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ABSTRACT: There is a very large demand for basic telephone service in developing nations, and remote 
parts of industrialized nations, which cannot be met by conventional wireline and cellular systems. This is 
the world's largest unserved market. We descn'be a system which uses recent advances in active phased 
anuys, fast-packet switching technology, adaptive routing, and light spacecraft technology, in part based 
on the work of the Jet Propulsion Laboratory and on recently-declassified work done on the Strategic 
Defense Initiative, to make it possible to address this market with a global telephone network based on a 
large low-Earth-orbit constellation of identical satellites. A telephone utility can use such a network to 
provide the same modem basic and enhanced telephone services offered by telephone utilities in the urban 
centers of fully-industn'alizea nations. Economies of scale permit capital and operating cost.s per 
subscriber low enough to provide service to all subscribers, regardless of location, at pn'ces comparable to 
the same services in urban areas of industrialized nations, while generating operating profit.s great enough 
to attract the capital needed for it.s construction. The bandwidth needed to support the capacity needed to 
gain those economies of scale require that the system use Ka-band frequencies. This choice of frequencies 
places unusual constraint.s on the network design, and in particular forces the use of a large number of 
satellites. Global demand for basic and enhanced telephone service is great enough to support at least 
three network.s of the size described herein. The volume of advanced components, and services such as 
launch services, required to construct and replace these network.s is sufficient to propel certain industries 
to market leadership positions in the early 21st Century. 

The Global Need for Telecommunications 

Developing Nations 
Half of the world's population lives more than two hours from a telephone l . 527,000 

villages in India do not have telephone service2. There are over 40 million applicants around the 
world on waiting lists3 . Much of this demand, and the larger hidden demand of people who have 
not joined waiting lists because they have no reasonable hope of getting service, is in provincial 
areas of developing countries (areas far from the nation's one or two major cities). Many 
developing countries do not have the skills, technology, and funding to expand their telephone 
networks rapidly; yet, demand for telephone service continues to mount as economic growth 
increases their emerging middle class' ability to pay for such service. 

For example, the richest 10% of Indonesian households represent a larger market than all 
households in Portugal; these Indonesians have the same average income as Portugal and 
comprise more households4. Yet, Portugal has 2.7 million access lines and the whole ofIndonesia 
has only 1.3 millions. Unserved people in developing countries require low cost access to basic 

1. __ , "Phones into Orbit.." The Economist, March 28, 1992. pp 14-IS 
2. N Ravi. "Telecommunications in India,· IEEE Communicallons Magazine. March 1992 
3. International Telecommunication Union. Yearbook o/Common Carner Telecommunications Sratistid 
4, Calculated from World Bank data and also sta1cd in __ , "Asian Adventures,· The Economisr, May 30, 1992, P 17. 
S. International Telecommunication Union, op. cit, p 1 
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telephone services, such as voice, facsimile, and low-rate data. These are basic services that could 
be supported by a standard analog telephone line if those lines existed; however, the capital cost 
of installing physical telephone lines to a significant number of people in a reasonable time is far 
beyond the resources of most developing nations. 

Industrialized Nations 
The convergence of computer, telecommunications, and entertainment industries has 

created a list of new, enhanced telephone services that require more bandwidth than can be 
supported by standard analog telephone lines. Today's demand for these services, such as 
interactive multimedia, is mainly in high-income countries. While these services are easy to 
provide in cities, existing wireline and cellular networks cannot distribute enhanced services to 
rural areas at reasonable cost. But people in rural areas have the same needs as people in cities: 
rural areas of high-income countries require high quality, high capacity channels that offer cost­
effective bandwidth on demand. 

Services to be Provided 
To satisfy this demand, the capital cost per subscriber of a new telephone network must be 

indifferent to its subscribers' location, while the network provides the same services offered by 
telephone companies and government Administrations in urban areas of high-income nations. It 
must address the needs of businesses, individuals, and social agencies; and because it is a public 
utility, it must through its operation bring significant social and economic benefits to the nations 
it serves. 

Business subscribers need flexible access to a wide range of integrated services that 
modem companies use to conduct their daily business: high quality voice, high rate data, 
facsimile, full-motion compressed video, interactive imaging, enterprise-wide networks, and 
interactive high-resolution graphics. 

Individuals and social agencies need basic telephone service, distance learning, tele-health, 
video programming, disaster recovery, and tele-monitoring. 

