewhat negate the 

relevance of absolute 11β-HSD1 levels in tumours. From the present data the 

conclusion is that tumour GR expression within tumours may be predictive of 

sensitivity to 11β-HSD1 expression, whereas expression of overall tumour 11β-HSD1 

is not predictive.  

A large number of cancerous tissues express less 11β-HSD1 and more 11β-HSD2 than 

healthy controls (Takahashi et al., 1998; Bland et al., 1999; Coulter et al., 1999; 

Cooper et al., 2000; Gingras and Margolin, 2000; Pácha et al., 2002; Dovio et al., 2009; 

Liu et al., 2016) and several reports suggest this switch enhances cell proliferation 

(Hundertmark et al., 1997; Koyama and Krozowski, 2001; Woitge et al., 2001; 

Koyama et al., 2001; Rabbitt et al., 2002). This would suggest that targeting 11β-HSD1 
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would promote tumour growth. SCC are an exception in that 11β-HSD1 remains 

detectable while 11β-HSD2 is undetectable (Suzuki et al., 2000; Gronau et al., 2002; 

Cirillo et al., 2012; Terao et al., 2013). The present findings are in agreement with the 

literature; 11β-HSD1 was detected in both SCC tumour types at a higher level than in 

Panc043 tumours (in which 11β-HSD1 levels were at the limit of detection). 11β-

HSD2 was undetectable in all tumour types.  

11β-HSD1 mRNA levels were reduced by UE2316 in WT-SCC tumours but not in 

SCC-B6-1 tumours, another potential contributor to the enhanced response seen in 

WT-SCC tumours. Dexamethasone increases 11β-HSD1 expression in adipose tissue 

(Balachandran et al., 2008), thus the opposite process may be occurring in tumours, 

whereby decreased binding of active glucocorticoids to GR reduces 11β-HSD1 

expression. The reverse is often true in biology though, with reduced signalling leading 

to compensatory increased expression of pathway components. Alternatively, the 

decrease in whole tumour 11β-HSD1 transcript after UE2316 treatment may reflect a 

change in the relative proportion of 11β-HSD1-positive cell types; data from the 

current chapter show that vascular cell proportions are not altered by UE2316 and 

suggest that WT-SCC contribute no or negligible 11β-HSD1 content, thus 

inflammatory/immune cells and fibroblasts are candidate populations. As 11β-HSD1 

expression is also increased by inflammatory stimuli (Sun and Myatt, 2003; Ignatova 

et al., 2009; Ahasan et al., 2012), reduced 11β-HSD1 expression after UE2316 

treatment may also suggest reduced intra-tumour pro-inflammatory signalling. 11β-

HSD1 is reduced in conditions that stimulate proliferation of keratinocytes (Terao et 

al., 2013) so reduced enzyme expression may actually be a consequence of enhanced 

tumour growth. 

Attempts to localise 11β-HSD1 histologically were, unfortunately, unproductive due 

to problems with the immunohistochemistry technique, specifically, non-specific 

binding of the 11β-HSD1 antibody in tissues from knockout animals. 11β-HSD1 

immunostaining was subsequently abandoned in favour of enzyme transcript and 

activity measurements, which were reproducible but offered no insight into cellular 

localisation. No 11β-HSD1 transcript was detected in cultured tumour cells. Key sites 

of 11β-HSD1 expression in the tumour microenvironment are the vasculature (Walker 
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et al., 1991; Dover et al., 2007), immune and inflammatory cells (Thieringer et al., 

2001; Gilmour et al., 2006), and fibroblasts (Lee et al., 2013; Tiganescu et al., 2013; 

Terao et al., 2014). Experimental evidence reported in this chapter showed that, 

whereas 11β-HSD1 expression was low in WT-SCC tumours compared to liver, its 

expression was very similar in subcutaneous sponge tissue taken from mice 7 days 

after implantation. Implanted sponges are infiltrated by host vessels, inflammatory 

cells and stromal cells. Implanted tumour cells form tumours which are similarly 

populated by host tissues, thus this observation may suggest similar 11β-HSD1-

expressing cell populations within WT-SCC tumours. The importance of stromal cells 

as 11β-HSD1-expressing cells in tumours warrants further investigation, as despite 

reports (and qualitative observations from the present study) that PDAC express high 

levels of stromal CAFs (Özdemir et al., 2014; Öhlund et al., 2017), Panc043 tumours 

had negligible 11β-HSD1 activity, suggesting that stromal cells in these tumours do 

not express large amounts of 11β-HSD1. This would most readily be achieved by 

fluorescence associated cell sorting of tumour cells.  

Delivery of UE2316 

For the in vivo experiments described in this thesis, UE2316 was delivered via a 

custom-made RM-1 diet (McGregor et al., 2014; Sooy et al., 2015). Diet-based 

delivery was selected to avoid the stress associated with other delivery routes 

(injection/gavage/mini-pump) which could affect circulating glucocorticoids. Mice 

were given access to diet ad-libitum but tissues were also taken as close to 8am as 

possible so as to capture nadir baseline corticosterone levels. A previous study using 

the drug-diet delivered an efficacious calculated dosage of 30mg/kg/mouse/day (Sooy 

et al., 2015). The estimated dosage achieved in the present studies (based on diet 

consumed per cage per 2-3 days) was 25-30mg/kg/mouse/day, a dose seen to be 

efficacious in previous studies. UE2316 levels in C57BL6/J mouse plasma were in a 

similar region to previous measurements that used mini-pump administration of 

UE2316 (Wheelan et al., 2015). Cobice et al. (2013; 2017) have shown that whole 

brain levels of UE2316 in C57BL6/J mice given 20-25 mg/kg orally (via gavage) fall 

rapidly from 300-500 ng/g after 1-2 hours to around 50 ng/g after 4-6 hours, 

demonstrating the fast clearance of the drug. This may explain why plasma UE2316 
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levels were significantly lower in C57BL6/J animals than in FVB/N animals despite 

both strains consuming very similar amounts of drug-diet. Liver levels of UE2316 

were variable in C57BL6/J mice (50-200 ng/g) and lower but more consistent in 

FVB/N mice (25-50 ng/g). The time at which mice had last eaten may have affected 

measured levels and could explain this discrepancy between strains and variability 

within groups, however strain-specific differences in pharmacokinetics cannot be 

discounted. 

In conclusion, data from this chapter provide evidence that 11β-HSD1 inhibition can 

promote growth in some models of subcutaneous tumour formation. The sensitivity of 

tumours formed following injection of WT-SCC may be due to their high GR 

expression, but high expression of 11β-HSD1 itself is less predictive of a growth 

response to 11β-HSD1 inhibition. Contrary to the research hypothesis, the mechanism 

responsible for increased growth does not appear to be increased angiogenesis. 

UE2316 promotes angiogenesis in a mouse model of myocardial infarction (McGregor 

et al. 2014) but recent evidence suggests that it does not affect angiogenesis in a mouse 

model of hindlimb ischaemia (J. Wu, personal communication), thus its effects on 

angiogenesis appear to be context-dependent. No studies have previously examined 

the effect of a selective 11β-HSD1 inhibitor on an ex vivo model of angiogenesis, with 

previous studies using the non-selective 11β-HSD inhibitor carbenoxolone (Small et 

al., 2005). If the tumour vasculature is unaffected by 11β-HSD1 inhibition, what is the 

mechanism? Before examining the different components of the tumour 

microenvironment, it will be important to directly assess the effect of UE2316 and 

glucocorticoids on tumour cell proliferation in vitro. 



Chapter 4 – Effects of the 11β-HSD1 inhibitor UE2316 

171 

 

 

 

 

 

 

 

 

Chapter 4 

 

Effects of the 11β-HSD1 inhibitor UE2316 on 

angiogenesis and tumour cells 

 

 

 

 

 

 

 



Chapter 4 – Effects of the 11β-HSD1 inhibitor UE2316 

172 

 

4 11β-HSD1 inhibition, angiogenesis and 

tumour cell division 

4.1 Introduction 

In the previous chapter, UE2316 increased the growth of WT-SCC tumours but did 

not affect vessel density or molecular markers of angiogenesis. 11β-HSD1 inhibition 

has previously been shown to increase angiogenesis in other contexts, including in vivo 

after induced myocardial infarction (Small et al., 2005; McSweeney et al., 2010; 

McGregor et al., 2014; White et al., 2015) and ex vivo in the aortic ring assay using 

the non-selective 11β-HSD inhibitor carbenoxolone and genetic deletion (Small et al., 

2005). In tumours, sources are limited but Liu et al. (2016) report that over-expression 

of 11β-HSD1 in hepatocellular carcinoma decreased tumour angiogenesis and size. 

Thus, the lack of angiogenic effect observed in the present study was unexpected. 

UE2316 is a selective murine 11β-HSD1 inhibitor. The ex vivo angiogenic effects of 

the 11β-HSD1-selective inhibitor UE2316 have never been studied before, with 

previous studies using the non-selective 11β-HSD inhibitor carbenoxolone. Small et 

al., (2005) used the aortic ring assay to show that while 11-dehydrocorticosterone (11-

DHC) and corticosterone were angiostatic, inhibition using carbenoxolone, or genetic 

deletion of 11β-HSD1, prevented the angiostatic effects of 11-DHC. These findings 

suggest that local activation of glucocorticoids promotes angiostasis, however the 

effects of acute selective 11β-HSD1 inhibition must be determined. 

If the enhanced growth effect observed in squamous cell carcinoma (SCC) tumours is 

not the result of increased angiogenesis, a direct effect on tumour cell proliferation 

may be responsible. The syngeneic murine solid tumour model generates subcutaneous 

tumours comprised of donor tumour cells and a tumour microenvironment comprised 

of invading host cells (predominantly immune, inflammatory and vascular cells). 

Reports concerning the effects of glucocorticoids on cancer cell lines, including 

squamous cell carcinoma, are conflicting. The inhibitory effects of glucocorticoids on 

cell proliferation are well-reported (Azher et al., 2016) but in many solid tumours 

glucocorticoids induce resistance to chemotherapeutics and promote cell proliferation 
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(Zhang et al., 2007; Lin and Wang, 2016). The proliferation of healthy keratinocytes 

is inhibited by locally regenerated glucocorticoids (Terao et al., 2011), though the 

story in tumour cells is often complicated by increased resistance to glucocorticoid 

mediated apoptosis (Schlossmacher et al., 2011). Furthermore, corticosteroids have 

been shown to both increase (Bernabé et al., 2011; Cirillo et al., 2017) and inhibit 

proliferation (Hofmann et al., 1995) in SCC. Whilst the working hypothesis for these 

studies predicts the involvement of host cells, an off-target effect of UE2316 on tumour 

cell growth also cannot be ruled out. 

Hypotheses 

The work described in this chapter addressed the hypotheses that: 

- The 11β-HSD1 inhibitor UE2316 influences angiogenesis and tumour cell 

proliferation in ex vivo and in vitro models of these intra-tumour processes 

- 11β-HSD1 inhibition/deletion prevents conversion of 11-DHC to corticosterone, thus 

preventing 11-DHC-mediated angiostasis in the aortic ring assay 

- Physiological concentrations of glucocorticoids inhibit SCC cell proliferation 

Objectives 

The specific aims of this work were: 

(1) To determine whether 11-DHC and corticosterone exert angiostatic effects on 

aortic rings from FVB/N and C57BL6/J mice ex vivo. 

(2) To determine whether UE2316 selectively inhibits 11-DHC mediated-angiostasis 

(3) To determine whether deletion of 11β-HSD1 selectively inhibits 11-DHC 

mediated-angiostasis  

(4) To confirm the inhibitory effect of UE2316 on 11β-HSD1 in intact tissue 

(5) To determine whether UE2316 promotes the proliferation of WT-SCC, Panc043 

and SCC-B6-1 cells 
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(6) To determine whether physiological concentrations of corticosterone inhibit the 

proliferation and viability of WT-SCC, Panc043 and SCC-B6-1 cells 
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4.2 Results 

4.2.1 The effects of 11β-HSD1 inhibition and deletion on aortic 

ring vessel growth 

 Angiostasis is inhibited by 100-300nM 11-DHC 

Before examining the effects of 11β-HSD1 inhibition on aortic rings, an initial 

experiment was performed to determine an assay appropriate glucocorticoid 

concentration for inhibiting angiogenesis. A preliminary 11-DHC concentration-

response curve was performed, showing that 100 - 300nM 11-DHC significantly 

reduced vessel number. Aortic rings were harvested from wild-type (WT) C57BL6/J 

mice (female, aged 10-12 weeks). Experiments included five treatment conditions: 

vehicle (0.3% ethanol/DMSO); 11-DHC (10nM, 30nM, 100nM, 300nM) - N=10 for 

all conditions bar 10nM, for which N=8. 300nM was selected for use in future 

experiments (Figure 4.1). This experiment was performed by Eileen Miller, with data 

analysis performed by the author. 

 

 

 

 

 

 

Figure 4.1 – 11-DHC concentration-response curve for ex vivo angiogenesis. Aortic rings 

from wild type C57BL6/J mice were cultured for one week in the presence of varying 

concentrations of the inactive glucocorticoid 11-dehydrocorticosterone (11-DHC). 300nM 

caused a marked reduction in vessel number, while 100nM induced mild angiostasis. Lower 

concentrations had no significant effect. Note that vessel counts are pooled for days 6/7. N=8-

10. * P<0.01, **** P<0.0001 vs. control. Data represent mean ± standard error and were 

compared by one-way ANOVA with Dunnett’s post-hoc test. 
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 UE2316 did not rescue steroid-mediated angiostasis and reduced 

outgrowths from aortic rings  

 C57BL6/J mice 

To determine whether UE2316 could prevent corticosteroid-mediated angiostasis, 

aortic rings from C57BL6/J (female, aged 10-12 weeks, N=8) were cultured in the 

presence of either vehicle, 300nM 11-DHC or 300nM corticosterone, with or without 

300nM UE2316 (Figure 4.2A). Vehicle-treated rings produced 72 ± 14 vessels at day 

7 (N=8). Addition of UE2316 alone reduced the number of outgrowths on day 7 (31 ± 

7 vessels, P<0.01). 11-DHC (20 ± 4 vessels, P<0.0001) and corticosterone (9 ± 2 

vessels, P<0.001) were both angiostatic and UE2316 did not prevent this angiostasis.  

 FVB mice 

To confirm findings in C57BL6/J mice in the FVB/N mice, aortic rings from FVB/N 

mice (female, aged 10-12 weeks, N=6 mice) were cultured in the presence of either 

vehicle (0.3% ethanol/DMSO), 300nM 11-DHC or 300nM corticosterone, with or 

without 300nM UE2316 (Figure 4.2B). Vehicle-treated rings produced 23 ± 5 vessels 

at day 7 (N=6), fewer than the counts seen in C57BL6/J aortic rings. Addition of 

UE2316 alone had no effect (23 ± 6 vessels). 11-DHC (1.2 ± 0.8 vessels, P<0.05) and 

corticosterone + UE2316 (0.7 ± 0.2 vessels, P<0.001) were both angiostatic. 
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Figure 4.2 - UE2316 did not prevent glucocorticoid-mediated angiostasis. A) In vessels 

from C57Bl6/J mice, 300nM of the 11β-HSD1 inhibitor UE2316 reduced new vessel 

outgrowths. 300nM 11-dehydrocorticosterone (11-DHC) or corticosterone potently inhibited 

angiogenesis, and UE2316 did not affect this inhibition. N=8, data compared by one-way 

ANOVA with Dunnett’s post-hoc test. B) In vessels from FVB mice, the angiostatic effect of 

UE2316 alone was not apparent. However, UE2316 did not prevent glucocorticoid-mediated 

angiostasis. Aortic rings from FVB mice showed less vessel growth than C57Bl6/J. * P<0.05, 

**P<0.01, ***P<0.001, ****P<0.0001. N=6. Data represent mean ± standard error and were 

compared by Kruskal-Wallis test with Dunn’s post-hoc test.  
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 Del1 mice were protected from the angiostatic effect of 11-DHC 

To determine whether 11β-HSD1 deletion could prevent glucocorticoid-mediated 

angiostasis, aortic rings from WT C57BL6/J mice (female, 10-12 weeks, N=6) and 

Del1 mice (homozygous for disruption of hsd11b1 gene, female, 10-12 weeks, N=4) 

were cultured in the presence of either vehicle (0.3% ethanol/DMSO), 300nM 11-DHC 

or 300nM corticosterone (Figure 4.3). Vehicle-treated rings from WT (41 ± 8 vessels) 

and Del1 mice (74 ± 29 vessels) produced vessels by day 7, with Del mice producing 

1.8-fold more vessels than WT mice (non-significant). In WT mice, 11-DHC (10 ± 2 

vessels) and corticosterone (10 ± 3 vessels) both caused angiostasis (P<0.01). In Del1 

mice, only corticosterone was angiostatic (10 ± 5 vessels, P<0.01) while 11-DHC had 

no effect on vessel growth (68 ± 9 vessels). Thus, the lack of 11β-HSD1 in Del1 mice 

prevents the activation of glucocorticoids and their angiostatic effects, an effect not 

seen using UE2316. 

Representative images from these experiments are summarised in Figure 4.4. 
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Figure 4.3 - Genetic ablation of 11β-HSD1 prevented 11-DHC-mediated angiostasis. 

