573 research outputs found

    Investigation of intercostal neuronal intracellular processes and connectivity by signal analysis and computer simulation

    Get PDF
    Imperial Users onl

    An Intervention Study Using Cognitive Conflict to Foster Conceptual Change

    Get PDF
    The study involved evaluating the efficacy of a conceptual change instructional programme involving cognitive conflict in (1) facilitating form 2 (grade 8) students’ understanding of algebra concepts, and (2) assessing changes in students’ attitudes towards learning mathematics, in a mixed quantitative-qualitative research design. The results showed that there was significant improvement in students’ achievement in mathematics and students’ attitude towards inquiry of mathematics lessons. Enjoyment remained high even though enjoyment of mathematics lessons showed no change. Changes in students’ understanding (from unintelligible to intelligible, intelligible to plausible, plausible to fruitful) illustrated the extent of changes in their conceptions. Finally, recommendations for future research are proposed

    A Changing Game: Challenging the Status Quo in Sports Law

    Get PDF

    Morning flight behavior of nocturnally migrating birds along the western basin of Lake Erie

    Get PDF
    Many species of birds that normally migrate during the night have been observed engaging in so‐called morning flights during the early morning. The results of previous studies have supported the hypothesis that one function of morning flights is to compensate for wind drift that birds experienced during the night. Our objective was to further explore this hypothesis in a unique geographic context. We determined the orientation of morning flights along the southern shore of Lake Erie\u27s western basin during the spring migrations of 2016 and 2017. This orientation was then compared to the observed orientation of nocturnal migration. Additionally, the orientation of the birds engaged in morning flights following nights with drifting winds was compared to that of birds following nights with non‐drifting winds. The morning flights of most birds at our observation site were oriented to the west‐northwest, following the southern coast of Lake Erie. Given that nocturnal migration was oriented generally east of north, the orientation of morning flight necessarily reflected compensation for accumulated, seasonal wind drift resulting from prevailingly westerly winds. However, the orientation of morning flights was similar following nights with drifting and non‐drifting winds, suggesting that birds on any given morning were not necessarily re‐orienting as an immediate response to drift that occurred the previous night. Given the topographical characteristics of our observation area, the west‐northwest movement of birds in our study is likely best explained as a more complex interaction that could include some combination of compensation for wind drift, a search for suitable stopover habitat, flying in a direction that minimizes any loss in progressing northward toward the migratory goal, and avoidance of a lake crossing

    The Calling Network: A Global Telephone Utility

    Get PDF
    There is a very large demand for basic telephone service in developing nations, and remote parts of industrialized nations, which cannot be met by conventional wireline and cellular systems. This is the world\u27s largest unserved market. We describe a system which uses recent advances in active phased arrays, fast-packet switching technology, adaptive routing, and light spacecraft technology, in part based on the work of the Jet Propulsion Laboratory and on recently-declassified work done on the Strategic Defense Initiative, to make it possible to address this market with a global telephone network based on a large low-Earth-orbit constellation of identical satellites. A telephone utility can use such a network to provide the same modem basic and enhanced telephone services offered by telephone utilities in the urban centers of fully-industrialized nations. Economies of scale permit capital and operating costs per subscriber low enough to provide service to all subscribers, regardless of location, at prices comparable to the same services in urban areas of industrialized nations, while generating operating profits great enough to attract the capital needed for its construction. The bandwidth needed to support the capacity needed to gain those economies of scale require that the system use Ka-band frequencies. This choice of frequencies places unusual constraints on the network design, and in particular forces the use of a large number of satellites. Global demand for basic and enhanced telephone service is great enough to support at least three networks of the size described herein. The volume of advanced components, and services such as launch services, required to construct and replace these networks is sufficient to propel certain industries to market leadership positions in the early 21st Century

    Characterizing disease states from topological properties of transcriptional regulatory networks

    Get PDF
    BACKGROUND: High throughput gene expression experiments yield large amounts of data that can augment our understanding of disease processes, in addition to classifying samples. Here we present new paradigms of data Separation based on construction of transcriptional regulatory networks for normal and abnormal cells using sequence predictions, literature based data and gene expression studies. We analyzed expression datasets from a number of diseased and normal cells, including different types of acute leukemia, and breast cancer with variable clinical outcome. RESULTS: We constructed sample-specific regulatory networks to identify links between transcription factors (TFs) and regulated genes that differentiate between healthy and diseased states. This approach carries the advantage of identifying key transcription factor-gene pairs with differential activity between healthy and diseased states rather than merely using gene expression profiles, thus alluding to processes that may be involved in gene deregulation. We then generalized this approach by studying simultaneous changes in functionality of multiple regulatory links pointing to a regulated gene or emanating from one TF (or changes in gene centrality defined by its in-degree or out-degree measures, respectively). We found that samples can often be separated based on these measures of gene centrality more robustly than using individual links. We examined distributions of distances (the number of links needed to traverse the path between each pair of genes) in the transcriptional networks for gene subsets whose collective expression profiles could best separate each dataset into predefined groups. We found that genes that optimally classify samples are concentrated in neighborhoods in the gene regulatory networks. This suggests that genes that are deregulated in diseased states exhibit a remarkable degree of connectivity. CONCLUSION: Transcription factor-regulated gene links and centrality of genes on transcriptional networks can be used to differentiate between cell types. Transcriptional network blueprints can be used as a basis for further research into gene deregulation in diseased states

    Transport Out of the Antarctic Polar Vortex from a Three-dimensional Transport Model

    Get PDF
    [1] A three-dimensional chemical transport model is utilized to study the transport out of the Antarctic polar vortex during the southern hemisphere spring. On average, over five consecutive years between 1993 and 1997, horizontal transport out of the vortex into the midlatitude stratosphere is smaller than vertical transport into the troposphere. However, there is significant interannual variability in the magnitude of mass exchange, which is related to year-to-year fluctuations in planetary wave activity. In 1994 the net loss of the vortex tracer mass in September is similar to that in October. However, the relative mass flux entering the midlatitude stratosphere and the troposphere differ between the two months. The ratio of horizontal transport out of the vortex to vertical transport into the troposphere is about 3:7 in September and 5:5 in October, indicating the higher permeability of the vortex in October compared to September. The September mass flux into the troposphere is larger than in October, consistent with the fact that stronger diabatic cooling occurs in September than October over Antarctica. The estimated ozone change at southern midlatitudes due to the intrusion of ozone-depleted air from high latitudes during September–October 1994 is about −0.44% per decade, which could contribute up to 10% of observed ozone decline at southern midlatitudes in spring. This amount is an underestimate of the dilution effect from high latitudes during the spring season, as it does not include the vortex breakup in late spring
    • 

    corecore