68 research outputs found

    A universal chemical potential for sulfur vapours

    Get PDF
    The unusual chemistry of sulfur is illustrated by the tendency for catenation. Sulfur forms a range of open and closed Sn_n species in the gas phase, which has led to speculation on the composition of sulfur vapours as a function of temperature and pressure for over a century. Unlike elemental gases such as O2_2 and N2_2, there is no widely accepted thermodynamic potential for sulfur. Here we combine a first-principles global structure search for the low energy clusters from S2_2 to S8_8 with a thermodynamic model for the mixed-allotrope system, including the Gibbs free energy for all gas-phase sulfur on an atomic basis. A strongly pressure-dependent transition from a mixture dominant in S2_2 to S8_8 is identified. A universal chemical potential function, μS(T,P)\mu_{\mathrm{S}}(T,P), is proposed with wide utility in modelling sulfurisation processes including the formation of metal chalcogenide semiconductors.Comment: 12 pages, 9 figures. Supporting code and data is available at https://github.com/WMD-Bath/sulfur-model [snapshot DOI: 10.5281/zenodo.28536]. Further data will be available from DOI:10.6084/m9.figshare.1513736 and DOI:10.6084/m9.figshare.1513833 following peer-revie

    Design of HIV-1-PR inhibitors which do not create resistance: blocking the folding of single monomers

    Full text link
    One of the main problems of drug design is that of optimizing the drug--target interaction. In the case in which the target is a viral protein displaying a high mutation rate, a second problem arises, namely the eventual development of resistance. We wish to suggest a scheme for the design of non--conventional drugs which do not face any of these problems and apply it to the case of HIV--1 protease. It is based on the knowledge that the folding of single--domain proteins, like e.g. each of the monomers forming the HIV--1--PR homodimer, is controlled by local elementary structures (LES), stabilized by local contacts among hydrophobic, strongly interacting and highly conserved amino acids which play a central role in the folding process. Because LES have evolved over myriads of generations to recognize and strongly interact with each other so as to make the protein fold fast as well as to avoid aggregation with other proteins, highly specific (and thus little toxic) as well as effective folding--inhibitor drugs suggest themselves: short peptides (or eventually their mimetic molecules), displaying the same amino acid sequence of that of LES (p--LES). Aside from being specific and efficient, these inhibitors are expected not to induce resistance: in fact, mutations which successfully avoid their action imply the destabilization of one or more LES and thus should lead to protein denaturation. Making use of Monte Carlo simulations within the framework of a simple although not oversimplified model, which is able to reproduce the main thermodynamic as well as dynamic properties of monoglobular proteins, we first identify the LES of the HIV--1--PR and then show that the corresponding p--LES peptides act as effective inhibitors of the folding of the protease which do not create resistance

    MoF encapsulation of RU olefin metathesis catalysts to block catalyst decomposition

    Get PDF
    In the present work, a catalyst variation of the second-generation Hoveyda–Grubbs catalyst, particularly the ammonium-tagged Ru-alkylidene metathesis catalyst AquaMetTM, is under study, not simply to increase the efficiency in olefin metathesis but also the solubility in polar solvents. Moreover, this ionic catalyst was combined with the metal organic framework (MOF) (Cr)MIL-101-SO3−(Na·15-crown-5)+. We started from the experimental results by Grela et al., who increased the performance when the ruthenium catalyst was confined inside the cavities of the MOF, achieving non-covalent interactions between both moieties. Here, using density functional theory (DFT) calculations, the role of the ammonium N-heterocyclic carbene (NHC) tagged and the confinement effects are checked. The kinetics are used to compare reaction profiles, whereas SambVca steric maps and NCI plots are used to characterize the role of the MOF structurally and electronically

    Ligand design for long-range magnetic order in metal-organic frameworks

    Get PDF
    We report a class of ligands that are candidates to construct metal-organic frameworks with long-range magnetic order between transition metal centres. Direct quantum chemical calculations predict Neel temperatures exceeding 100 K for the case of Mn

    Metal-organic frameworks invert molecular reactivity: Lewis acidic phosphonium zwitterions catalyze the Aldol-Tishchenko reaction.