Aortic rings from wildtype mice showed a significant reduction in angiogenesis in the presence 

of 300nM 11-dehydrocorticosterone (11-DHC) compared to Del1 mice in the presence of 

300nM 11-dehydrocorticosterone. 300nM corticosterone inhibited angiogenesis in aortae from 

both wild-type and Del1 mice. ** P<0.01. Data represent mean ± standard error and were 

compared by one-way ANOVA with Dunnett’s post-hoc test. N=6 wild type C57BL6/J mice, 

N=4 Del1 mice. 
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Figure 4.4 - UE2316 is antiangiogenic and did not rescue 11DHC-mediated angiostasis 

in the same fashion as 11β-HSD1 KO. Representative images of aortic rings from wild-type 

and Del1 (11β-HSD1 knockout) animals, treated with glucocorticoids and the 11β-HSD1 

inhibitor UE2316. Vehicle-treated rings grow similarly in both wild-type and Del1 animals 

(top and bottom left), while UE2316 causes a moderate reduction in vessel number (middle 

left). 11-dehydrocorticosterone (11-DHC) and corticosterone potently inhibit angiogenesis in 

all rings apart from Del1 animals (bottom middle). The addition of UE2316 does not prevent 

this inhibition (centre). 
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4.2.2 Effect of UE2316 on 11β-HSD1 activity in intact liver 

To confirm the inhibitory effect of UE2316 on 11β-HSD1 activity, an enzyme activity 

assay was performed using liver from C57BL6/J mice (N=6). 300nM UE2316 

inhibited the reduction of 3H-cortisol to 3H-cortisone by 11β-HSD1 in intact liver by 

45% (P<0.0001), demonstrating the inhibition of 11β-HSD1 reductase activity (Figure 

4.5). Cortisol and cortisone were used as an alternative to 11-DHC and corticosterone 

in this assay, as they can be commercially purchased as purified steroids, whereas in-

house generation of 3H-11-DHC results in the detection of other interfering breakdown 

products during HPLC analysis. Furthermore, 11-DHC/corticosterone and 

cortisol/cortisone share very similar enzyme kinetics (Maser et al. 2002). 

 

 

 

 

 

 

 

Figure 4.5 - UE2316 inhibits 11β-HSD1 reductase activity in intact tissue. Liver pieces 

incubated with 3H-cortisone and 300nM of the 11β-HSD1 inhibitor UE2316 were unable to 

generate as much cortisol over 24 hours as control liver incubated in the absence of UE2316, 

demonstrating the inhibitory action of the drug. N=6/group, **** P<0.0001. Data represent 

mean ± standard error and were compared by independent samples t-test. 
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4.2.3 Effects of UE2316 and glucocorticoids on tumour cells 

 Manual cell counts 

To determine the effects of UE2316 on WT-SCC and Panc043 cell proliferation, 

manual cell counts were performed on cells exposed to the compound for 48 hours. 

Manual cell counting found no significant effect of UE2316 on absolute cell number 

across a range of UE2316 concentrations (Figure 4.6). This was true for both cell types 

examined (WT-SCC and Panc043). 

 

 

 

 

 

 

 

 

Figure 4.6 – Manual cell counts after exposure of WT-SCC and Panc043 to UE2316. 

Quantification of cell number found no differences across the UE2316 (11β-HSD1 inhibitor) 

concentration curve after 48 hours. N=3-4 technical repeats, treatments in duplicate. Data 

represent mean ± standard error and were compared by one-way ANOVA. 
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 Automated cell confluency analysis 

Cells were also imaged using the Incucyte ZOOM live cell imaging system to 

investigate the effects of UE2316 and glucocorticoids on tumour cell growth and 

morphology (Figure 4.7). The pro-apoptotic compound staurosporine (STS; 300nM) 

was added as a positive assay control. 

 UE2316  

Cell confluence increased steadily over 72 hours. WT-SCC grew more quickly than 

SCC-B6-1 and Panc043 cells, with both the latter cell lines only reaching 

approximately 35% of WT-SCC total confluence by 72 hours. Treatments were as 

follows: vehicle (0.6% ethanol/DMSO); 25nM UE2316; 75nM UE2316; 150nM 

UE2316; or 300nM UE2316. Addition of increasing concentrations of UE2316 had no 

effect on the growth of WT-SCC or SCC-B6-1 cells over 72 hours (Figure 4.8A/C), 

but 150nM and 300nM UE2316 produced a small but significant inhibition of Panc043 

growth (P<0.01, Figure 4.8B). The cytotoxic staurosporine (STS) prevented growth in 

all cell types. 

Viable cell number after 72 hours was assessed using an alamarBlue assay. UE2316 

was not found to affect cell viability in any cell type at any concentration (Figure 4.9).  

 

 

 

 

 

Figure 4.7 - Tumour cells imaged on the Incucyte Zoom live cell imaging system. WT-

SCC cells (A) have a spindle-like morphology, while Panc043 (B) and SCC-B6-1 cells (C) 

have a cobblestone-like morphology. Scale bar = 300µm. 
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Figure 4.8 - UE2316 selectively reduced Panc043 cell confluence. The confluence of WT-

SCC cells (A) and SCC-B6-1 cells (C) imaged over 72 hours using the Incucyte was unaffected 

by the 11β-HSD1 inhibitor UE2316, however 150nM and 300nM UE2316 caused a small but 

significant reduction in Panc043 confluence (B). 300nM STS was included in all experiments 

as a positive assay control (cytotoxic effects). ** P<0.01. N=5 (technical repeats, treatments 

in sextuplet). Data represent mean ± standard error and were compared by 2-way ANOVA 

with Dunnett’s post-hoc test.  
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Figure 4.9 - Viable cell number was unaffected by UE2316. Cell viability, as determined 

by the alamarBlue assay, was unaffected by the addition of the 11β-HSD1 inhibitor UE2316 

to WT-SCC (A), Panc043 (B) and SCC-B6-1 cells (C). N=4 (technical repeats, treatments in 

sextuplet). Data represent mean ± standard error and were compared by one-way ANOVA. 
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 Corticosterone  

Treatments (in sextuplet) were added as follows: vehicle (0.6% ethanol/DMSO); 

37.5nM corticosterone; 75nM corticosterone; 150nM corticosterone; or 300nM 

corticosterone. Addition of increasing concentrations of corticosterone had no effect 

on the growth of WT-SCC or SCC-B6-1 cells over 72 hours (4.10A/C), but 75nM and 

600nM corticosterone produced a small but significant inhibition of Panc043 growth 

(P<0.05 and P<0.01, respectively, Figure 4.10B). 300nM STS was potently cytotoxic 

and prevented growth in all cell types. 

Viable cell number after 72 hours was assessed using an alamarBlue assay. 

Corticosterone was not found to affect cell viability in any cell type at any 

concentration (Figure 4.11).  
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Figure 4.10 – Corticosterone selectively reduces Panc043 cell confluence. The confluence 

of WT-SCC cells (A) and SCC-B6-1 cells (C) imaged over 72 hours using the Incucyte was 

unaffected by corticosterone. In contrast, 75nM and 600nM corticosterone caused a small but 

significant reduction in Panc043 confluence (B). 300nM STS was included in all experiments 

as a positive assay control (cytotoxic effects). * P<0.05, ** P<0.01. N=5 (technical repeats, 

treatments in sextuplet). Data represent mean ± standard error compared by 2-way ANOVA 

with Dunnett’s post-hoc test.  
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Figure 4.11 - Viable cell number is unaffected by corticosterone. Cell viability, as 

determined by the alamarBlue assay, was unaffected the addition of corticosterone to WT-

SCC (A), Panc043 (B) and SCC-B6-1 cells (C). N=4 (technical repeats, treatments in 

sextuplet). Data represent mean ± standard error and were compared by one-way ANOVA. 
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4.3 Discussion 

The experiments presented in this chapter addressed the hypothesis that either 11β-

HSD1 inhibition (with UE2316) or deletion of 11β-HSD1 would prevent the inhibition 

of angiogenesis induced by the addition of 11-DHC to the aortic ring assay. Such 

effects were demonstrated by Small et al., (2005) using a previous 11β-HSD1 

knockout mouse model as well as the non-selective 11β-HSD inhibitor carbenoxolone. 

The effectiveness of UE2316 as an 11β-HSD1 inhibitor was confirmed in liver. 

Finally, studies were performed to investigate the effects of UE2316 and 

glucocorticoids on tumour cell proliferation. All three of the experimental tumour cell 

lines were shown to express negligible 11β-HSD1 transcript, and UE2316 previously 

has shown no off-target effects during selectivity screening (Yau et al., 2015) thus no 

off-target effects were anticipated. The literature on glucocorticoids and tumour cell 

proliferation is complex and, thus, outcomes were more uncertain. The data in this 

chapter are in agreement with previous findings (Small et al., 2005) in terms of the 

angiostatic effects of glucocorticoids and the pro-angiogenic effect of 11β-HSD1 

deletion; angiogenesis in aortae from Del1 mice was unaffected by the addition of 11-

DHC but powerfully inhibited by corticosterone. UE2316 on the other hand did not 

prevent 11-DHC-mediated angiostasis, and furthermore the drug itself exerted 

angiostatic effects in the absence of corticosteroids. These findings are unexpected, as 

studies of reductase activity in liver tissue using identical concentrations of UE2316 

found the drug to reduce conversion of inactive to active glucocorticoids by 50%, 

demonstrating its efficacy ex vivo.  Furthermore, neither UE2316 nor physiologically-

relevant levels of glucocorticoids were seen to affect SCC tumour cell proliferation in 

vitro, indicating that the in vivo effect observed is likely mediated by an alternative 

cell type.  

Aortic ring studies 

Achieving a balance between substrate and inhibitor concentrations was challenging, 

as low levels of 11-DHC failed to produce significant angiostasis whereas high 

concentrations risk displacing the inhibitor. An initial experiment exposing aortic rings 

to increasing concentrations demonstrated that 300nM 11-DHC was an appropriate 

concentration to achieve a pronounced angiostatic response. Small et al. (2005) saw a 
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similar degree of angiostasis using 300nM and 600nM 11-DHC, and chose to proceed 

with 600nM glucocorticoids for their inhibitor experiments. Importantly, both the 

studies in this chapter and those of Small et al. (2005) made use of concentrations far 

closer to those relevant physiologically, as opposed to the pharmacological doses used 

by Folkman et al. (1983) and others (Hori et al., 1996; Hasan et al., 2000). Both 11-

DHC and corticosterone were angiostatic at 300nM, adding further evidence that 

endogenous glucocorticoids can regulate angiogenesis. Only corticosterone, and not 

11-DHC, was able to induce angiostasis in aortae from Del1 mice, emulating the 

findings of Small et al. (2005) and demonstrating that it is the conversion of 11-DHC 

to corticosterone by 11β-HSD1 that produces the angiostatic effect.  

Unexpectedly, UE2316 did not prevent 11-DHC-mediated angiostasis, despite the 

previous finding (Small et al., 2005) that carbenoxolone prevented 11-DHC-mediated 

angiostasis, albeit to a lesser degree than enzyme deletion. This led to questions 

surrounding the effectiveness of the inhibitor under these culture conditions. UE2316 

has an IC50 of 162nM in vitro (Sooy et al., 2010), thus 300nM UE2316 was intended 

to completely inhibit 11β-HSD1. However, results from the reductase assay performed 

in cultured liver tissue demonstrated 300nM UE2316 successfully reduced conversion 

of inactive glucocorticoids by around 50%. Similar findings have been reported in the 

brain (Wheelan et al., 2015). The reductase assay performed in mouse liver tissue was 

intended to address the question of compound effectiveness in intact tissue ex vivo. 

Unfortunately, attempts to optimise this assay for use with aortic tissue failed as tissue 

volumes were too low to detect activity. Nevertheless, it remains possible that residual 

conversion of 11-DHC to corticosterone may still have been sufficient to induce 

angiostasis in the aortae treated with both 11-DHC and UE2316. Given the unexpected 

finding that UE2316 did not prevent 11-DHC-mediated angiostasis, a useful future 

study would be to expose aortic rings to a UE2316 concentration curve – this would 

remove the risk of misinterpreting data from single concentration studies. 

The above argument still cannot explain one of the most surprising findings from this 

study; UE2316 itself exerts moderate angiostatic effects in the absence of 

glucocorticoids. Assay sensitivity is one potential explanation for this finding. Efforts 

were taken to minimise the levels of heparin in culture medium, as although Folkman 
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et al. (1983) demonstrated the requirement for heparin in promoting the angiostatic 

effects of glucocorticoids, its addition did appear to have a detrimental effect on 

growth and could have contributed to assay sensitivity. Findings in the Del1 mice, 

however, suggest that the assay was correctly optimised, as addition of 11-DHC here 

had no effect on growth despite the presence of heparin. If UE2316 does induce anti-

angiogenic effects then this warrants further investigation, though data in this chapter 

only allow for speculation. The present experiments would have benefited from the 

addition of a UE2316-treatment group in the Del1 aortae to test for an off-target effect; 

this experiment has since been performed by others in the group using an identical 

protocol; the anti-angiogenic effect of UE2316 did not occur in mice lacking 11β-

HSD1, only in wild-type C57BL6/J aortae (E. Miller and J. Wu, unpublished). These 

data, in combination with previous reports that UE2316 does not have significant off-

target activities (Yau et al., 2015), suggest a previously unreported 11β-HSD1-

dependent inhibition of angiogenesis which is glucocorticoid-independent. 

Accurate interpretation of these data requires a consideration of the model. The aortic 

ring assay allows the angiogenic process to be examined in the absence of the paracrine 

effects of surrounding tissues and the effect of circulating leukocytes (Baker et al., 

2011). Unlike cell-based assays of angiogenesis, the aortic ring assay uses intact tissue 

explants that have not undergone modification by serial passage under culture 

conditions (Aplin et al., 2008) and involves the development of fully lumenized 

endothelial tubes which recruit supporting mural cells in a manner far more 

representative of in vivo angiogenesis (Aplin et al., 2008; Baker et al., 2011). Small et 

al. (2005) originally interpreted their observations as evidence for the role of smooth 

muscle 11β-HSD1 in constraining the angiogenic response during vascular 

inflammation, on the grounds that the aortic ring assay lacks inflammatory cell 

involvement. Evidence has since emerged that renders this interpretation problematic. 

Several studies have demonstrated an important role for tissue-resident macrophages 

and dendritic cells in the adventitia of aortic explants (Aplin et al., 2006; Gelati et al., 

2008), suggesting that the innate immune system remains relevant in this model. 

Furthermore, White et al. (2015) did not see the same pro-angiogenic effects of 11β-

HSD1 deletion in the myocardium when the knockout was specifically targeted to 

smooth-muscle cells. This new information necessitates a reconsideration of the 
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potential mechanism at work, though this mechanism likely involves the 

glucocorticoid receptor (GR) rather than the mineralocorticoid receptor (MR) (Small 

et al., 2005).  

Based on the available evidence so far, other 11β-HSD1 expressing cell types of 

potential importance in this model are cells of the innate immune system (Thieringer 

et al., 2001; Freeman et al., 2005; Gilmour et al., 2006; Chapman et al. 2013b; 

Coutinho et al., 2016) and fibroblasts (Lee et al., 2013; Tiganescu et al., 2013; Terao 

et al., 2014). Endothelial cells express little or no 11β-HSD1 (Hadoke et al., 2001; 

Christy et al., 2003; Rae et al., 2009), although the paracrine influence of other cell 

types on endothelial cells cannot be excluded in light of the anti-angiogenic effects of 

glucocorticoids on HUVEC tube-like structure formation (Logie et al., 2010). 

Interestingly, the most recent studies examining the role of 11β-HSD1 in angiogenesis 

focus on fibroblasts (Mylonas et al., 2017) and macrophages (Zhang et al., 2017), 

respectively. An important future study will be to perform the aortic ring assay using 

the cell-specific 11β-HSD1 knockout animals. For now, it remains difficult to explain 

why 11β-HSD1 inhibition has the opposite effect on angiogenesis to 11β-HSD1 

deletion. The importance of chronic, as opposed to acute, loss of 11β-HSD1 activity 

may yet prove to be of importance.  

The aortic ring assays described above were performed in C57BL6/J mice (OlaHSD 

substrain), the strain in which Panc043 and SCC-B6-1 tumours were grown. 

Interestingly, SCC-B6-1 tumours did show a trend towards increased growth that was 

more pronounced in WT mice fed an 11β-HSD1 inhibitor than in the Del1 mice – this 

did not reach significance and thus should not be subject to over-interpretation, yet it 

adds to evidence suggesting that inhibition and deletion of the enzyme may operate 

via separate mechanisms. The same aortic ring experiments were performed using 

aortae from FVB mice, as this strain was used for WT-SCC tumour studies. While 

glucocorticoids were still powerfully angiostatic and UE2316 did not prevent 11-

DHC-mediated angiostasis, no anti-angiogenic effect of UE2316 alone was apparent 

in this model. While this may reflect a genuine strain-difference, more likely it reflects 

the poor angiogenic potential of FVB/N mice; control rings produced around 30% of 

the vessel outgrowth seen in control C57BL6/J mice, and their lack of suitability for 
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assays of angiogenesis has previously been described (Rohan et al., 2000; Zhu et al., 

2003; Kim et al., 2013). Thus, rather than resistance to UE2316-mediated angiostasis, 

outgrowths from these aortae may simply have grown too poorly under control 

conditions to allow accurate detection of moderate angiostatic effects. In terms of 

relating findings from the aortic ring assay back to the previous chapter’s conclusions, 

an effect of UE2316 on angiogenesis in the FVB mouse is distinctly absent, adding 

more weight to the theory that an alternative mechanism is responsible for enhanced 

tumour growth.  