Socioeconomic Benefits 
Universal telephone service closes the opportunity gap between urban and rural areas and 

between the information-rich and information-poor. Equal access to telephone service throughout 
a country is an enormous economic stimulant. It opens domestic and international markets, allows 
the disabled to work from home, and lets industries locate near raw materials and pools of labor. 
Equal access to telephone service allows social services such as health care and education to be 
delivered to remote and isolated areas that do not have an adequate number of doctors, nurses, 
and teachers. This provides a dramatic improvement in the quality of life in rural, remote, and 
underserved areas of all nations, both rich and poor. 

Universal telephone service improves the free flow of goods, services, and information 
within and between remote locations, thereby increasing economic, commercial, and 
administrative efficiency. It provides direct access to world mercantile and financial markets for 
manufacturing and intellectual service companies in provincial areas, while supporting the 
information flow that reduces the operating costs and increases the efficiency, quality, and 
productivity of rural companies, such as those in agricultural, extractive, and tourist industries. 

Since surface disasters such as hurricanes, earthquakes, and floods do not affect satellite 
network operation, such networks can save many lives when used for emergency relief and 
disaster recovery. 
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Reliability of Service 
When people have good telephone service, they entrust the safety of their lives and 

property to the integrity of that service. Reliability of the service and its supporting network is 
thus of overriding importance. It has been shown' that the most robust telephone network is a 
non-hierarchical structure whose topology resembles a geodesic dome. Such a network is not 
achievable in practice, but is most closely approximated by a large constellation of low-Earth­
orbit satellites of equal rank. 

Economic Considerations 

Price of Service 
Telephone service will not be accepted if its users can't afford it. The acceptable price of 

telephone service in each nation has already been determined by prices charged by the nation's 
telephone companies or Administration in urban areas with wired service. As a first 
approximation, then, any company proposing to provide telephone service throughout a nation 
must be able to do so at prices comparable to those already charged for the same service 
elsewhere in the same nation. In many nations, acceptable prices are comparable with those 
charged for urban service in high-income nations. 

Clear, dependable telephone service is a powerful facilitator of economic growth. It works 
by giving remote businesses and industries in remote and developing areas the same immediate 
access to world markets for goods, money, and information as their competitors in the world's 
industrial centers. Telephone service cannot provide this level playing field unless it is delivered at 
prices similar to standard urban telephone service. 

Economic Constraints on the Serving Company 
To provide universal service at prevailing prices, the serving telephone company must be 

large enough to obtain the necessary economies of scale. Our studies show that a global supplier 
of such services must be about the size of an American Regional Bell Operating Company to be 
able to supply a full range of telephone and data services at current world prices. Such a company 
is able to serve about 20 million typical business lines7 or a correspondingly greater number of 
residential and village telephone lines. 

It is clear that a twenty-million-subscriber company, like its exemplar, the Regional Bell 
Operating company, must be highly profitable in order to raise the large amount of capital it needs 
for construction and growth, and to replace its constellation of satellites as it reaches the end of its 
life. The sheer size of the company and its continuing capital needs demand that it be profitable in 
its own right as a telephone company. It cannot rely on served-nation subsidies or the sale of 
terminals to supplement its revenue; its served nations deserve the revenue they can derive by 
manufacturing terminals locally for their own use and for export to their richer neighbors; and a 
nation that cannot afford to install its own telephone system certainly cannot afford to pay a 
foreign company to install one for it. 

Spectrum Requirements 
To provide such a large number of subscribers with high-quality wireless service requires 

substantial bandwidth, of the order of 200 1v1Hz in both transmit and receive directions. The 
lowest available frequency bands of this size are in the 20 to 30 GHz range (Ka band). In this 

6. Hub«, Pder W ~ 1M Geodesic Network. J 987 Report 011 CompeMiOll in the Tehlphone Indllstry, Superintendent ofDocumenls, U.S. 
Government Printing Office, Washington, D.C., 1987 

7. A typical business J.i.ne is in use for 10% of the busy hour. This is defmed as 0.1 Erlang (or 3.' CCS). 
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range, 4.7 GHz is already allocated for use by fixed and mobile satellite systems for wireless 
connections between user terminals and satellites. 

Since radio spectrum is a valuable natural resource owned and shared by all mankind, any 
system proposing to use such a large amount of spectrum must go to extraordinary lengths to be 
sure that it uses that spectrum in a highly efficient way. The system we here describe re-uses its 
frequencies 20,000 times on a global basis. 

