40 research outputs found

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Dimethyl Sulfoxide: A Bio-Friendly or Bio-Hazard Chemical? The Effect of DMSO in Human Fibroblast-like Synoviocytes

    No full text
    International audienceThe effect of dimethyl sulfoxide (DMSO) in rheumatoid arthritis (RA) human fibroblast-like synoviocytes (FLSs) has been studied on five different samples harvested from the joints (fingers, hands and pelvis) of five women with RA. At high concentrations (>5%), the presence of DMSO induces the cleavage of caspase-3 and PARP-1, two phenomena associated with the cell death mechanism. Even at a 0.5% concentration of DMSO, MTT assays show a strong toxicity after 24 h exposure (≈25% cell death). Therefore, to ensure a minimum impact of DMSO on RA FLSs, our study shows that the concentration of DMSO has to be below 0.05% to be considered saf

    Sonic hedgehog activation is implicated in diosgenin-induced megakaryocytic differentiation of human erythroleukemia cells

    No full text
    International audienceDifferentiation therapy is a means to treat cancer and is induced by different agents with low toxicity and more specificity than traditional ones. Diosgenin, a plant steroid, is able to induce megakaryocytic differentiation or apoptosis in human HEL erythroleukemia cells in a dose-dependent manner. However, the exact mechanism by which diosgenin induces megakaryocytic differentiation has not been elucidated. In this study, we studied the involvement of Sonic Hedgehog in megakaryocytic differentiation induced by diosgenin in HEL cells. First, we showed that different elements of the Hedgehog pathway are expressed in our model by qRT-PCR. Then, we focused our interest on key elements in the Sonic Hedgehog pathway: Smoothened receptor, GLI transcription factor and the ligand Sonic Hedgehog. We showed that Smoothened and Sonic Hedgehog were overexpressed in disogenin-treated cells and that GLI transcription factors were activated. Then, we showed that SMO inhibition using siSMO or the GLI antagonist GANT-61, blocked megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, we demonstrated that Sonic Hedgehog pathway inhibition led to inhibition of ERK1/2 activation, a major physiological pathway involved in megakaryocytic differentiation. In conclusion, our study reports, for the first time, a crucial role for the Sonic Hedgehog pathway in diosgenin-induced megakaryocytic differentiation in HEL cells

    Combination of tetrapyridylporphyrins and arene ruthenium(II) complexes to treat synovial sarcoma by photodynamic therapy

    No full text
    International audienceFour tetrapyridylporphyrin and four dipyridylporphyrin arene ruthenium complexes have been synthesized and characterized. In these complexes, the porphyrin core is either metal-free or occupied by zinc, and the arene ligand of the arene ruthenium units are either the standard methyl-isopropyl-benzene ([Formula: see text]cymene) or the less common phenylpropanol (PhPrOH) derivative. The porphyrin derivatives are coordinated to four arene ruthenium units or only two, in accordance with the number of pyridyl substituents at the periphery of the porphyrins, 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (TPyP) and 5,15-diphenyl-10,20-di(pyridin-4-yl)porphyrin (DPhDPyP). All eight complexes were evaluated as anticancer agents on synovial sarcoma cells, in the presence and absence of light, suggesting that both the arene ligand and the porphyrin core substituent can play a crucial role in fine-tuning the photodynamic activity of such organometallic photosensitizers

    Cyclopamine and jervine induce COX-2 overexpression in human erythroleukemia cells but only cyclopamine has a pro-apoptotic effect.

    No full text
    International audienceErythroleukemia is generally associated with a very poor response and survival to current available therapeutic agents. Cyclooxygenase-2 (COX-2) has been described to play a crucial role in the proliferation and differentiation of leukemia cells, this enzyme seems to play an important role in chemoresistance in different cancer types. Previously, we demonstrated that diosgenin, a plant steroid, induced apoptosis in HEL cells with concomitant COX-2 overexpression. In this study, we investigated the antiproliferative and apoptotic effects of cyclopamine and jervine, two steroidal alkaloids with similar structures, on HEL and TF1a human erythroleukemia cell lines and, for the first time, their effect on COX-2 expression. Cyclopamine, but not jervine, inhibited cell proliferation and induced apoptosis in these cells. Both compounds induced COX-2 overexpression which was responsible for apoptosis resistance. In jervine-treated cells, COX-2 overexpression was NF-κB dependent. Inhibition of NF-κB reduced COX-2 overexpression and induced apoptosis. In addition, cyclopamine induced apoptosis and COX-2 overexpression via PKC activation. Inhibition of the PKC pathway reduced both apoptosis and COX-2 overexpression in both cell lines. Furthermore, we demonstrated that the p38/COX-2 pathway was involved in resistance to cyclopamine-induced apoptosis since p38 inhibition reduced COX-2 overexpression and increased apoptosis in both cell lines

    A Strategy to Trap Oxygen and to Kill Cancer Cells by Photodynamic Therapy

    No full text
    Low oxygen concentration in solid cancer tumors leads to resistance, especially when dealing with photodynamic therapy (PDT) treatments. In fact, the presence of oxygen is mandatory to obtain an efficient PDT treatment. The synthesis of new oxygen carriers, specifically targeting cancer cells, appears to be an elegant strategy to tackle this issue. With this in mind, we have synthetized 15 arene ruthenium(II) assemblies containing different anthracenyl-based ligands in which the anthracenyl moieties were used to capture O2. We present their synthesis and characterization, as well as their photo-oxygenation and their toxicity/phototoxicity behavior on DU145 prostatic cancer cells. The possibility to transport oxygen via the formation of endoperoxides was further confirmed by mass spectrometry

    The P2Y2/Src/p38/COX-2 pathway is involved in the resistance to ursolic acid-induced apoptosis in colorectal and prostate cancer cells.

    No full text
    International audienceOne of the hallmarks of cancer is resistance to apoptosis. Elucidating the mechanisms of how cancer cells evade or delay apoptosis should lead to novel therapeutic strategies. Previously, we showed that HT-29 colorectal cancer cells undergoing apoptosis overexpressed cyclooxygenase-2 (COX-2), in a p38 dependent pathway, to delay ursolic acid-induced apoptosis. Here, we focused on elucidating the upstream signaling pathways regulating this resistance mechanism. The role of ATP as an extracellular signaling molecule took a long time to be accepted. In recent years, ATP and its analogs, via the activation of specific purinergic receptors, have been implicated in many biological processes including cell proliferation, differentiation and apoptosis. In the present report, we have demonstrated a novel role involving purinergic receptors and particularly the P2Y(2) receptor in resistance to ursolic acid-induced apoptosis in both colorectal HT-29 and prostate DU145 cancer cells. We found that ursolic acid induced an increase in intracellular ATP and P2Y(2) transcript levels. Upon activation, P2Y(2) activated Src which in turn phosphorylated p38 leading to COX-2 overexpression which induced resistance to apoptosis in both HT-29 and DU145 cells. Furthermore, Ca(2+)-independent PLA(2) (iPLA(2)) and Ca(2+)-dependent secretory PLA(2) (sPLA(2)) were responsible for arachidonic acid release, the substrate of COX-2. Our findings document that apoptosis triggering was dependent on protein kinase C (PKC) activation in both cell lines after ursolic acid treatment
    corecore