Tumour cell proliferation studies 

The original research hypothesis of 11β-HSD1 causing enhanced angiogenesis and 

promoting tumour growth is not supported by the available evidence. The next 

potential mechanism to examine was a direct effect of either UE2316 or 

glucocorticoids on tumour cell proliferation. 11β-HSD1 is rarely expressed in highly-

proliferative tumour cell lines (Chapman et al., 2013b) and the cell lines in this chapter 

were no exception. Therefore, adding UE2316 to cells in culture was performed mainly 

to confirm the absence of an off-target effect. Three separate methods were used to 

assess cell growth. Simple cell counting allowed for a direct readout of cell number, 

while assessment with the incucyte allowed both high-throughput analysis and 

assessment of cell morphology. The alamarBlue assay provided a tertiary measure to 

confirm impact on cell viability. No effect of UE2316 on either WT-SCC or SCC-B6-

1 cells was seen across a wide range of concentrations (encompassing those detected 

in vivo in plasma in the previous chapter). A subtle but significant reduction in 

Panc043 confluence in the presence of 150-300nM UE2316 was apparent, though this 

was not pronounced enough to reach significance in the alamarBlue assay of cell 

viability and did not appear to alter tumour growth in the previous chapter.  

Attention was, thus, turned to glucocorticoids, the effects of which are varied when 

applied to tumour cells. In androgen-sensitive cancers (breast and prostate), 

glucocorticoids can suppress tumour cell proliferation, but in many carcinomas 

glucocorticoids inhibit the apoptotic effects of chemotherapeutics and promote tumour 

cell proliferation via upregulation of survival factors (reviewed by Lin and Wang, 

2016). Many of these studies used high concentrations of dexamethasone, a highly 
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potent synthetic glucocorticoid which is selective for the GR. While this was relevant 

to these studies (which were concerned with the use of therapeutic glucocorticoids in 

conjunction with chemotherapy), the present work is related to manipulation of 

endogenous glucocorticoids and thus made use of physiologically relevant 

concentrations of corticosterone (Kotelevtsev et al., 1997; Harris et al., 2001; Yau et 

al., 2007; Benedetti et al., 2012; Gong et al., 2015), the naturally occurring murine 

glucocorticoid. Synthetic glucocorticoids bind the GR with much higher affinity than 

naturally-occurring corticosteroids (Hollenburg et al., 1985), making direct 

comparison of studies difficult. Ishiguro et al. (2014), for example, found that, while 

dexamethasone (and several other glucocorticoids) promoted bladder cancer cell 

growth, corticosterone exhibited only marginal effects. Thus it is perhaps unsurprising 

that corticosterone was not seen to drastically affect tumour cell proliferation in the 

present study. 

Panc043 cells again appeared to be slightly sensitive to corticosterone exposure, 

although this was not concentration-dependent and the effect was absent from 

alamarBlue analysis. Zhang et al. (2006a; 2007) report resistance to the cytotoxic 

effects of chemotherapeutics after exposing numerous pancreatic ductal 

adenocarcinoma cells to dexamethasone, but inhibition of proliferation has also been 

reported in pancreatic ductal adenocarcinoma cells (Gower et al., 1994).  Evidence 

from Panc043 tumour growth in vivo (Section 3.2.6.2) did suggest that tumours were 

affected by 11β-HSD1 inhibition (altered GR and HIF-1α signalling); however, this 

did not alter tumour growth. It is likely, therefore, that the observed mild in vitro 

effects of glucocorticoids are negligible in the in vivo situation in which the tumour 

microenvironment and systemic factors are at play. Similar effects have previously 

been reported; Shpilberg et al. (2015) found that although corticosterone inhibited cell 

cycle progression in breast cancer cells in vitro, co-incubation with conditioned media 

from adipose tissue overrode this effect. Alternatively, and in light of the effects of 

UE2316 on Panc043 confluence, it may be that these cells undergo slight 

morphological changes when stressed by the addition of a treatment in vitro (which 

could affect confluence data). 
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The absence of a glucocorticoid-mediated effect in either SCC cell line strongly 

suggests that direct proliferative effects on tumour cells are not the mechanism by 

which 11β-HSD1 inhibition promotes tumour growth. This finding is not necessarily 

surprising. A previous study exposing SCC cell lines to glucocorticoids was 

inconclusive; while exposure to cortisol did promote proliferation in two separate SCC 

lines, in one line only pharmacological concentrations (1µM) induced this affect, but 

in the other growth was only enhanced by low physiological concentrations (10nM) 

(Bernabé et al., 2011). Furthermore, a recent study exposing SCC cell lines to 

glucocorticoids only found increased invasiveness in one of three cell lines (Cirillo et 

al., 2017) and of particular note, the more aggressive cell line was non-responsive. The 

absence of an in vitro tumour cell effect implicates other aspects of the tumour 

microenvironment in the enhanced growth of WT-SCC tumours. Previous studies have 

also found that although dexamethasone decreased the growth of tumour xenografts in 

vivo, exposing the cancerous cells to dexamethasone in vitro had no effect (Crowley 

et al., 1988; Yano et al., 2006). Determining which component of the WT-SCC tumour 

microenvironment is sensitive to local glucocorticoid manipulation will be key in 

determining the risk posed by 11β-HSD1 inhibitors.  

In conclusion, closer examination of angiogenesis and tumour cell proliferation has 

not revealed a clear mechanism of action for UE2316 in promoting WT-SCC tumour 

growth. As predicted, active glucocorticoids proved angiostatic ex vivo and aortae 

from mice lacking the 11β-HSD1 enzyme were protected from angiostasis after 

exposure to exogenous 11-DHC. UE2316, however, did not have the expected effect; 

despite preventing conversion of 11-DHC to corticosterone in liver ex vivo, the 

inhibitor failed to prevent 11-DHC-mediated angiostasis and instead caused moderate 

angiostasis in the aortic ring assay. Neither UE2316 nor glucocorticoids had drastic 

effects on tumour cell proliferation, suggesting that direct effects on cell proliferation 

are unlikely to be responsible for the increased growth seen in UE2316-treated WT-

SCC tumours in vivo. These findings suggest that UE2316 may be interacting with an 

alternative component of the tumour microenvironment to influence tumour growth. 

The recent literature points towards immune and inflammatory cells, as well as 

fibroblasts. The priority now will be to investigate the wider influence of UE2316 on 

the tumour microenvironment in vivo. 
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5 Mechanism of enhanced WT-SCC tumour 

growth after 11β-HSD1 inhibition 

5.1 Introduction 

In chapter 3, inhibition of 11β-HSD1 with UE2316 was shown to promote the growth 

of WT-SCC tumours. In the previous chapter, it was demonstrated that UE2316 did 

not mimic the effect of 11β-HSD1 deletion on angiogenesis ex vivo, despite its ability 

to inhibit 11β-HSD1 activity in intact tissue. Similarly, neither UE2316 nor 

physiologically-relevant concentrations of corticosterone directly influenced the 

proliferative capacity of tumour cells. Key questions remains unanswered – by what 

mechanism does UE2316 promote WT-SCC tumour growth and why is a response 

apparent in only one of the three tumour types examined?  

Strain-specific differences in the response to UE2316 may influence tumour sensitivity 

to 11β-HSD1 inhibition. 11β-HSD1 inhibition/deletion decreases tissue-specific 

glucocorticoid concentrations but the available evidence suggests that 11β-HSD1 

inhibitors, including UE2316, do not affect plasma glucocorticoid levels in pre-clinical 

models or clinical trials (Hermanowski-Vosatka et al., 2005; Harno and White, 2010; 

Sooy et al., 2010; Coutinho et al., 2016). Furthermore, while conflicting evidence 

exists surrounding plasma glucocorticoid levels in 11β-HSD1 knockout (KO) animals 

(Kotelevtsev et al., 1997; Harris et al., 2001), C57BL6/J mice appear to be largely 

resistant to alterations in HPA axis function (Carter et al., 2009; Harno and White, 

2010). This is of great clinical advantage as systemic manipulation of glucocorticoids 

in humans risks Addisonian crisis or Cushing’s syndrome. To the author’s knowledge, 

no studies have previously used 11β-HSD1 inhibitors in FVB/N mice, thus it remains 

possible that circulating glucocorticoids in this strain may be affected by UE2316. 

Tumour type itself is also likely to affect the response to UE2316. The sensitivity and 

response of tumours to glucocorticoids is highly variable between cancer types, with 

higher glucocorticoid receptor (GR) expression predictive of greater sensitivity to 

changing glucocorticoid concentrations (Lin & Wang, 2016). Expression of 11β-

HSD1 is often reduced in cancerous tissues compared to their healthy equivalents, and 
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this can enhance tumour growth (Azher et al., 2016; Liu et al., 2016). Of particular 

note are studies indicating a role for 11β-HSD1 in constraining the progression of 

squamous cell carcinoma (SCC) (Terao et al., 2011; 2013; 2014) and increased GR 

expression in SCC compared to normal skin (Budunova et al., 1997). These reports 

suggest that SCC are a candidate tumour type for glucocorticoid sensitivity and thus 

may be at particular risk from 11β-HSD1 inhibitors.  

As well as tumour cells and vascular cell types, a variety of immune and inflammatory 

cells and extracellular matrix producing fibroblasts form the tumour 

microenvironment (Hanahan and Weinberg, 2011). Over the past 15 years, mounting 

evidence has highlighted the importance of considering the microenvironment when 

assessing how best to effectively target cancers. Collagen deposition, for example, may 

be of relevance in skin cancer (Azher et al., 2016), with remodelling of the 

extracellular matrix a common component of malignancy (Hompland et al., 2008). 

11β-HSD1 amplifies local glucocorticoid concentrations which consequently 

influences collagen fibril organisation. In aging skin, inhibition of 11β-HSD1 

increases collagen density and improves dermal integrity and wound healing 

(Tiganescu et al., 2013). In adipose tissue, the opposite is true; 11β-HSD1 KO mice 

show reduced fibrosis (Michailidou et al., 2012). Several methodologies now exist for 

quantifying collagen in histological sections; as well as conventional picrosirius red 

staining, techniques like second-harmonic generation imaging allow for label-free 

high resolution imaging of the fibrillar network in tumours (Hompland et al., 2008). 

Inflammatory and immune cell types can have powerful effects on tumour progression. 

The anti-inflammatory and immunosuppressive effects of glucocorticoids are 

therefore likely to be very relevant when targeting tumour 11β-HSD1. Reducing the 

regeneration of local glucocorticoids may predict a less constrained inflammatory 

response and has been suggested as a mechanism in myocardial infarction 

(McSweeney et al., 2010). Yet the opposite effect has been reported in other 

inflammatory contexts such as the vasculature (Luo et al., 2012) and adipose tissue 

(Peng et al., 2016), thus a pro-inflammatory effect of 11β-HSD1 inhibition cannot be 

assumed. Locally regenerated glucocorticoids produced by SCC cells are able to 
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inhibit the proliferation of anti-tumour CD8+ T-cells (Cirillo et al., 2017), thus anti-

tumour immunity may also be affected by 11β-HSD1 inhibitors.   

Hypotheses 

The work described in this chapter is intended to address the hypotheses that: 

- 11β-HSD1 inhibition/deletion does not affect systemic glucocorticoid levels 

- UE2316-responsive WT-SCC tumour growth will increase in response to reduced 

circulating glucocorticoids 

- 11β-HSD1 inhibition alters the tumour microenvironment in a manner that promotes 

tumour growth 

Objectives 

The specific aims of this work were: 

(1) To confirm the effects of 11βHSD1 inhibition/deletion on circulating 

glucocorticoids in FVB/N and C57BL6/J mice  

(2) To investigate whether reduced glucocorticoid exposure increases WT-SCC 

tumour growth in vivo, and whether glucocorticoid replacement reverses this effect 

(3) To use RNA-sequencing to examine the impact of UE2316 on the WT-SCC 

transcriptome 

(4) To determine the impact of 11β-HSD1 inhibition on aspects of the 

immune/inflammatory cell population and non-cellular fibrillar network of the tumour 

microenvironment 



Chapter 5 – Mechanism of enhanced tumour growth 

201 

 

5.2 Results 

5.2.1 Plasma corticosterone was decreased in UE2316-treated 

FVB/N mice 

 ELISA 

To compare plasma corticosterone concentrations between UE2316-diet fed FVB/N 

mice and control diet-fed FVB/N mice, blood was sampled from female FVB/N mice 

fed UE2316 or RM-1 diet for 14 days and plasma for analysis by ELISA. FVB/N mice 

fed UE2316 diet had lower levels of corticosterone than mice fed RM-1 control diet 

(0.194 ± 0.032 ng/mL vs. 0.715 ± 0.162 ng/mL, P<0.05, Figure 5.1).  

 

 

 

 

 

 

 

Figure 5.1 - Plasma corticosterone was decreased in UE2316 treated FVB/N mice bearing 

WT-SCC tumours. Mice fed UE2316-diet showed significantly reduced plasma 

corticosterone levels compared to mice fed control diet. Symbols represent individual animals. 

* P<0.05. Data are mean ± standard error and were compared by independent samples t-test. 
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 LC-MS/MS 

To confirm the findings of the ELISA, 11-dehydrocorticosterone (11-DHC) and 

corticosterone were measured in the plasma of FVB/N mice (WT-SCC tumours) and 

C57Bl6/J mice (Panc043 tumours) by LC-MS/MS. A combination of low plasma yield 

and technical issues leading to loss of samples necessitated the pooling of FVB/N 

plasma samples from two experiments in order to achieve sufficient sample volume. 

FVB/N mice fed UE2316- (n=4) or control diet (n=3) for 9 days were pooled with 

FVB/N mice fed UE2316 (n=4) or control diet (n=6) for 16 days to give a total sample 

size of N=7-10/group. All mice underwent identical treatment (implantation of 

subcutaneous WT-SCC tumours after 5 days on diet), with the only difference being 

the length of time tumours were left to develop (4 vs 11 days). C57BL6/J plasma was 

from the second study described in Section 3.2.3.1 (Panc043 tumours grown for 16 

days) and from the 41 day SCC-B6-1 study described in Section 3.2.4.1.   

11-DHC levels did not differ between RM-1 and UE2316 diet-fed FVB/N or 

C57BL6/J mice, but were significantly elevated in Del1 mice compared to RM-1 diet 

fed wild-type (WT) C57BL6/J controls (49.73 ± 20.95 nmol/L vs. 5.83 ± 1.63 nmol/L, 

P<0.05, Figure 5.2A). 

Corticosterone levels were reduced in UE2316 diet-fed FVB/N mice compared to RM-

1 diet-fed FVB/N mice (56.4 ± 14.8 nmol/L vs. 328.9 ± 84.4 nmol/L, P<0.01, Figure 

5.2B). Corticosterone levels in C57BL6/J mice were unaffected by both UE2316 and 

Del1 phenotype. 

Glucocorticoids were also measured in the plasma of C57Bl6/J mice implanted with 

SCC-B6-1 tumours; no differences were seen between treatment groups (Figure 5.3).  
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Figure 5.2 – Effects of 11β-HSD1 inhibition or deletion on systemic glucocorticoid levels. 

A) The 11β-HSD1 inhibitor UE2316 did not significantly alter plasma 11-

dehydrocorticosterone (11-DHC) concentrations in either C57BL6/J or FVB/N mice, whereas 

genetic ablation of 11β-HSD1 (Del1) increased 11-DHC concentrations. * P<0.05. Data 

represent mean ± standard error and were compared by one-way ANOVA with Dunnett’s post-

hoc test. B) UE2316 treatment reduced circulating corticosterone in FVB/N animals only, 

whereas corticosterone concentrations in C57Bl6/J animals were unaffected by inhibitor or 

Del1 genotype. **=P<0.01. Data represent mean ± standard error and were compared by 

independent sample t-test. 
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Figure 5.3 – Corticosteroid concentrations in the plasma of C57Bl6/J animals implanted 

with SCC-B6-1 tumours are not consistently affected by 11β-HSD1 deletion or inhibition. 

Neither the Del1 genotype nor the 11β-HSD1 inhibitor UE2316 altered plasma corticosterone 

levels in C57BL6/J animals implanted with the squamous cell carcinoma cell line SCC-B6-1. 