    Get PDF
    The influence of metal–organic frameworks (MOFs) as additives is herein described for the reaction of n-alkyl aldehydes in the presence of methylvinylketone and triphenylphosphine. In the absence of a MOF, the expected Morita–Baylis–Hillman product, a β-hydroxy enone, is observed. In the presence of MOFs with UMCM-1 and MOF-5 topologies, the reaction is selective to Aldol-Tishchenko products, the 1 and 3 n-alkylesters of 2-alkyl-1,3-diols, which is unprecedented in organocatalysis. The (3-oxo-2-butenyl)triphenylphosphonium zwitterion, a commonly known nucleophile, is identified as the catalytic active species. This zwitterion favors nucleophilic character in solution, whereas once confined within the framework, it becomes an electrophile yielding Aldol-Tishchenko selectivity. Computational investigations reveal a structural change in the phosphonium moiety induced by the steric confinement of the framework that makes it accessible and an electrophile

    Transferable force field for metal-organic frameworks from first-principles:BTW-FF

    Get PDF
    We present an ab-initio derived force field to describe the structural and mechanical properties of metal–organic frameworks (or coordination polymers). The aim is a transferable interatomic potential that can be applied to MOFs regardless of metal or ligand identity. The initial parametrization set includes MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1. The force field describes the periodic crystal and considers effective atomic charges based on topological analysis of the Bloch states of the extended materials. Transferable potentials were developed for the four organic ligands comprising the test set and for the associated Cu, Zn, and Zr metal nodes. The predicted materials properties, including bulk moduli and vibrational frequencies, are in agreement with explicit density functional theory calculations. The modal heat capacity and lattice thermal expansion are also predicted

    A universal chemical potential for sulfur vapours

    Get PDF
    The unusual chemistry of sulfur is illustrated by the tendency for catenation. Sulfur forms a range of open and closed S-n species in the gas phase, which has led to speculation on the composition of sulfur vapours as a function of temperature and pressure for over a century. Unlike elemental gases such as O-2 and N-2, there is no widely accepted thermodynamic potential for sulfur. Here we combine a first-principles global structure search for the low energy clusters from S-2 to S-8 with a thermodynamic model for the mixed-allotrope system, including the Gibbs free energy for all gas-phase sulfur on an atomic basis. A strongly pressure-dependent transition from a mixture dominant in S-2 to S8 is identified. A universal chemical potential function, mu(S)(T,P), is proposed with wide utility in modelling sulfurisation processes including the formation and annealing of metal chalcogenide semiconductors

    Ligand design for long-range magnetic order in metal-organic frameworks

    Get PDF
    We report a class of ligands that are candidates to construct metal–organic frameworks with long-range magnetic order between transition metal centres. Direct quantum chemical calculations predict Néel temperatures exceeding 100 K for the case of Mn

    Conductive metal–organic frameworks and networks:Fact or fantasy?

    Get PDF

    Transferable force field for metal-organic frameworks from first-principles: BTW-FF

    Get PDF
    We present an ab-initio derived force field to describe the structural and mechanical properties of metal-organic frameworks (or coordination polymers). The aim is a transferable interatomic potential that can be applied to MOFs regardless of metal or ligand identity. The initial parametrization set includes MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1. The force field describes the periodic crystal and considers effective atomic charges based on topological analysis of the Bloch states of the extended materials. Transferable potentials were developed for the four organic ligands comprising the test set and for the associated Cu, Zn, and Zr metal nodes. The predicted materials properties, including bulk moduli and vibrational frequencies, are in agreement with explicit density functional theory calculations. The modal heat capacity and lattice thermal expansion are also predicted
    • …
    corecore