28 research outputs found

    Innovative approach for the in vitro research on biomedical scaffolds designed and customized with CAD-CAM technology

    Get PDF
    Studies on biomaterials involve assays aimed to assess the interactions between the biomaterial and the cells seeded on its surface. However, the morphology of biomaterials is heterogeneous and it could be tricky to standardize the results among different biomaterials and the classic plastic plates. In this light, we decided to create, by means of computer-aided design (CAD) technology, a standardized sample model, with equal shape and sizes, able to fit into a classic shape of a 96-wells tissue culture plate (TCP)

    Culture and the Gender Gap in Competitive Inclination: Evidence from the Communist Experiment in China

    Full text link

    Implant-to-bone force transmission: a pilot study for in vivo strain gauge measurement technique

    No full text
    The experimental determination of local bone deformations due to implant loading would allow for a better understanding of the biomechanical behavior of the bone-implant-prosthesis system as well as the influence of uneven force distribution on the onset of implant complications. The present study aimed at describing an innovative in vivo strain gauge measurement technique to evaluate implant-to-bone force transmission, assessing whether and how oral implants can transfer occlusal forces through maxillary bones. In vivo force measurements were performed in the maxillary premolar region of a male patient who had previously received a successful osseointegrated titanium implant. Three linear mini-strain gauges were bonded onto three different buccal cortical bone locations (i.e. coronal, middle, apical) and connected to strain measuring hardware and software. A customized screw-retained abutment was manufactured to allow for vertical and horizontal loading tests. As to the vertical load test, the patient was instructed to bite on a load cell applying his maximum occlusal force for 20 s and then recovering for 10 s to restore the bone unstrained state; the test was repeated 20 times consecutively. As regards the horizontal load test, the implant was subjected to a total of 20 load applications with force intensities of 5 and 10 kg. During the tests, the recorded signals were plotted in real time on a graph as a function of time by means of a strain analysis software. The described strain gauge measurement technique proved to be effective in recording the forces transmitted from osseointegrated implants to the cortical bone. Horizontal loads caused higher deformations of cortical bone than vertical biting forces; in both situations, the deformation induced by the force transferred from the implant to the bone progressively decreased from the coronal to the apical third of the alveolar ridge. At approximately 9 mm from the implant neck, the effect of occlusal force transmission through osseointegrated titanium implants was negligible if compared to the apical region

    The effect of ferrule height on stress distribution within a tooth restored with fibre posts and ceramic crown: A finite element analysis

    No full text
    Objectives. To evaluate via finite element analysis the effect of different ferrule heights on stress distribution within each part of a maxillary first premolar (MFP) restored with adhesively luted glass fiber-reinforced resin (GFRR) posts and a ceramic crown. Methods. The solid models consisted of MFP, periodontal ligament and the corresponding alveolar bone process. Four models were created representing different degrees of coronal tissue loss (0 mm, 1 mm, 2 mm and 3 mm of ferrule height). First set of computing runs was performed for in vivo FE-model validation purposes. In the second part, a 200-N force was applied on the buccal cusp directed at 45° to the longitudinal axis of the tooth. Principal stresses values and distribution were recorded within root, abutment, posts, crown and related adhesive interfaces. Results. All FE-models showed similar stress distribution within roots, with highest stress present in the chamfer area. In composite abutments higher stress was observed when no ferrule was present compared to ferruled FE-models. Stress distribution within crown and GFRR posts did not differ among the models. Stress values at the adhesive interfaces decreased with increasing ferrule height. Significance. The stress state at abutment-crown and post-root interfaces was very close to their strength, when ferrule was not present. Similarly, higher ferrule produced more favorable stress distribution at post-abutment and abutment-root interfaces. Endodontically treated teeth with higher ferrule exhibit lower stress at adhesive interfaces that may be expected to lower the probability of clinical failur
    corecore