N=3/group. Data represent mean ± standard error and were compared by one-way ANOVA.  
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5.2.2 Tumour-bearing does not affect circulating 

glucocorticoids 

Plasma glucocorticoids were compared between tumour and non-tumour bearing 

animals to assess whether the presence of a subcutaneous tumour affected circulating 

glucocorticoids in mice. While 11-DHC was below the limit of detection in FVB/N 

plasma in this experiment, no differences in 11-DHC were found between tumour-

bearing and control C57BL6/J mice (Figure 5.4A), and no differences in corticosterone 

were seen in either strain (Figure 5.4B). 
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Figure 5.4 - Tumour bearing did not consistently affect circulating glucocorticoids. A) 

Plasma 11-dehydrocorticosterone (11-DHC) concentrations in C57Bl6/J mice were not 

significantly altered by pancreatic ductal adenocarcinoma (Panc043) tumour bearing. B) 

Plasma corticosterone concentrations were not significantly affected by tumour bearing in both 

FVB/N mice with WT-SCC tumours and C57Bl6/J mice with Panc043 tumours. N=3-8. Data 

represent mean ± standard error and were compared by independent samples t-test.  
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5.2.3 UE2316 treatment increases the 11-DHC to 

corticosterone ratio in liver tissue in FVB/N mice 

To investigate whether UE2316 could alter tissue-specific glucocorticoid 

concentrations, 11-DHC and corticosterone were both measured by LCMS-MS in liver 

and tumour tissue from FVB/N mice (Section 3.2.1) and C57BL6/J mice (Section 

3.2.3.1). Although trends for increased levels of 11-DHC (Figure 5.5A) and decreased 

levels of corticosterone (Figure 5.5B) after UE2316 treatment were apparent in FVB/N 

liver, neither reached significance. Differences in C57BL6/J after UE2316 treatment 

were less pronounced. When levels were expressed as the ratio of 11-DHC to 

corticosterone (A:B ratio), FVB/N liver had a significantly (P<0.0001) higher 

proportion of 11-DHC to corticosterone in UE2316 treated mice (0.31 ± 0.03) 

compared to control mice (0.06 ± 0.01). In C57BL6/J mice, a strong trend towards an 

increased A:B ratio was apparent (P = 0.053) but this did not reach significance (Figure 

5.5C). Tumour tissue quantities were too small to accurately detect glucocorticoids. 
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Figure 5.5 – UE2316 increases ratio of 11-DHC to corticosterone in FVB/N liver. A) 11-

dehydrocorticosterone (11=-DHC; Kendall’s compound ‘A’) levels did not differ between 

livers from control and UE2316-treated C57BL6/J mice, but there was a trend towards 

increased 11-DHC in the livers from UE2316-treated FVB/N mice compared to controls. B) 

Corticosterone (Kendall’s compound ‘B’) levels did not differ in livers from control and 

UE2316-treated C57BL6/J mice, but there was a trend towards decreased corticosterone in the 

livers from UE2316-treated FVB/N mice compared to controls. C) The A:B ratio in livers from 

UE2316-treated C57BL6/J mice showed a strong trend towards being increased compared to 

controls. In FVB/N mice, this increase achieved significance. N=6/group. Data are mean ± 

standard error and were compared by independent samples t-test. 
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5.2.4 Systemic manipulation of glucocorticoids in vivo 

 Systemic manipulation of glucocorticoids did not affect WT-SCC 

tumour growth 

This study was performed on FVB/N mice (N=6/group) to determine whether altered 

circulating glucocorticoid levels influenced WT-SCC tumour growth. One group 

received daily intraperitoneal (i.p.) injections of saline (0.1mL/10g body weight), one 

group received daily i.p. injections of metyrapone (100mg/kg, prepared as described 

in Section 2.1.3.3) to inhibit adrenal 11-hydroxylase and hence glucocorticoid 

synthesis and a third group received daily i.p. metyrapone injections (100 mg/kg) and 

corticosterone in drinking water (25 µg/mL) to replace endogenous glucocorticoids. 

Neither metyrapone nor metyrapone with corticosterone replacement altered WT-SCC 

tumour growth (Figure 5.6A), final tumour weight (Figure 5.6B), or mouse weight 

(Figure 5.6C) when compared to tumours from control mice. Small but significant 

changes in some organ weights were observed between groups; heart weights were 

higher (117.4 ± 6.7 mg vs 96.7 ± 1.8 mg, P<0.05) and spleen weights decreased (111.3 

± 9.0 mg vs. 145.2 mg, P<0.05) in mice receiving glucocorticoid compared with 

vehicle-treated controls (Figure 5.7A and E). Kidney weights were slightly higher in 

metyrapone-treated mice compared with vehicle-treated controls (142.7 ± 3.4 mg vs. 

133.6 ± 0.97mg, P<0.05, Figure 5.7B). Adrenal and thymus weights were similar 

between groups (Figure 5.7C/D).  
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Figure 5.6 – WT-SCC tumour growth was unaffected by metyrapone or metyrapone with 

corticosterone replacement.  A) 100mg/kg metyrapone (i.p.) daily did not affect squamous 

cell carcinoma (WT-SCC) tumour growth compared to vehicle (saline). Addition of 

corticosterone to drinking water (25µg/mL) alongside metyrapone treatment (100mg/kg, i.p.) 

to replace systemic glucocorticoids also had no effect on tumour growth. Data compared by 

repeated measures two-way ANOVA. B) Final (day 15) tumour weight was unaffected by 

either metyrapone or metyrapone with corticosterone. Data compared by one-way ANOVA. 

C) Mouse weight was unaffected by either metyrapone or metyrapone with corticosterone. 

Data compared by repeated measures two-way ANOVA. N=6/group. All data are mean ± 

standard error. 
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Figure 5.7 – Effects of metyrapone with/without corticosterone on glucocorticoid 

sensitive organ weights.  A) Heart weight was increased in the mice treated with metyrapone 

daily (100mg/kg, i.p.) and corticosterone (25µg/mL in drinking water). B) Kidney weight was 

increased in the mice treated with metyrapone daily. C) Adrenal and D) Thymus weights were 

unaffected by either treatment. E) Spleen weight was decreased in the mice treated with 

metyrapone and corticosterone. N=6/group. * P<0.05. Data are mean ± standard error and 

were compared by one-way ANOVA with Dunnett’s post-hoc test. 

N=6/group 
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 Effect of metyrapone and corticosterone replacement on plasma 

glucocorticoids  

The corticosterone synthesis inhibitor metyrapone did not significantly alter 

circulating 11-DHC levels in mice injected daily (100mg/kg). Mice injected with the 

same dose of metyrapone and given access to corticosterone in drinking water 

(25µg/mL) had elevated levels of circulating 11-DHC compared to metyrapone-

treated mice (10.95 ± 1.76 nmol/L vs. 3.40 ± 1.03 nmol/L, P<0.05, Figure 5.8A). 

Circulating corticosterone levels were not significantly affected by either metyrapone 

or metyrapone with corticosterone in drinking water (Figure 5.8B).  

 

 

 

 

 

 

 

Figure 5.8 – Metyrapone was ineffective in inhibiting adrenal glucocorticoid synthesis.  

A) 11-dehydrocorticosterone (11-DHC) levels were increased in the metyrapone 

(100mg/kg/day) + corticosterone (25µg/mL in drinking water) group compared to the 

metyrapone (100mg/kg) group. *P<0.05. B) Corticosterone levels were not significantly 

altered by metyrapone or metyrapone + corticosterone. Glucocorticoid levels measured by 

liquid chromatography tandem-mass spectrometry. N=5-6/group. Data are mean ± standard 

error and were compared by one-way ANOVA with Tukey’s post-hoc test.  
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5.2.5 Cell proliferation in tumours 

 Slide scanner analysis  

To determine whether inhibition of 11β-HSD1 with UE2316 affected cell proliferation 

in vivo in tumours, proliferation marker Ki67 was quantified in WT-SCC tumours from 

control or UE2316 diet-fed wildtype mice and Panc043 and SCC-B6-1 tumours from 

control or UE2316 diet-fed wildtype mice or control diet-fed Del1 mice (N=6/group). 

ImageJ thresholding and quantification of whole tissue images from the slide scanner 

revealed no significant differences in Ki67 % area between tumours from control, 

UE2316-treated or Del1 mice, across all three tumour types (Figure 5.9). 

 

 

 

 

 

 

 

Figure 5.9 – UE2316 and 11β-HSD1 deletion do not affect Ki67 % area in any of the three 

tumour types. ImageJ was used to threshold and quantify whole sections from each tumour 

type stained with the cell proliferation marker Ki67 and imaged on the slide scanner. Data are 

expressed as % stain area. Squamous cell carcinoma tumour (WT-SCC) data were compared 

by independent samples t-test, Panc043 and SCC-B6-1 tumour data were compared by one-

way ANOVA. N=6/group. Data are mean ± standard error. 
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 Hotspot quantification 

 WT-SCC 

As a secondary method of quantification, hotspots from Ki67-stained tumours were 

identified and quantified. Representative images from control (Figure 5.10A) and 

UE2316-treated tumours (Figure 5.10B) demonstrate the strong nuclear signal 

produced. Immunoreactivity was apparent across the tumour but concentrated in 

distinct proliferative hotspots. No difference in DAPI-positive nuclei per mm2 was 

seen between control and UE2316 WT-SCC tumours (Figure 5.10C), demonstrating 

an equal cell density between treatment groups. Quantification of Ki67-positive cell 

nuclei staining revealed a trend towards reduced proliferation in UE2316-treated 

tumours as compared to control tumours (16.64 ± 0.97 % vs 22.16 ± 2.64 %, P=0.077), 

though this did not reach significance (Figure 5.10D).   A power calculation suggests 

a sample size of 11/group would detect a difference of this magnitude with the given 

variance (80% power). 
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Figure 5.10 - End-stage UE2316-treated WT-SCC tumours showed a trend towards 

reduced proliferation. Representative images of hotspots from Ki67-stained squamous cell 

carcinoma (WT-SCC) tumours from control (A) and UE2316 treated (B) mice are shown. 

Hotspots were typically near the periphery of the tumour. Scale bar = 50µm. C) Nuclear 

density between control and UE2316-treated tumours was unaltered. D) The proportion of 

cells staining positive for proliferation marker Ki67 showed a trend towards being reduced in 

tumours from UE2316-treated mice but this did not reach significance. N=6/group. Data 

represent mean ± standard error are were compared by independent samples t-test. 
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 Panc043 and SCC-B6-01 

Ki67 staining of Panc043 and SCC-B6-1 tumours showed no differences or trends 

between control tumours, UE2316-treated tumours and tumours from Del1 mice in 

terms of end-stage cell proliferation (Figure 5.11). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 – UE2316 and 11β-HSD1 deletion do not affect cell proliferation in end-stage 

Panc043 and SCC B6-1 tumours. Panc043 (A) and SCC-B6-1 (C) tumour nuclear density is 

unaffected by UE2316 treatment and 11β-HSD1 deletion (Del1 mice). The percentage of cells 

staining positive for Ki67 was also unaffected by either condition in both Panc043 (B) and 

SCC-B6-1 (D) tumours. N=6/group, data represent mean ± standard error and were compared 

by one-way ANOVA. 
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5.2.6 RNA-sequencing in WT-SCC tumours 

 Principal component analysis (PCA) 

To gain further insight into the mechanism behind the enhanced growth seen in WT-

SCC tumours after UE2316 treatment, RNA-sequencing was performed on WT-SCC 

samples (day 11 timepoint, Section 3.2.1). The average number of reads obtained from 

control samples was 45 million and from UE2316 samples was 42 million. Tophat2 

was used to map an average of 43 million control reads and 41 million UE2316 reads 

to the mouse mm10 reference genome. The average concordant pair alignment rate 

was 86% across the entire sample. 

Control samples are coded as CON1-6 and UE2316-treated tumours as T1-6. PCA 

showed that samples subjected to single-end sequencing rather than paired-end 

sequencing (CON4 and T5) were separated along the first principle component, likely 

a processing effect. PCA also showed a further UE2316-treated tumour (T4) to be an 

outlier (Figure 5.12A). Samples CON4/T4/T5 were therefore excluded from further 

analysis. Repeat PCA showed a split in the control samples along the first principle 

component CON1/2/3 vs CON5/6 (Figure 5.12B). Consequently, differential gene 

expression was assessed between samples CON1/2/3/5/6 vs. T1/2/3/6 but genes also 

found to be significantly different within the control group were excluded from Gene 

Ontology (GO) analysis. 
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Figure 5.12 - Principal component analysis of RNA-sequencing data. A) Principal 

Component Analysis (PCA) showed that samples sequenced using a single-end protocol 

(CON4/T5) were outliers, as was T4, necessitating their exclusion.  B)  Repeat PCA of the 

samples revealed a split within the control group. To maintain sample size rather than 

excluding further data, only genes shown to differ significantly between T1/2/3/6 and 

C1/2/3/5/6, but not between C1/2/3 and C5/6, were included in subsequent gene ontology 

analysis. 
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 Gene Ontology Enrichment analysis 

Genes found to be differentially expressed between groups were fed into the Database 

for Annotation, Visualization and Integrated Discovery (DAVID) v6.8 (Huang et al., 

2008). Whilst data presented here are derived using this tool, it is important to note 

that near identical results were achieved using similar GO databases, for example 

AmiGO (Carbon et al., 2009) accessed via the GO website using data from the GO 

consortium (Ashburner et al., 2000). Significantly relevant (P<0.05) biological 

processes are listed in Table 5.1. 

Genes associated with the inflammatory response, immune response and collagen 

fibril organisation (as identified by DAVID) and their relative expression in UE2316-

treated tumours (as identified by RNA-seq) are shown in Figures 5.13-5.15 

respectively. These particular processes were selected based on their q-values from 

GO analysis, and also their mechanistic relevance to the 11β-HSD1 inhibition 

literature – further investigations pertaining to these processes are described below. 

Process q-value 

Inflammatory response 2.76E-08 

Cellular response to interferon-beta 4.08E-07 

Positive regulation of gene expression 2.73E-04 

Immune response 6.21E-04 

Response to lipopolysaccharide 9.91E-04 

Positive regulation of cell migration 0.00134 

Chemokine-mediated signalling pathway 0.00375 

Cellular response to interferon-γ 0.003808 

Negative regulation of osteoblast differentiation 0.00345 
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Chemotaxis 0.007944 

Collagen fibril organization 0.007565 

Defence response to virus 0.007221 

Positive regulation of apoptotic process 0.008123 

Circadian rhythm 0.00936 

Osteoblast differentiation 0.014029 

Negative regulation of cell migration 0.028646 

Cell adhesion 0.042488 

Ossification 0.042287 

Immune system process 0.047532 

Positive regulation of osteoblast differentiation 0.046155 

Defence response to protozoan 0.045956 

Table 5.1 - Gene ontology analysis of RNA-seq data demonstrates importance of immune 

response. Gene Ontology (GO) analysis was performed using the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) v6.8. Significance is expressed using the p-

value corrected for multiple hypothesis testing using the Benjamini-Hochberg method (q-

value). The listed biological processes were found to be significant (q<0.05). 
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Figure 5.13 – ‘Inflammatory response’ genes identified by Gene Ontology analysis. These 

differentially expressed genes were identified as being related to the inflammatory response 

by Gene Ontology analysis. Note that mRNA coding for a large number of pro-inflammatory 

cytokines are reduced after UE2316 treatment, while cytokine receptors and toll-like receptor 

transcript is increased. N=4-5/group. A modified Fisher Exact test was used to determine 

whether the proportion of genes in a given list was significantly associated with a biological 

process compared to the murine genome: P<0.05 for all the above. Data represent mean values. 
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Figure 5.14 – ‘Immune response’ genes identified by Gene Ontology analysis. These 

differentially expressed genes were identified as being related to the immune response by Gene 

Ontology analysis. Note that mRNA coding for a large number of pro-inflammatory cytokines 

are reduced after UE2316 treatment, while toll-like receptor and mast cell protease transcript 

is increased. N=4-5/group. A modified Fisher Exact test was used to determine whether the 

proportion of genes in a given list was significantly associated with a biological process 

compared to the murine genome: P<0.05 for all the above. Data represent mean values. 
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Figure 5.15 – ‘Collagen fibril organisation’ genes identified by Gene Ontology analysis. 

These differentially expressed genes were identified as being related to the inflammatory 

process by Gene Ontology analysis. N=4-5/group. A modified Fisher Exact test was used to 

determine whether the proportion of genes in a given list was significantly associated with a 

biological process compared to the murine genome: P<0.05 for all the above. Data represent 

mean values 
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5.2.7 Validation of RNA-sequencing by RT-qPCR 

A selection of key differentially expressed genes were assessed by RT-qPCR to 

determine the validity of the RNA-sequencing data. The genes of interest and their 

associated RNA-sequencing data are listed in Table 5.2. Validated genes with their 

expression reduced by UE2316 treatment were: Type 1 collagen (COL1A1); 

chemokine (C-X-C motif) ligand 9 (CXCL9); colony stimulating factor 1 (CSF1); 

platelet factor 4 (PF4); fas cell surface death receptor (FAS); signal transducer and 

activator of transcription 2 (STAT2); C-C motif chemokine ligand 11 (CCL11 );  nitric 

oxide synthase (inducible) (NOS2); arginase 1 (ARG1); and 11β-HSD1 (HSD11B1). 

Validated genes with their expression increased by UE2316 treatment were: tumour 

necrosis factor receptor superfamily, member 23 (TNFRSF23); integrin alpha-10 

(ITGA10) (P<0.05 control vs. UE2316; Figure 5.16A). To confirm the specificity of 

the RNA sequencing, genes from similar pathways not found to be significant by RNA 

sequencing were also compared between groups using RT-qPCR. Chemokine (C-X-C 

motif) ligand 2 (CXCL2) and interleukin-6 (IL6), both pro-inflammatory cytokines, 

were selected and found not to differ between control and UE2316-treated WT-SCC 

tumours (Figure 5.16A). 

Genes that could not be validated (non-significant) were: decorin (DCN); tumour 

necrosis factor receptor superfamily, member 9 (TNFRSF9, P=0.12); tumour necrosis 

factor receptor superfamily, member 21 (TNFRSF21); tumour necrosis factor (TNF, 

P=0.10); alpha smooth muscle actin (ACTA2); toll-like receptor 9 (TLR9, P=0.14); 

angiopoietin-like protein 2 (ANGPTL2); chondroitin sulfate proteoglycan 4 precursor 

(CSPG4) (Figure 5.16B).  
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Gene 
Control 

(FPKM) 

UE2316 

(FPKM) 

Log2 Fold-

change 
q-value 

Enriched in UE2316 tumours 

Tlr9 5.92963 8.6073 0.537619 0.0112153 

Itga10 26.2958   51.8496 0.979502 0.00211442 

Dcn 538.249   722.191 0.424106 0.024116 

Angptl2 145.96   218.175 0.579917 0.00211442 

Cspg4 34.3593   53.7223 0.64482 0.00211442 

Reduced in UE2316 tumours 

Ccl24 3.08241 0.533999 -2.52915 0.00712227 

Wnt11 0.813976 0.286914 -1.50437 0.0399818 

Ccl17 6.82636 2.56146 -1.41415 0.0112153 

Ccl11 26.0511 9.93497 -1.39076 0.00211442 

Cxcl11 41.6018 20.7693 -1.0022 0.0230463 

Cxcl5 44.3702 22.6915 -0.967439 0.00211442 

Tnf 8.77976 4.80803 -0.868736 0.00211442 

Acod1 19.6915 11.3465 -0.795329 0.00211442 

Fas 12.934 7.59826 -0.767429 0.00211442 

Csf1 67.5942 41.5673 -0.701449 0.00211442 

Pf4 34.6935 23.2396 -0.578079 0.0356906 

Cxcl9 211.537 144.709 -0.547754 0.00211442 
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Cxcl12 47.8659 33.7732 -0.503119 0.00211442 

Cx3cl1 66.6268 48.2425 -0.465796 0.0124766 

Arg1 128.306 92.6027 -0.470468 0.00211442 

Stat2 46.327 34.9967 -0.404637 0.0112153 

Acta2 30.5468   9.32152 -1.71238 0.00211442 

Table 5.2 – Selected differentially expressed genes of interest. The listed differentially 

expressed genes play key roles in a range of the biological processes identified by Gene 

Ontology analysis and thus are likely to be important mediators of the effects of UE2316 in 

squamous cell carcinoma (WT-SCC) tumours. 
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Figure 5.16 – Validation of RNA-sequencing genes by RT-PCR. cDNA generated from 

WT-SCC tumours grow in control and UE2316-diet-fed mice was subjected to RT-qPCR to 

confirm the RNA-sequencing data. An array of key genes was examined. A) Genes confirmed 

to significantly differ (P<0.05) between groups include type I collagen, 11β-HSD1 and several 

cytokines related to immune and inflammatory processes. The box on the right highlights 

genes that did not differ between groups in either the RNA sequencing or RT-qPCR analysis. 

B) Some genes failed to match the RNA-sequencing data, though several still showed a trend 

towards the expected change. N=5-6/group. Data are mean ± standard error and were 

compared by independent samples t-test.  
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5.2.8 CD3 immunoreactivity in WT-SCC tumour was not 

affected by UE2316 treatment 

To quantify infiltrating T-cells, WT-SCC tumours from control vs UE2316-diet-fed 

mice (N=5/group) were stained for CD3-positive cells. The antibody produced a stain 

which was concentrated at the periphery of the tumour, usually very pronounced at 

one border (Figure 5.17A/B). A higher magnification image is shown in Figure 5.17C. 

There was no significant difference in CD3-positive area in tumours from RM-1 and 

UE2316 diet-fed mice, assessed either across whole tissue sections (Figure 5.17E) or 

using hotspot quantification (Figure 5.17F). 
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Figure 5.17 – CD3-positive cell number in WT-SCC tumours was unaffected by 11β-

HSD1 inhibitor (UE2316) administration. Representative images of CD3-stained control 

(A) and UE2316-treated (B) squamous cell carcinoma (WT-SCC). DAB immunoreactivity 

shown in brown and haematoxylin-counterstained nuclei in blue. CD3 signal was usually 

strongest along one border of the tumour. C) 200x magnification image showing perinuclear 

cytoplasmic localisation of CD3 (red arrows). Scale bar = 50µm. Immunostaining found no 

difference in CD3-positive stain area between WT-SCC tumours from control and UE2316-

treated mice, assessed by either whole section analysis (D) or hotspot analysis (E). Data 

represent mean ± standard error and were compared by independent samples t-test, N=5/group.  
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5.2.9 F4/80 immunoreactivity in WT-SCC tumours was not 

affected by UE2316 treatment 

To quantify inflammatory cell content, WT-SCC tumours from control vs UE2316-

diet-fed mice (N=6/group) were stained for F4/80-positive cells. The antibody 

produced a cytoplasmic stain, present across the tumour but concentrated at the tumour 

periphery and in regions near the centre of the tumour. There was no significant 

difference in F4/80-positive area in tumours from RM-1 and UE2316 diet-fed mouse, 

despite an apparent slight decrease in UE2316-treated tumours (Figure 5.18).  
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Figure 5.18 - F4/80 positive cell number in WT-SCC tumours was unaffected by 11β-

HSD1 inhibitor (UE2316) administration. Representative images of squamous cell 

carcinoma (WT-SCC) tumours from control (A) and UE2316-treated (B) mice are shown, with 

DAB immunoreactivity shown in brown and haematoxylin-counterstained nuclei in blue. C) 

Immunostaining did not reveal a difference in F4/80-positive stain area between tumour from 

control and UE2316-treated mice. N=6/group. Data are mean ± standard error and were 

compared by independent samples t-test. Scale bar = 50µm. 
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5.2.10 Effects of UE2316 on fibrosis in tumours 

 UE2316 decreased type I collagen mRNA in WT-SCC 

tumours 

After the observation that Type I collagen mRNA was decreased in WT-SCC tumours 

from UE2316-diet fed mice compared to control-diet fed mice (RNA-sequencing), 

expression was also examined in Panc043 tumours, where it did not differ between 

groups (1.54 ± 0.23 AU vs. 0.65 ± 0.12 AU, P<0.01, Figure 5.19). 

 

 

 

 

 

 

 

Figure 5.19 - Col1a1 mRNA was decreased in WT-SCC tumours, but not Panc043 

tumour, by 11β-HSD1 inhibitor (UE2316) administration. A) Col1a1 mRNA expression 

was decreased in squamous cell carcinoma (WT-SCC) tumours from UE2316-treated mice 

compared to control mice, an effect that was not seen in Pancreatic Ductal Adenocarcinoma 

(Panc043) tumours (B). * P<0.01. N=5-6/group. Data are mean ± standard error and were 

compared by independent samples t-test.   
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 Second Harmonic Generation imaging shows reduced type 

I collagen content in UE2316 WT-SCC tumours  

To determine whether tumour collagen deposition was altered at the protein level by 

11β-HSD1 inhibition, picrosirius red staining was performed to quantify collagen 

protein content in WT-SCC tumours from control and UE2316 diet-fed mice 

(N=6/group). Quantification of stain % area failed to detect a difference (Figure 5.20). 

To visualise Type-I collagen specifically, Second Harmonic Generation (SHG) 

microscopy was performed by Dr Martin Lee on WT-SCC tumours (N=6/group), 

Panc043 tumours (N=3/group) and SCC-B6-1 tumours (Day 28 N=6/group, Day 41 

N=3/group). Automatic quantification of % collagen area from SHG images revealed 

a reduced amount of type I collagen in tumours from mice fed UE2316-diet (9.78 ± 

0.84%) compared to tumours from mice fed normal diet (3.85 ± 0.56%, P<0.001, 

Figure 5.21).  

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 – Mechanism of enhanced tumour growth 

234 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20 - Total collagen content does not differ significantly between WT-SCC 

tumours from control and UE2316-treated mice. A) Picrosirius red (PSR) images showed 

total collagen content in squamous cell carcinoma (WT-SCC) tumours from control (A) and 

UE2316-treated (B) mice. Scale bar = 100µm. B) UE2316-treated tumours, showed an 

apparent trend toward decreased collagen deposition, though this did not reach significance. 

N=6/group. Data represent mean ± standard error and were compared by independent samples 

t-test.  
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Figure 5.21 – Type I collagen is reduced in WT-SCC tumours from UE2316- treated 

mice. Second Harmonic Generation imaging showed that type I collagen (white signal) is 

reduced in WT-SCC tumours from UE2316-treated mice (B) as compared to tumours from 

control mice (A). Scale bar = 100µm. B) Type I collagen was reduced in tumours from 

UE2316-treated mice. *** P<0.001. N=5/group. Data represent mean ± standard error and 

were compared by independent samples t-test.  
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 Second Harmonic Generation imaging shows increased 

type I collagen content in SCC-B6-1 tumours from UE2316-

treated, but not del1, mice 

SCC-B6-1 tumours grown in C57BL6/J mice fed either control or UE2316-diet, and 

Del1 animals, were also examined using SHG imaging to determine whether an effect 

on collagen was likely to relate to tumour growth. SCC-B6-1 tumours grown to day 

28 (N=6/group) were sectioned and imaged using SHG – tissue from tumours grown 

to day 41 was too degraded for useful analysis. Automatic quantification revealed 

higher levels of type I collagen in SCC-B6-1 tumours from UE2316-treated mice 

compared with tumours from age-matched control mice (2.92 ± 0.72% vs. 6.38 ± 

1.82%, P<0.01, Figure 5.22). The collagen content of SCC-B6-1 tumours from Del1 

mice did not differ significantly from controls.  

 

 

 

 

 

 

 

Figure 5.22 – Levels of type I collagen in SCC-B6-1 tumours were increased by 11β-

HSD1 inhibition (UE2316) but not by 11β-HSD1 deletion (Del1). Type I collagen, 

automatically quantified from Second Harmonic Generation (SHG) images, was increased in 

SCC-B6-1 tumours from the day 28 time point from UE2316-treated mice. SCC-B6-1 tumours 

from Del1 mice did not differ from control tumours. ** = P<0.01. N=5-6/group. Data represent 

mean ± standard error and were compared by one way ANOVA with Dunnett’s post-hoc test. 
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 11β-HSD1 inhibition and deletion do not affect collagen 

content in Panc043 tumours 

Type I collagen content in Panc043 tumours did not differ between groups (Figure 

5.23). 

 

Figure 5.23 - Panc043 collagen type I is not affected by UE2316 or 11β-HSD1 deletion. 

A) Type I collagen, automatically quantified from SHG images, was not affected in either 

Pancreatic Ductal Adenocarcinoma (Panc043) tumours grown in UE2316-treated mice or 

those grown in Del1 mice compared to those grown in control mice. N=6/group. Data represent 

mean ± standard error and were compared by one-way ANOVA. 
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5.3 Discussion 

The experiments described in this chapter tested three hypotheses; that 11β-HSD1 

inhibition and deletion would not affect circulating glucocorticoid levels in mice; that 

UE2316-responsive WT-SCC tumour growth would increase in response to reduced 

circulating glucocorticoids; and that the enhanced WT-SCC growth seen after 11β-

HSD1 inhibition would be associated with altered signalling between cells of the 

tumour microenvironment, likely fibroblasts and/or immune/inflammatory cells. Data 

presented led to the rejection of the first hypothesis; while circulating glucocorticoids 

in C57BL6/J mice were unaffected by UE2316 treatment, FVB/N mice showed a 

significant decrease in circulating corticosterone, suggesting a potential systemic 

effect. Corticosterone levels did not differ between wild-type and Del1 mice, but 11-

DHC levels were increased in the transgenic animals. Attempts to determine whether 

UE2316-responsive WT-SCC tumour growth would increase in response to reduced 

circulating glucocorticoids were unfortunately unsuccessful, as the adrenal 

glucocorticoid synthesis inhibitor metyrapone failed to reduce systemic corticosterone 

levels in FVB/N mice. The second hypothesis thus remains unaddressed. RNA-

sequencing data supports the third hypothesis; GO analysis and subsequent qPCR 

highlighted changes in immune and inflammatory signalling pathways in UE2316-

treated WT-SCC tumours, although histological analysis did not reveal differences in 

the extent of either F4/80- or CD3-positive cells in these tumours compared to controls. 

Collagen fibril organisation was also identified by GO analysis as an altered process 

in UE2316-treated tumours, a finding that was validated by SHG imaging which 

detected a decrease in type I collagen in UE2316-treated WT-SCC tumours.  

In vivo glucocorticoids 

It was originally predicted that neither UE2316 treatment nor 11β-HSD1 deletion 

would affect circulating glucocorticoid levels in mice. When 11β-HSD1 inhibitors 

were initially recognised as a prospective treatment for type 2 diabetes, questions arose 

surrounding their safety with regards to HPA axis function. The concern was that the 

reduction in tissue-specific cortisol regeneration after 11β-HSD1 inhibition would 

reduce negative feedback to the HPA axis and result in increased cortisol release by 

the adrenals. However, data generated using preclinical mouse models has not shown 
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a significant effect on basal circulating corticosterone levels using the selective 11β-

HSD1 inhibitors compound 544 (Hermanowski-Vosatka et al., 2005), compound L-

750 (Luo et al., 2012) or UE2316 (Sooy et al., 2010; Coutinho et al., 2016) in 

C57BL6/J mice. A number of clinical trials have also reported no alteration in 

circulating glucocorticoids after treatment with 11β-HSD1 inhibitors (reviewed by 

Harno and White, 2010; Anderson and Walker, 2013), suggesting that compensatory 

activation of the HPA axis acts only to restore normal levels of plasma glucocorticoids 

in response to increased cortisol/corticosterone clearance.  

In agreement with the literature (Sooy et al., 2010; Coutinho et al., 2016), the present 

studies did not detect a significant difference in circulating corticosterone or 11-DHC 

after UE2316 administration in C57BL6/J mice. In FVB/N mice, however, UE2316 

induced a significant decrease in circulating corticosterone, which was detected via 

two separate assays. This unexpected finding suggests reduced HPA axis activity after 

11β-HSD1 inhibition. One possible explanation for this finding is that the HPA axis 

of FVB/N mice are particularly sensitive to disruption of 11β-HSD1, potentially due 

to the importance of the enzyme at central negative feedback sites. Evidence for this 

theory is limited as FVB/N mice, whilst ideal for use in tumour studies (Huang and 

Balmain, 2014), are rarely used for studies of HPA axis activity. FVB/N mice are 

mentioned in the literature as being particularly sensitive to glucocorticoid-induced 

bone loss (Thiele et al., 2014), and in work performed as part of this chapter showed 

immediate signs of temporary mild sedation and hyperphagia after receiving 

100mg/kg metyrapone, a dose not reported to cause such effects in other strains. 

Strain-specific differences in the response of the HPA axis to 11β-HSD1 deletion have 

previously been reported; Carter et al. (2009) and Kotelevtsev et al. (1997) both report 

increased corticosterone levels in 11β-HSD1 KO mice bred on a 129/MF1 background 

compared to wild-type animals; the present evidence suggests FVB/N mice may also 

be a sensitive strain, and calls into question the role of genetic variation in determining 

patient response to 11β-HSD1 inhibitors.  

An alternative explanation for the reduced circulating corticosterone in UE2316-

treated FVB/N mice concerns animal handling and corticosterone clearance; although 

every effort was made to capture nadir corticosterone levels, it is likely that handling 
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of animals resulted in induction of the stress response. As 11β-HSD1 inhibitor-fed 

mice will have developed more rapid corticosterone clearance, it may be that the 

reported reduction in corticosterone levels reflects a more rapid return to baseline 

levels in UE2316-treated animals. Indeed, Sarabdjitsingh et al. (2014) report that 

stressed UE2316-treated C57BL6/J mice have significantly reduced plasma 

corticosterone compared to vehicle-treated controls, supporting this theory. That being 

said, the same method of plasma collection was used in UE2316-treated C57BL6/J 

animals and Del1 animals in the present studies, neither of which showed altered 

corticosterone levels. Thus even if the finding is the result of rapid corticosterone 

clearance and animal handling, FVB/N mice still show enhanced sensitivity and this 

could potentially influence tumour sensitivity to 11β-HSD1 inhibition. The same 

argument becomes relevant in relation to the data on liver-specific glucocorticoid 

levels; in FVB/N liver, changes in all three parameters after UE2316 treatment (11-

DHC levels, corticosterone levels and 11-DHC:corticosterone ratio) were more 

pronounced than in C57BL6/J mice, suggesting an enhanced sensitivity of FVB/N 

mice to glucocorticoid manipulation. Importantly, these liver data also demonstrate the 

effectiveness of UE2316 in preventing conversion of 11-DHC to corticsterone in vivo. 

It is an unfortunate limitation of the study that levels could not be shown in tumours; 

very small quantities of tissue obtained from the tumour studies meant that LC-MS/MS 

could not achieve the sensitivity required to measure corticosterone and 11-DHC 

accurately. Attempts to use state-of-the-art mass spectrometry imaging methods also 

proved unsuccessful but have previously been effective in demonstrating the 

effectiveness of UE2316 in altering brain glucocorticoid levels (Cobice et al., 2013; 

2017). Further optimisation of these mass spectrometry methods will provide greater 

insight into tumour steroid intracrinology.  

Although not statistically significant, 11-DHC levels appear to be decreased by 

UE2316 treatment in both C57BL6/J and FVB/N animals. Given the relatively small 

sample size in this study, it is important to appreciate the possibility of a type 2 error. 

If UE2316 does indeed reduce circulating 11-DHC levels, it may be indicative of an 

off-target effect on adrenal glucocorticoid synthesis, which may also explain the 

reduced corticosterone levels in FVB/N plasma. Repetition of the study with an 

increased sample size would be required to fully address this possibility.  
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In Del1 animals, corticosterone levels were not seen to differ from those in wild-type 

animals, while 11-DHC levels were increased around 10-fold compared to wild-type 

controls. These are the first reported plasma glucocorticoid levels in the Del1 mouse, 

with previous papers from the group having made use of an older KO mouse which 

exhibited some residual enzyme expression. The present corticosterone findings are in 

keeping with several other studies which did not see an effect on corticosterone in KO 

animals on a C57BL6/J background (Kotelevtsev et al., 1997; Carter et al., 2005; 

Harno and White, 2010). 11-DHC levels are less frequently reported, although Harris 

et al. (2001) do report an increase in 11-DHC in the previous 11β-HSD1 KO mouse. 

These findings suggest that 11β-HSD1 deletion in the Del1 mouse prevents the 

conversion of 11-DHC to corticosterone, resulting in accumulation of 11-DHC. While 

this increase in 11-DHC is apparent in the plasma, the HPA axis appears to be able to 

compensate for the increased clearance of corticosterone, presumably by increased 

release of CRH and ACTH to stimulate enhanced adrenal glucocorticoid synthesis. 

A key hypothesis that the present chapter unfortunately was unable to address was that 

inhibiting adrenal glucocorticoid synthesis would enhance WT-SCC tumour growth, 

and this effect could be reversed by glucocorticoid replacement. This experiment, had 

it been successful, would have provided support for the inference that alterations in 

active glucocorticoid exposure were responsible for the enhanced growth phenotype 

displayed by WT-SCC tumours treated with UE2316. Insufficient inhibition of adrenal 

glucocorticoid synthesis is likely the main reason the experiment failed. 

Considerations of animal welfare necessitated a limit in the number of intraperitoneal 

injections that could be administered to mice. The initial plan had been to co-

administer metyrapone, an 11β-hydroxylase inhibitor, in combination with 

aminoglutethamide, a P450 enzyme inhibitor that prevents the conversion of 

cholesterol to pregnenolone. This dual administration would have offered more 

complete inhibition and prevented the accumulation of the precursor 

deoxycorticosterone which can occur with metyrapone alone. Unfortunately, a 

common solvent in which both drugs were soluble could not be found, leading to the 

decision to use metyrapone alone in these studies. While metyrapone may have caused 

subtle alterations in circulating 11-DHC levels, these did not reach statistical 

significance and, critically, corticosterone levels were not reduced by metyrapone. 
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Compensatory activation of the HPA axis appears to have been able to overcome the 

effects of metyrapone treatment alone, as the only significant difference in circulating 

glucocorticoids detected was an increase in plasma 11-DHC in the mice given 

metyrapone in combination with corticosterone replacement (potentially due to 

inhibition of 11β-HSD1 by metyrapone). If time allowed, a repeat of this study using 

surgical adrenalectomy (prohibited in these experiments by the terms of the Home 

Office Project Licence) would provide far more useful data; the data generated here 

are invalidated by the methodological limitations.   

Cell proliferation in tumours  

Ki67 staining of tumours revealed a small (~5%) decrease in proliferating cells in 

UE2316-treated WT-SCC tumours that fell slightly short of statistical significance 

(P=0.077), likely due to lack of power. Imaging parameters (gain/digital offset) for 

these experiments were optimised using negative experimental controls (secondary 

antibody only, no primary), with levels set below the threshold of background 

fluorescence. Strict optimisation of imaging parameters is important given that 

alteration of these parameters is subject to investigator bias and could influence the 

statistical outcome of image analysis. Given the trend observed in the data, it is 

necessary to note that alternative imaging parameters may have achieved true 

statistical significance.  

The relevance of this observation is unclear, as it was only apparent when examining 

proliferative hotspots and not the entire tumour section. Whilst the underpowered 

nature of the study limits the interpretation, this observation could suggest a decrease 

in the proliferation of a particular cell type in the tumour microenvironment, localised 

to certain regions of the tumour. Hotspots were typically found near the tumour border 

rather than the centre of the tumour, suggesting that infiltrating host cells (fibroblasts, 

immune cells, inflammatory cells) may have been more prevalent. Key future studies 

would involve the optimisation of co-stains for specific cell populations that could 

identify not only the proportion of proliferating cells, but also the type. Importantly, 

this effect was completely absent from the both the SCC-B6-1 and the Panc043 

tumours, indicating it could be of relevance to the enhanced growth phenotype 

observed in WT-SCC tumours. 
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Immune and inflammatory signalling in tumours 

RNA sequencing of WT-SCC tumours and subsequent GO analysis identified a 

number of prospective mechanistic pathways which may have contributed to the 

enhanced growth seen after 11β-HSD1 inhibition. Immune and inflammatory 

responses feature heavily in the GO analysis list of significantly altered biological 

processes. WT-SCC tumours from UE2316-treated mice showed reduced expression 

of a range of pro-inflammatory cytokine and chemokine genes, including members of 

the CCL, CXCL, CX3CL and TNF families, and CSF1. These changes were 

accompanied by an increase in the expression of several members of the TLR and 

TNFRSF families, and CSF1R, suggesting reduced pro-inflammatory ligand binding. 

Furthermore, expression of a number of interferon-γ (IFN-γ) inducible genes was 

reduced in tumours from UE2316-treated animals, including some CXCL chemokines, 

OAS2 and OASL2, members of the interferon inducible protein (IFI) family, 

lymphotoxin-alpha (LTA) and NOS2. As TLR activation can stimulate the production 

of IFNs, interleukins and TNF by myeloid and lymphoid cells (Chapman et al., 2013a), 

the evidence overwhelmingly points towards reduced inflammatory and immune cell 

signalling within tumours from UE2316-treated mice. Unfortunately, not all of the 

differentially expressed genes selected for validation achieved significance when 

compared by qPCR. Despite this, the majority of genes tested were validated and many 

of the changes appear to be specific to certain pathways, thus failure to validate all of 

the genes does not detract from the overwhelming evidence that intra-tumour immune 

and inflammatory signalling is significantly disrupted by UE2316. The reduced 

expression of CCL and CXCL chemokines would predict reduced migration of 

eosinophils, neutrophils and T-cells into tumours. The reduced expression of 11β-

HSD1 itself after UE2316 treatment is indicative of reduced immune/inflammatory 

cell infiltration and activation as the enzyme is expressed in macrophages and 

lymphocytes (Chapman et al. 2013b) and upregulated by immune cell activation, 

including TNF and IL1 stimulation (Hardy et al., 2006; Ahasan et al., 2012). 

The overriding message to emerge from the RNA sequencing data is that UE2316 

treatment leads to a dampening of the innate immune response in WT-SCC tumours. 

Determining the cell types responsible for this effect will be a focus of future work. 
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11β-HSD1 is expressed in the mast cells (Coutinho et al., 2013) and macrophages 

(Thieringer et al., 2001) that are responsible for the initial release of pro-inflammatory 

mediators during an immune response. Expression of chymase 2 (CMA2) and mast 

cell proteases (MCPT) 1, 2 and 4 were all increased in tumours from UE2316-treated 

mice, suggesting increased mast cell degranulation. Coutinho et al. (2013) 

demonstrated that 11β-HSD1 deficiency reduces the activation threshold of mast cells 

and increases the rate of piecemeal degranulation, a slower form of degranulation 

associated with chronic inflammation. The pro-inflammatory mediators released by 

mast cells recruit eosinophils and neutrophils to the site of inflammation, though a 

decrease in the expression of CXCL chemokines, Formyl Peptide Receptor 2 (FPR2), 

TNF and Platelet Factor 4 (PF4) all suggest reduced neutrophil recruitment. Blocking 

11β-HSD1 during acute inflammation results in more severe acute inflammation after 

myocardial infarct (McSweeney et al., 2010; White et al., 2015; Mylonas et al., 2017) 

and during pleural inflammation, arthritis and sterile peritonitis (Coutinho et al., 2012). 

The situation examined in these tumours, however, is not likely to represent the acute 

inflammatory phase, as transcript data are taken from tumours that have been 

developing over 11 days; thus conclusions cannot be drawn regarding the acute 

inflammation. As inflammation progresses towards resolution, mononuclear cells 

become the predominant cell type (Chapman et al., 2009). The failure of inflammation 

to resolve results in chronic inflammatory environments such as those seen in arthritis 

and atherosclerosis. In tumours from UE2316-treated mice, reduced expression of 

CCL chemokines, FPR2, CSF1, TNF, PLA2G7 and CD274 all suggest reduced 

macrophage infiltration and activity, and a dampened anti-tumour inflammatory 

response.  

11β-HSD1 inhibition and anti-tumour immunosurveillance 

The role of inflammation in tumour progression is controversial in that it can both 

promote tumour progression (via stimulation of angiogenesis for instance) but also 

inhibit tumour progression (via anti-tumour immunosurveillance). Manipulation of 

physiological glucocorticoids may well affect anti-tumour immunity; for example, in 

a model of colorectal cancer, generation of endogenous glucocorticoids prevented anti-

tumour immunity (Sidler et al., 2011) and physiological levels of corticosterone also 
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limit the effectiveness of immunotherapy in pancreatic cancer (Flint et al. 2016). 

Furthermore, Cirillo et al. (2017) recently demonstrated that glucocorticoids in 

conditioned media from SCC cells inhibited the proliferation of anti-tumour CD8+ T-

cells via binding at the GR (this effect was abolished by the addition of GR antagonist 

RU486). In the present model, 11β-HSD1 inhibition appears to decrease inflammation 

whilst enhancing tumour growth, raising the intriguing possibility that UE2316 

dampens the anti-tumour immune response. Transcriptomic data suggest a decrease in 

IFN-γ signalling in WT-SCC tumours from UE2316 treated mice. IFN-γ, released by 

NK cells and cytotoxic T-cells, is able to destroy tumour cells and prevent tumour 

progression as part of the ant-tumour immune response (Dighe et al., 1994; Kaplan et 

al., 1998; Shankaran et al., 2001; Girardi et al., 2001; Kim et al. 2007). Several further 

factors associated with anti-tumour immunity are altered in the present study. FAS has 

previously been shown to reduce the number of myeloid-derived suppressor cells 

MDSCs) in the tumour microenvironment (Sinha et al., 2011). These cells express KIT 

(Murdoch et al. 2008) so reduced FAS and increased KIT ligand (Murdoch et al., 

2008) in tumours from UE2316-treated mice could, therefore, result in increased 

MDSC number and activation in the tumour microenvironment. These MDSCs are 

known to suppress anti-tumour function of T-cells and NK cells and thus promote 

tumour progression (Sica and Bronte, 2007; Murdoch et al., 2008). The evidence is 

mixed though, as MDSCs are associated with increased ARG1 and NOS2 expression, 

both of which are in fact decreased in tumours from UE2316-treated mice (at least at 

the transcript level). The reduced expression of CXCL12 and CXCL5 in tumours from 

UE2316-treated mice would also be predicted to reduce MDSC infiltration. 

Glucocorticoids have previously been shown to increase the induction of MDSCs in 

mice (Varga et al., 2008), thus it may follow that 11β-HSD1 inhibition would reduce 

their migration into tumours. TNF and LTA have both previously been considered as 

effective promoters of a beneficial anti-tumour immune response in melanoma 

(Schrama et al., 2001; Drutskaya et al., 2010), thus their reduced expression supports 

the theory of reduced anti-tumour immunity. Factors known to negatively regulate T-

cell function, such as CBLB (Lutz-Nicoladoni et al., 2015), are also increased in 

tumours from UE2316-treated mice. Reduced CSF-1 in tumours treated with UE2316 

could also inhibit the differentiation of tumour suppressing dendritic cells (Menetrier-
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Caux et al., 1998). The complexity of immunosurveillance is increased in SCC by the 

interactions of the epimmunome (factors released by the epithelial tumour cells 

themselves rather than myeloid cells), and the fact that subtle alterations in one or two 

cytokines can cause a switch in the SCC inflammatory profile from a pro- to an anti-

tumour environment (Huang and Balmain, 2014). Glucocorticoids are known to affect 

the epimmunome (Stojadinovic et al., 2006; Sanchis et al., 2012; Itoi et al., 2013) and, 

likewise, SCC cells may produce endogenous glucocorticoids that prevent anti-tumour 

T-cell behaviour via a paracrine mechanism (Cirillo et al., 2017). In summary, 

deducing the exact cellular mechanisms at work will require more in-depth study at 

the protein and cellular level, but this work provides substantial evidence that factors 

relating to anti-tumour immunity are affected by 11β-HSD1 inhibition. Deducing the 

mechanisms and confirming intra-tumour glucocorticoid levels will prove vital in 

assessing the risk posed by these inhibitors in SCC. 

11β-HSD1 inhibition in chronic inflammatory conditions 

The notion that 11β-HSD1 inhibition may have differential effects based on whether 

inflammation is acute or chronic may be pivotal to understanding the effects of 

UE2316 in WT-SCC tumours. Obesity is a chronic inflammatory condition, and the 

way in which adipose tissue from models of obesity responds to 11β-HSD1 deletion 

shares some similarities with the response of WT-SCC tumours to UE2316. Wamil et 

al. (2011) studied the effects of 11β-HSD1 deletion in obesity and found that a number 

of similar cytokines (including members of the CCL, CXCL and TNF families) were 

decreased in adipose tissue from high-fat diet-fed 11β-HSD1 KO mice compared to 

wild-type controls. Furthermore, adipose tissue from 11β-HSD1 KO animals showed 

decreased CD8+ T-cell infiltration and macrophage infiltration. Michailidou et al. 

(2012) built upon the aforementioned work on 11β-HSD1 deficiency in obese mice 

and found increased angiogenesis in adipose tissue from 11β-HSD1 KO animals. The 

present study identified no such change. This could be due to the highly angiogenic 

nature of the tumour microenvironment, which potentially masked subtle changes in 

angiogenic factors. RNA-sequencing did identify a subtle increase in CSPG4 

expression in UE2316-treated tumours, which is known to be expressed in pericytes 

(Raza et al., 2010). Thus it may be that more detailed examination of tumour vessel 
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function would identify subtle differences. Alternatively, it may be that the changes in 

inflammatory and immune cell content, and the altered fibrosis, exerted a powerful 

influence on tumour cell proliferation and survival, and angiogenesis is less relevant 

in this model. The lack of differences seen in vessel smooth muscle cell coverage after 

UE2316 treatment supports the latter theory.   

Further similarities are seen in another chronic inflammatory context: atherosclerosis. 

11β-HSD1 deletion reduces macrophage and T-cell infiltration into plaques (Kipari et 

al., 2013). Several of the key gene expression changes seen in the present study have 

also been seen in atherosclerotic plaques after 11β-HSD1 inhibition (Luo et al., 2012), 

including reductions in interleukins, toll-like receptors, STAT family members, and 

several chemokines. Interestingly, when gene expression was profiled specifically 

within the vascular smooth muscle cell and macrophage populations from within 

whole aortic samples, reduced expression of pro-inflammatory mediators was still 

apparent in 11β-HSD1 deficient samples (Luo et al., 2012). This finding could perhaps 

imply that, as well as reduced inflammatory cell infiltration into tumours, these 

inflammatory cells may also be less active in the production of pro-inflammatory 

mediators.  

CXCL chemokines are induced by IFN-γ and TNF signalling which corresponds with 

the reduced TNF expression identified by RNA-seq (disappointingly qPCR did not 

validate TNF). CXCL signalling, as well as playing a role in tumour progression, has 

also been linked to atherosclerosis in which it does not promote neutrophil infiltration 

(as in acute inflammation) but rather exerts a beneficial effect by preventing 

macrophage foam cell accumulation in plaques (Rouselle et al., 2013). 11β-HSD1 

inhibition similarly prevents foam cell formation in vivo (Garcia et al., 2013). Several 

11β-HSD1 inhibitors, and genetic deletion of the enzyme, improve atherosclerosis by 

reducing plaque formation (reviewed in Hadoke et al., 2013). Garcia et al. (2013) 

examined gene expression in peritoneal macrophages from 11β-HSD1 KO mice and 

noted attenuation of the inflammatory state compared to wild-type macrophages, 

including reduced chemokine signalling. Release of TNF from 11β-HSD1 KO 

macrophages was reduced by 30% compared to control macrophages. Importantly, 

bone marrow transplantation studies demonstrated that it was the 11β-HSD1 
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deficiency in myeloid cells that was important in reducing plaque formation (Garcia 

et al., 2013; Kipari et al., 2013). This suggests that inflammatory cells may also be 

responsible for reduced TNF expression in tumours, and thus important in tumour 

progression. TLR expression was decreased in the study by Garcia et al. (2013), 

whereas in the present study, expression was increased and accompanied by a decrease 

in ACOD1 (a negative regulator of TLR expression). It is interesting to note the 

involvement of the TLRs in both studies, despite their opposing expression in the 

different models.  

Many of the observed effects of 11β-HSD1 inhibition (for example reduced 

interleukin, IFN, and TNF expression) mimic the reported anti-inflammatory and 

immunosuppressive effects of glucocorticoids (Sapolsky et al., 2000; Coutinho and 

Chapman, 2011), which occur as a result of binding at the GR (Cronstein et al., 1992; 

Cirillo et al., 2017). As 11β-HSD1 inhibition ought to reduce local glucocorticoid 

levels, this may seem counterintuitive. Yet there are several examples of 

physiologically relevant concentrations of glucocorticoids promoting, rather than 

reducing, inflammation. Barber et al. (1993) report that pre-treatment with 

glucocorticoids increased TNF-α and IL-6 release into the plasma of mice treated with 

lipopolysaccharide (LPS). Furthermore, low concentrations of corticosterone (500-

1000nM) enhanced T-cell growth in vitro (Weigers et al. 1993; 1994; 1995) and in 

vivo (Wiegers et al. 1993). This effect is thought to be mediated via activation of the 

MR in immune and inflammatory cells (Wiegers et al., 1993; Sapolsky et al. 2000) 

and the same mechanism has been proposed for anti-inflammatory effects of 11β-

HSD1 inhibition in atherosclerotic plaques (Luo et al., 2012). MR and GR are both 

expressed in macrophages (Barish et al., 2005; Lim et al., 2007), while only the 11β-

HSD1 (and not the 11β-HSD2) isozyme is expressed (Gilmour et al., 2006; Usher et 

al., 2010; Chapman et al., 2013a). Thus corticosterone binding at either receptor could 

be relevant to the effect seen in the present studies. MR antagonism also reduces pro-

inflammatory cytokine levels (including TNF) in obese adipose tissue (Guo et al., 

2008) and polarises macrophages towards an M2 phenotype whilst reducing fibrosis 

in models of cardiac hypertrophy and stroke (Usher et al., 2010; Frieler et al., 2011). 

While this evidence could explain why 11β-HSD1 inhibition exerts anti-inflammatory 

effects, MR was undetectable in WT-SCC tumours. Furthermore, Lim et al. (2007) 
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found that while low concentrations of corticosterone (100 pM) enhanced pro-

inflammatory cytokine production by macrophages, high concentrations (1µM) were 

potently anti-inflammatory (similar results were seen by Itoi et al. (2013) after 

exposing keratinocytes to glucocorticoids). Only deletion of GR abrogated the pro-

inflammatory response of macrophages to glucocorticoids, while MR deletion had 

little effect (Lim et al., 2007). GR blockade also prevented the anti-proliferative effect 

of tumour-derived glucocorticoids on T-cell proliferation in the study by Cirillo et al. 

(2017). Thus, GR likely remains the more important receptor in the solid tumour 

model. Studies using selective MR and GR inhibitors will be required to more 

comprehensively address this question. 

CD3 staining in the present study did not detect a difference between WT-SCC 

tumours from control and UE2316-treated mice However, CD3 is a general T cell 

marker and fluorescence associated cell sorting (FACS) is required to determine more 

subtle alterations in specific T-cell populations. The perinuclear localisation of CD3 

in many of the WT-SCC tumour cells may even suggest immature thymocytes 

(Swerdlow et al., 1988) in which CD3 has not yet been translocated to the cell surface; 

an avenue for future investigation. Likewise, F4/80 staining did not reveal a marked 

difference between treatment groups in our study, yet key markers of macrophage 

polarisation were altered (see below), suggesting a more subtle effect of 11β-HSD1 

inhibition on tumour inflammation, possibly on macrophage polarisation states. 

Accelerated switching of macrophages from an M1 to an M2 phenotype in 11β-HSD1 

deficient tissues is reported in the acute inflammatory context of myocardial infarction 

(McSweeney et al., 2010) but was not seen in vitro (Gilmour et al., 2006; Zhang et al., 

2007) or in adipose tissue in vivo (Wamil et al., 2006). Determining the polarisation 

state of macrophages from the RNA sequencing data is difficult due to conflicting 

expression of transcripts. UE2316 appears to have reduced IFN-γ signalling and TLR 

activation in WT-SCC tumours, and this would be predicted to polarise macrophages 

towards an M2 phenotype. Comparing the present RNA-seq data with previously 

published data on macrophage polarisation gene profiles (Martinez et al., 2006), a 

number of changes did suggest M2 polarisation (decreased expression of NOS2, 

CXCL9, OASL2, HSD11B1, FAS, TNF, CXCL11, and CCL11), yet several 

contradictory findings were also apparent (decreased expression of ARG1, platelet-
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derived growth factor A (PDGF-A), macrophage scavenger receptor 1 (MSR1), LTA, 

CCL17 and CCL24). As transcripts from whole tumours were analysed, altered 

expression could reflect alternative cell populations infiltrating tumours, as opposed 

to change in polarisation state. A good case in point is the reduced 11β-HSD1 

expression seen in WT-SCC tumours after UE2316 treatment; M1 polarised 

macrophages increase their 11β-HSD1 expression while expression is unaffected by 

M2 polarisation (Chapman et al., 2013a), so this finding may indicate increased M2 

polarisation. However, this reduced expression may also reflect a reduced number of 

macrophages, dendritic cells, neutrophils, mast cells or activated T-cells in these 

tumours, as all of these cell types express 11β-HSD1 (Freeman et al., 2005; Zhang et 

al., 2005; Chapman et al., 2013a; Coutinho et al., 2016). Isolation of tumour-

associated macrophages by FACS and subsequent analysis is required if a more firm 

conclusion is to be reached.  

11β-HSD1 deficiency has also been studied in several non-cardiometabolic chronic 

inflammatory conditions, including peritonitis and arthritis. 11β-HSD1 deficient mice 

showed delayed clearance of apoptotic neutrophils (Gilmour et al., 2006), earlier onset 

and delayed resolution of inflammation in models of arthritis and sterile peritonitis 

(Coutinho et al. 2012). These effects are thought to be at least partially due to 11β-

HSD1 deletion in macrophages (Zhang et al., 2012), which promotes angiogenesis and 

contributes to pathology in arthritis (Jackson et al., 1997). By contrast, the selective 

11β-HSD1 inhibitor BVT-2733 improved symptoms of collagen-induced arthritis by 

reducing the expression of pro-inflammatory cytokines, including TNF, IL-1β and IL6, 

and reducing inflammatory cell infiltration into joints (Zhang et al., 2013). The 

beneficial effects of 11β-HSD1 inhibition in the synovium have been linked to reduced 

glucocorticoid action in synovial fibroblasts and osteoclasts (Hardy et al., 2012; 2013) 

resulting in a net reduction in damaging inflammation (Hardy et al., 2013). Thus there 

is a fascinating degree of crossover between these chronic inflammatory conditions 

and the findings in the solid tumour model; 11β-HSD1 in immune and inflammatory 

cells, and often fibroblasts, appears to be central to all of these models.  

11β-HSD1 inhibition, fibroblasts and the extracellular matrix 
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Thus far the present findings in solid tumours exhibit many similarities to chronic 

inflammatory cardiometabolic disorders; namely obesity and atherosclerosis. 

Mechanistically, fewer similarities are apparent between solid tumours and the acute 

inflammatory setting of the infarcted myocardium. That said, similar pathways do 

appear to be affected although apparently in the opposite direction depending on 

setting. Mylonas et al. (2017) recently showed that deletion of 11β-HSD1 from a 

subset of cardiac fibroblasts enriched for the enzyme results in the increased release of 

CXCL2 and 5, which subsequently recruit more neutrophils to the infarct and promote 

recovery. CXCL5 is reduced in WT-SCC tumours in which 11β-HSD1 has been 

inhibited. This discussion has thus far focussed on the role of immune and 

inflammatory cells in promoting tumour growth, yet cancer-associated fibroblasts 

(CAFs) and extracellular matrix (ECM) deposition can also heavily influence tumour 

progression.  

Mice in the present studies were given UE2316 for 5 days before tumour cells were 

injected, thus 11β-HSD1 inhibition and its associated effects on inflammation will 

have been present from the onset of tumour formation. Previously, depletion of 

macrophages before the point of injury has been shown to ameliorate fibrosis (Duffield 

et al., 2005). Duffield et al. (2005) used a model of liver injury to show that during the 

initial stages of inflammation, M2 macrophages dominate and maintain a resident 

population of myofibroblasts (which are mechanistically very similar to activated 

CAFs), which promote fibrosis. With decreasing levels of pro-inflammatory mediators 

(the recovery phase of inflammation), a subset of ECM-degrading macrophages 

becomes predominant (M1 phenotype). In the UE2316-treatment group in the WT-

SCC model, and in previous studies of 11β-HSD1-deficient adipose tissue 

(Michailidou et al., 2012), fibrosis and pro-inflammatory signalling are reduced; 

findings somewhat at odds with the expected effects of 11β-HSD1 inhibition on 

fibrosis. Yet in SCC-B6-1 tumours, the opposite effect was seen; UE2316 promoted 

fibrosis compared to tumours from control mice. Thus, this conclusion cannot be 

applied universally to the solid tumour microenvironment and likely depends on 

tumour type. Differences in the response of Class A and B SCC tumours to 

inflammation are well documented (Wong et al., 2013; Huang and Balmain, 2014), so 

it is perhaps not surprising that UE2316 exerts alternative effects in WT-SCC and 
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SCC-B6-1. Focus will remain on the WT-SCC tumours due to their altered growth 

phenotype.  

The reduced fibrosis seen in WT-SCC tumours was also found in obese adipose tissue 

from 11β-HSD1 KO animals, which showed decreased fibrosis and alpha-smooth 

muscle actin expression, suggesting reduced fibroblast numbers. In WT-SCC tumours, 

Type I collagen, detected using SHG imaging, was significantly reduced. This result 

is consistent with the reduced Col1a1 and Col1a2 expression and the increased matrix 

metalloprotease 11 expression reported in UE2316-treated tumours. Likewise, alpha-

smooth muscle actin was identified by RNA-seq as having reduced expression in 

tumours from UE2316-treated mice; though this finding could not be validated, 

making it difficult to conclude whether this reflects reduced fibroblast content.  

Although direct quantification of fibroblasts in WT-SCC was not performed in the 

present study, several factors suggest that CAF activation and possibly number is 

reduced by UE2316-treatment. Reduced fibrosis and reduced expression of COL1A1, 

COL1A2, COL14A1, stromal-cell derived factor 1 (SDF-1) and LOX are all 

suggestive of reduced fibroblast activity (Harper and Sainson. 2013; Fang et al., 2014). 

The possible reduced alpha-SMA (expressed by activated CAFs: Özdemir et al., 2014) 

in UE2316-treated tumours would also suggest reduced fibroblast number. CAFs can 

promote anti-tumour immune cell infiltration into tumours (Harper and Sainson, 2014; 

Özdemir et al. 2014), providing a link between the potentially dampened anti-tumour 

immune response seen in WT-SCC tumours treated with UE2316 and the reduced 

fibrosis observed.  Inflammatory cells are also able to recruit fibroblasts into SCC 

tumours (Coussens et al., 1999) and this enhanced recruitment can promote SCC 

growth suppression via the deposition of a fibrotic ECM that constrains tumour cell 

proliferation and invasiveness (Willhauck et al., 2006; Cretu and Brooks, 2007). 

Collagen itself is able to interact with the immune and inflammatory cells of the 

tumour microenvironment (Fang et al., 2014), and reducing collagen has been shown 

to predict poor prognosis in SCC (Baba et al., 2008). Whilst this is in keeping with 

observations from the present study, the decrease in fibrosis is unexpected given 

previous studies of 11β-HSD1 inhibition showing enhanced fibroblast proliferation 

and fibrosis in skin (Tiganesu et al., 2013; Terao et al., 2014) and given the inhibitory 



Chapter 5 – Mechanism of enhanced tumour growth 

253 

 

effects of glucocorticoids on collagen deposition (Maragoudakis et al., 1989; Morgan 

et al., 2014). The tumour microenvironment is of course a very different situation from 

healthy skin and enhanced fibrosis was seen in obese adipose tissue (Michailidou et 

al., 2012), arguably a more similar chronic inflammatory environment. It is possible 

that 11β-HSD1 inhibition dampens the inflammatory response, leading to reduced 

activation and migration of pro-inflammatory CAFs (Erez et al., 2010) into the tumour 

which further dampens the anti-tumour immune response and leads to an 

underdeveloped ECM conducive to tumour growth. Disappointingly, attempts to 

quantify fibroblasts in this study were unsuccessful due to the expression of vimentin 

in SCC cells (Klein-Szanto et al., 1989; Huang and Balmain, 2014). 

In summary, inhibition of 11β-HSD1 in WT-SCC tumours dampens immune and 

inflammatory signalling within the tumour microenvironment, likely leading to the 

reduced activation of CAFs and the reduced deposition of type I collagen. These 

factors, in combination, promote WT-SCC growth. The effects of physiological 

glucocorticoid manipulation may relate to pro-inflammatory effects of MR, as well as 

GR, activation in inflammatory and immune cells. Future studies must focus on more 

detailed dissection of the tumour immune and inflammatory microenvironment using 

FACs, more detailed IHC studies to determine the exact cell types involved, and the 

use of selective receptor inhibitors to determine the relevant pathways.   
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6 Conclusions and future work 

6.1 Aims revisited 

The work presented in this thesis addressed the hypothesis that 11β-HSD1 inhibition 

promotes tumour angiogenesis and, consequently, enhances solid tumour growth. The 

need for this research arose from concerns surrounding the pro-angiogenic effects of 

reduced 11β-HSD1 activity, which are apparent in models of myocardial infarction 

(Small et al., 2005; McSweeney et al., 2010; McGregor et al., 2014; White et al., 2015; 

Mylonas et al., 2017), obesity (Michailidou et al., 2012), inflammatory arthritis 

(Zhang et al., 2017) and tumour growth (Liu et al., 2016). Increased tumour growth 

via enhanced angiogenesis would present a significant adverse effect of clinical 11β-

HSD1 inhibitors, which were originally designed to treat type II diabetes (Anderson 

and Walker, 2013) and have also shown promise in the treatment of Alzheimer’s 

disease (Webster et al., 2017). Given the findings of the present experiments, it is 

important to draw conclusions in relation to the primary research aims. 

The first research aim was to determine whether pharmacological inhibition or genetic 

ablation of 11β-HSD1 would promote tumour growth and angiogenesis in murine 

models of squamous cell carcinoma (SCC) and pancreatic ductal adenocarcinoma 

(PDAC). It was shown that only one of the tested SCC cell lines (WT-SCC) produced 

tumours that grew more quickly in response to 11β-HSD1 inhibition, while the other 

two cell lines examined (SCC-B6-1 and Panc043) grew normally, both in wild-type 

mice fed an 11β-HSD1 inhibitor and in Del1 mice genetically deficient for the enzyme. 

Unexpectedly, no evidence of increased angiogenesis in any tumour type was seen, 

strongly suggesting that an alternative mechanism was responsible for increased SCC 

growth. The second research aim was to determine the effects of pharmacological 11β-

HSD1 inhibition and exogenous glucocorticoids on ex vivo angiogenesis, and in vitro 

tumour cell growth. As has been seen previously (Small et al., 2005), active 

glucocorticoids were potently anti-angiogenic ex vivo. In the present experiments, only 

genetic deletion, not inhibition, of 11β-HSD1 was able to prevent this angiostasis. As 

neither glucocorticoids nor the 11β-HSD1 inhibitor UE2316 drastically affected 

tumour cell growth, attention was turned to other components of the tumour 
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microenvironment. The third and final research aim was to determine the effects of 

11β-HSD1 inhibition on the tumour microenvironment and to investigate mechanisms 

by which glucocorticoid manipulation might influence tumour growth. Inhibition of 

11β-HSD1 led to reduced expression of a range of pro-inflammatory cytokines and 

chemokines in WT-SCC tumours, suggesting a significant dampening of immune and 

inflammatory signalling in these tumours. Type I collagen deposition in WT-SCC 

tumours was also reduced by 11β-HSD1 inhibition; determining the degree to which 

altered immune signalling and collagen deposition are linked may provide an 

important mechanistic insight into the enhanced tumour growth.  

6.1.1 11β-HSD1 inhibition can promote squamous cell 

carcinoma growth 

One of the most important conclusions to be drawn from this work is that 11β-HSD1 

inhibitors can promote growth in some types of murine SCC. The finding that SCC in 

particular is sensitive to 11β-HSD1 inhibition is not entirely surprising, given the 

atypical expression of the 11β-HSDs in this cancer type. Upon progression to 

malignancy, healthy tissues typically show decreased 11β-HSD1 expression and 

increased 11β-HSD2 expression, a pathological ‘switch’ thought to promote tumour 

growth (Rabbitt et al., 2003b). This switch is absent in SCC, with many studies 

(including the present) detecting only the type 1 isozyme in SCC samples (Gronau et 

al., 2002; Terao et al., 2013), though low levels of 11β-HSD2 expression have been 

reported (Cirillo et al., 2017). This unusual 11β-HSD expression profile, combined 

with the known importance of 11β-HSD1 in skin homeostasis (Cirillo and Prime, 

2011), has led to an increased focus being placed on local glucocorticoid metabolism 

in SCC (reviewed by Azher et al., 2016).   

Incidences of skin cancer are increasing; healthcare data from the United States 

suggest that cases of non-melanoma skin cancers (including SCC) have doubled 

between 1994 and 2006 (Donaldson and Coldiron, 2011). Non-melanoma skin cancers 

are the most common cancer in the world, accounting for 80% of all skin cancers, with 

incidences outweighing all other cancers combined (Garcovich et al., 2017). SCC 

specifically is a disease of advanced age, with a mean age of 70 years at diagnosis and 

more than 80% of cases occurring in the elderly. Over the past three decades, incidence 
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of SCC in the elderly has increased dramatically due to cumulative ultraviolet-

exposure and an aging population (Leiter et al., 2014). Given the promise that 11β-

HSD1 inhibitors have shown in treating diseases of the elderly, such as type II diabetes 

(Anderson and Walker, 2013) and more recently Alzheimer’s disease (Sooy et al., 

2010; 2015; Yau et al., 2015; Webster et al., 2017), the prospect that they could 

promote SCC growth is concerning. A further concern is the evidence identifying 

chronic wounds (which are associated with type II diabetes) as a risk factor for SCC 

(Belbasis et al., 2016), though to date there is little evidence suggesting a direct 

association between diabetes and SCC. 11β-HSD1 activity is also increased in the skin 

of older individuals, potentially further increasing their sensitivity to 11β-HSD1 

inhibitors (Tiganescu et al., 2013). Thus, diligence is advisable when proceeding with 

clinical trials, with long-term monitoring of patients for SCC recommended.  

Further research to determine the mechanism responsible for enhanced SCC growth 

after 11β-HSD1 inhibition will hopefully provide answers to several key questions. 

How much of a threat do 11β-HSD1 inhibitors pose in promoting human SCC? 

The present experiments found increased tumour growth using a murine model of 

SCC, implanting cultured murine WT-SCC cells into female FVB/N mice. Female 

mice were used to allow for group housing as FVB/N males are prone to fighting when 

group housed (Thiele et al., 2014). The influence of the oestrus cycle was not 

examined in these studies, though previous studies in mice suggest that corticosterone 

levels are not drastically affected (Malisch et al., 2008; Gong et al., 2015). A murine 

cell line was selected for use in conjunction with an immunocompetent mouse strain 

to allow investigation surrounding the influence of the immune system on tumour 

growth. This is a significant strength in that it provides in vivo conditions more 

comparable to the clinical situation in which patients are unlikely to be 

immunodeficient. Yet the effects of 11β-HSD1 inhibition were only seen in one of the 

two SCC lines examined; SCC-B6-1 cells did not respond to inhibition or deletion of 

11β-HSD1 in C57BL6/J mice. This could be due to the different characteristics of the 

tumour type, but could also be due to strain-specific differences; plasma and liver 

glucocorticoid levels in FVB/N mice appeared to show increased sensitivity to 11β-

HSD1 inhibition compared to C57BL6/J mice. The reduction in circulating 
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corticosterone seen in UE2316-diet-fed FVB/N mice may suggest that these mice also 

had an increased net reduction in intratumour corticosterone levels compared to 

tumours grown in C57BL6/J mice, and this could explain the growth-enhancing effect 

of UE2316 on WT-SCC tumours that was not seen in SCC-B6-1 or Panc043 tumours. 

Until the influence of strain has been fully examined, it is difficult to draw firm 

conclusions regarding the degree of clinical risk. Genetic variation in glucocorticoid 

sensitivity is known to exist in humans, due in part to polymorphisms in the HSD11B1 

and GR genes (Edwards et al., 1988; Stewart et al., 1988; reviewed extensively by 

Quax et al., 2013). Older females are a group particularly associated with both 

increased glucocorticoid sensitivity (Heuser et al., 1994) and Alzheimer’s disease 

(Viña and Lloret, 2010), emphasising the need for particular vigilance when 

monitoring this prospective patient group.  

If it is the features of the tumour type that determine SCC sensitivity to 11β-HSD1, 

then this has important implications. 11β-HSD1 inhibition only promoted the growth 

of WT-SCC tumours, a tumour type displaying features characteristic of a ‘Class B’ 

SCC, including spindle-cell morphology, increased invasiveness and aggressive 

growth (Wong et al., 2013; Huang and Balmain, 2014). These tumours arise via an 

alternative pathway to classical ‘Class A’ SCCs, and are known to depend less on an 

inflammatory stimulus for their formation (Wong et al., 2013). If indeed Class B SCC 

is more sensitive to 11β-HSD1 inhibition, then measuring the impact of 11β-HSD1 

inhibition on number of metastases will be important (Wong et al. (2013) described a 

method for achieving this), as these tumours grow aggressively. Metastatic SCC has a 

10-year survival rate of less than 20% and metastasis vastly worsens prognosis.  

The question of whether host or donor 11β-HSD1 is more important in the tumour 

microenvironment remains unresolved. UE2316 will have inhibited 11β-HSD1 

activity in both host cells and donor tumour cells, while experiments in the Del1 mice 

will only have inhibited host 11β-HSD1. Given that 11β-HSD1 mRNA was detected 

in Del1-grown SCC-B6-1 tumours, the induction of 11β-HSD1 expression after 

injection of tumour cells cannot be ruled out. To address this problem, future studies 

must focus on generating SCC lines similar to WT-SCC (and responsive to UE2316) 

but syngeneic on a C57BL6/J background. This is difficult to achieve given the 
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increased sensitivity of the FVB/N strain to skin carcinogenesis (Hennings et al., 

1993). Additionally, the investigation of both classes of SCC in the FVB/N model 

would provide further insight into tumour-specific differences in sensitivity to 11β-

HSD1 inhibition. Ideally, the generation of an 11β-HSD1-deficient FVB/N line would 

allow comparison of acute inhibition and chronic deletion of 11β-HSD1. Developing 

such a model may pose less of a challenge given the advent of CRISPR/Cas9 gene-

editing technology. 

Are other tumour types at risk from 11β-HSD1 inhibition? 

Growth of PDAC tumours (Panc043) was unaffected by 11β-HSD1 deletion and 

inhibition, demonstrating that these inhibitors do not pose a universal risk to tumour 

growth. While it is unfeasible to consider examining every tumour type, it is important 

to use the present findings to anticipate which other tumour types may be sensitive to 

11β-HSD1 inhibition. Glucocorticoid therapy has shown some benefit in prostate 

(Yano et al., 2006; Sahu et al., 2013) and breast cancer (Karmakar et al., 2013; Lin 

and Wang, 2016). Colorectal cancer also shows an unusual system of local 

glucocorticoid regulation (Sidler et al., 2011; Cirillo et al., 2017), including increased 

11β-HSD1 expression compared to healthy tissue (Žbánková et al., 2004). These three 

cancers are candidate tumour types for future investigations. Azher et al. (2016) 

recently compiled a list of cancers exhibiting dysregulated glucocorticoid signalling, 

and found that small lung cell carcinoma commonly displays reduced glucocorticoid 

receptor (GR) expression or function. Given that the tumour responsive to 11β-HSD1 

inhibition in the present work displayed more GR than non-responsive tumour types, 

this may suggest that cancers expressing lower GR are less at risk. Blocking GR with 

RU486 or using cell-specific knockdown of GR in mice implanted with WT-SCC cells 

will be important for determining the importance of GR in regulating WT-SCC tumour 

growth.  

6.1.2 The anti-inflammatory effects of 11β-HSD1 inhibition in 

some solid tumours may promote their growth 

The original hypothesis for this thesis was that 11β-HSD1 inhibition would enhance 

angiogenesis and this would promote increased tumour growth. Yet, no evidence for 
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increased angiogenesis in tumours was found. Instead, RNA-sequencing data 

suggested that administration of UE2316 had reduced inflammatory and immune 

signalling in WT-SCC tumours. Second harmonic generation (SHG) imaging also 

demonstrated a significant reduction in type I collagen deposition in WT-SCC tumours 

from mice treated with UE2316. Although the present experiments have not 

established a causal relationship between these findings and the increased growth seen 

in UE2316-treated tumours, Gene Ontology (GO) analysis highlighted the relevance 

of these processes (7 of the top 10 significantly associated biological processes were 

related to immune and inflammatory cell signalling) – it appears that some of the most 

profound effects of 11β-HSD1 inhibition in SCC involve altered immune and 

inflammatory signalling. In light of the complex interplay between the immune and 

inflammatory cells, fibroblasts, and the extracellular matrix (ECM) of the tumour 

microenvironment, it is likely that the reduced immune and inflammatory signalling 

and altered ECM seen in tumours after UE2316 treatment are related. Indeed, 

determining the specific effects of 11β-HSD1 inhibition on the interaction between 

these components of the tumour microenvironment will be the first key step in 

identifying the mechanism of increased growth. 

Three firm conclusions can be drawn thus far. These are that WT-SCC tumours from 

mice treated with UE2316 show: reduced expression of pro-inflammatory cytokines 

and chemokines; reduced type I collagen deposition, and; increased growth. As 

discussed in chapter 5, many of the observations in the solid tumour model are similar 

to those seen after 11β-HSD1 inhibition or deletion in models of obesity (Wamil et al., 

2011; Michailidou et al., 2012), atherosclerosis (Luo et al., 2012; Garcia et al., 2013; 

Kiparie et al., 2013) and arthritis (Zhang et al., 2013). These chronically hypoxic and 

non-resolving pathological inflammatory situations are similar in many respects to the 

tumour microenvironment. It is very interesting to note that macrophages, T-cells and 

fibroblasts are all involved to some extent in each of these models. Other cell types do 

have an important role to play in these models (adipocytes in obesity for example, or 

osteocytes in arthritis). However, interaction with mesenchymal, lymphoid and 

myeloid cells is mechanistically integral to the effects of 11β-HSD1 deficiency in each 

situation. Even in models in which 11β-HSD1 deficiency promotes inflammation, the 

same applies; 11β-HSD1 inhibition (and thus reduced glucocorticoid binding at the 
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GR) in cardiac fibroblasts is thought to increase their expression of pro-inflammatory 

cytokines, promoting neutrophil recruitment, and subsequently improving recovery 

after myocardial infarction (Mylonas et al., 2017). Likewise, Zhang et al. (2017) 

recently demonstrated that 11β-HSD1 deficiency in macrophages specifically 

promotes inflammatory angiogenesis. Thus, it appears increasingly important to 

examine the role of 11β-HSD1 in these cell types if the full potential of 11β-HSD1 

inhibitors is to be realised, particularly in chronic inflammatory situations where 

inhibitors may be anti-inflammatory or immunosuppressive.  

Sapolsky et al. (2000) offer an interesting interpretation of the opposing effects 

glucocorticoids can exert upon inflammation and immunity. They propose that the 

immunosuppressive and anti-inflammatory effects caused by high ‘stressed’ 

glucocorticoid concentrations (or exploited clinically) are acting to constrain an 

anticipated inflammatory response (such as that seen during acute myocardial 

infarction), while basal levels of glucocorticoids may act permissively to promote 

inflammation at lower concentrations (Barber et al., 1993, Weigers et al., 1993; 1994; 

1995; Lim et al., 2007). Thus, in a chronic inflammatory situation, it can perhaps be 

argued that low level endogenous glucocorticoid production is permissive in allowing 

the low-level inflammation characteristic of tumours, atheroma, obesity or arthritis. 

Inhibiting the generation of these permissive glucocorticoids thus exerts anti-

inflammatory effects. 

By what mechanism does 11β-HSD1 inhibition promote tumour growth? 

The present work has not fully answered the question of mechanism, but has provided 

sufficient evidence to allow for the generation of a hypothesis. A proposed mechanism 

of enhanced growth in SCC is outlined in Figure 6.1. 11β-HSD1 inhibition in 

macrophages and fibroblasts dampens inflammatory signalling via reduced 

glucocorticoid binding at the GR, reducing reciprocal stimulation between these cell 

populations and decreasing the recruitment of anti-tumour cytotoxic T-cells and other 

tumour-suppressing cell types (natural killer cells, for example) (Coussens et al., 1999; 

Schrama et al., 2001; Drutskaya et al., 2010; Harper and Sainson, 2014; Özdemir et 

al. 2014). Furthermore, the reduced activation and/or recruitment of fibroblasts leads 

to impaired ECM deposition and thus removes the tumour-constraining influence of 
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the fibrotic scaffold (Willhauck et al., 2006; Cretu and Brooks, 2007). The reduced 

anti-tumour immunity and growth-restraining ECM deposition combine to promote 

rapid SCC growth. This model is overly simplistic in that it presents tumour cells as 

passive players, whereas in reality they are likely to be active participants in the 

inflammatory process. Given that pro-inflammatory cytokines can induce 11β-HSD1 

in cells (Chapman et al., 2013b), and 11β-HSD1 expression was seen in SCC-B6-1 

tumours implanted into Del1 mice, a possible role for tumour cell 11β-HSD1 cannot 

be excluded. A recent paper by Cirillo et al. (2017) concluded by postulating that 

cortisol generated by 11β-HSD1 in malignant keratinocytes could lead to tumour 

suppression via alterations to the fibroblast secretome, a hypothesis not dissimilar to 

that described here. Given the evidence available, this model seems a sensible starting 

point for further investigation. 
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Figure 6.1 – Proposed mechanism of enhanced SCC tumour growth. 11β-HSD1 inhibition 

in macrophages and cancer-associated fibroblasts leads to reduced glucocorticoid (GC) 

binding at the glucocorticoid receptor (GR), resulting in reduced reciprocal pro-inflammatory 

signalling, and consequently leading to reduced anti-tumour T-cell recruitment to the tumour 

microenvironment. Reduced fibroblast recruitment/activation also reduces the deposition of 

tumour-constraining extracellular matrix (ECM) deposition. These factors combine to 

promote rapid squamous cell carcinoma (SCC) growth.  

 

 

 

 

ECM 
deposition 

Tumour-
constraining 

ECM 

Cancer cells 
Fibroblasts Macrophages 

T-cells 

11β-HSD1 inhibition 
(reduced GC action at 

the GR) 

11β-HSD1 inhibition 
(reduced GC action at 

the GR) 

Decreased 

Increased 

Extracellular 
Matrix (ECM) 

Pro-
inflammatory 
chemokines 

Anti-cancer 
immunity 



Chapter 6 – Conclusions and future work 

265 

 

Questions for the future 

The proposed mechanism presents several questions which must form the basis of 

future work.  

- Does 11β-HSD1 inhibition lead to reduced inflammatory and immune cell and 

fibroblast recruitment to the tumour microenvironment? 

Although RNA-sequencing and SHG data strongly suggest this may be the case, only 

by performing Fluorescence Associated Cell Sorting (FACS) and 

immunohistochemical staining can the true effects of 11β-HSD1 inhibition on the 

microenvironment be ascertained. 

- Which cells in the tumour express 11β-HSD1? 

Previous evidence points towards expression of 11β-HSD1 in macrophages, 

fibroblasts and vascular cell types. However, it will be important to determine whether 

tumour cells themselves also begin to express the enzyme once implanted into mice 

(possibly as a result of inflammatory cytokine exposure). This will require more 

elegant immunohistochemical techniques. Another approach may be to label 11β-

HSD1 with green fluorescent protein (GFP) and sort cells on the basis of GFP 

expression. Exposing cultured WT-SCC tumour cells to inflammatory cytokines and 

measuring 11β-HSD1 expression will also help to address this question.  

- Are tissue glucocorticoid levels altered by UE2316? 

An unfortunate limitation of the present experiments was failure to demonstrate 

tumour-specific glucocorticoid concentrations in animals given the 11β-HSD1 

inhibitor UE2316. The optimisation of mass spectrometry imaging techniques such as 

MALDI (Cobice et al., 2013; 2017) are the best approach to this problem. Determining 

the distribution of steroid throughout tumours will also provide insight into the cell 

types in which enzyme inhibition is most important. 
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6.2 Concluding remarks 

The work presented in this thesis has added to the rich literature already surrounding 

11β-HSD1. In the three decades since its discovery, this enzyme has been shown to 

play a part in many of the most serious diseases that scientists are striving to 

understand. The promise of 11β-HSD1 inhibitors has already been shown in clinical 

trials for type II diabetes and Alzheimer’s disease, but preclinical data suggests that 

they have much more to offer in terms of treating chronic inflammatory conditions. 

Yet, as with any new therapy, caution must always be exercised. The importance of 

this message is highlighted by the discoveries made in SCC. The process of 

demonstrating that 11β-HSD1 inhibitors can promote SCC tumour growth has been an 

interesting one; the discovery that the original pro-angiogenic hypothesis needed to be 

rejected, but that an entirely separate mechanism was still able to promote tumour 

growth, is a perfect example of how science can sometimes both frustrate and fascinate 

in equal measure. 

The effects of 11β-HSD1 inhibition in SCC add to the mounting evidence that reducing 

local glucocorticoid regeneration can have profoundly different effects depending on 

the inflammatory context. Inhibition of 11β-HSD1 in chronic inflammatory situations 

seems to reduce this inflammation. While this may be possible to exploit for clinical 

benefit, it is vital to remain vigilant of the threat of increased tumour growth moving 

forward. 
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