Complementarity to Proposed LEO Systems 
A large system that provides basic and enhanced telephone service must expect that most 

of its subscribers will be in residences and businesses, and will thus use fixed tenninals; such a 
network is therefore complementary to known proposals for low-Earth-orbit satellite systems. 
Since active people now expect mobile and personal portable telephone service to be a part of a 
complete telephone service offering, any large network must support mobile, portable, and 
handheld service; and in fact, a 20-million subscriber network should expect that a significant 
number of its tenninals will not be in fixed locations. Even though it does not penetrate buildings 
and dense foliage well, a Ka-band network can supply useful mobile, portable, and handheld 
service, especially to users who require bandwidths higher than those needed for basic two-way 
voice communication. 

Provision or Service 
All nations regulate telecommunications service, and many nations provide it through a 

government monopoly. The laws of orbital mechanics demand that a low-Earth-orbit network that 
provides global service have some of its satellites over the territory of every nation, whether that 
nation pennits it to deliver service or not. It follows that those satellites that are over nations 
which do not pennit their use are wasted assets. To help gain access to all nations, a global 
telephone company must deliver its services through a local service provider in each nation, which 
may be the government-monopoly "PTT," the already-franchised telephone company, or some 
other locally-owned and -managed entity. The service must be provided transparently, in the name 
of the local service provider. 

Environmental Considerations 
Any enterprise that provides service to the people of the Earth on a large scale must be 

impeccable in its use of the air, the Earth, and the space that surrounds us. It must use exquisite 
care not to harm, and if possible must improve, the wholesomeness of the planet we share. 

The Design or a Global Telephone Network 
We here describe the CallingSM Network, a low-Earth-orbit ("LEO") satellite network 

capable of seamless distribution of telecommunications capacity, on demand, to support low cost, 
high quality, flexible, and integrated access to any medium, anytime, anyplace. It is intended to 
extend basic service to provincial and rural areas of developing countries and to deliver both basic 
and enhanced services to rural areas ofhlgh-income countries. The design achieves economies of 
scale through volume manufacture and achieves economies of scope (using one network for a 
variety of services) by offering a wide range of integrated services at a low capital cost 
per subscriber. 

Network Objectives 
Calling Communications Corporation intends to build a high-capacity network to offer its 

subscribers, regardless of their location, a wide range of high-quality modem telecommunication 
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services at prices equivalent to those charged for similar services provided by existing terrestrial 
systems. The primary market is subscribers in areas that are not served economically by terrestrial 
systems (e.g., areas of low user density), as well as subscribers needing access to services not 
available from their conventional telecommunications provider. The network service area 
encompasses nearly one hundred percent of the Earth's population. The CallingSM LEO satellite 
system is designed to provide service to fixed-site terminals, and is also capable of providing 
ancillary services such as mobile services. 

The network provides switched digital connections at mu1tiples of its 16 Kbps basic 
channel, up to 2 Mbps. The basic channel rate provides network quality voice as well as a variety 
of data, facsimile, and other services. Higher rate channels support the wide range of services 
available with an ISDN connection and a multi-rate ISDN connection. The network also provides 
wideband channels up to DS-3 rates or OC-l rates (about 44 Mbps) between its gateways for 
domestic and international toll and private service. 

The network accommodates a peak load of more than 2,000,000 simultaneous full-duplex 
connections, corresponding to over 20,000,000 subscribers at typical "wireline" business usage 
levels. These capacity estimates assume actual, not uniform, distribution of subscribers within the 
service area. The system handles a peak channel density of over 100 times the average. The peak 
density of a cell is 0.5 simultaneous basic-rate channels per square kilometer averaged over a cell. 
For the system's 53.3 km-square cell, this corresponds to 1440 channels, which will serve over 
14,000 typical business subscribers or a larger number of residential and village telephone 
subscribers. 

System Description 

Design Summary 
Some key elements of the system design are discussed in the following sections. The 

following is a brief overview of the design (see Figure 1): The network resides in a LEO 
constellation of 840 satellites plus 84 spares. Each satellite is a switch node in the network and is 
linked with up to eight adjacent nodes to form a robust mesh topology. Subscriber terminals 
communicate directly with the satellite network, which connects them with other network 
subscriber terminals or, through a gateway interface, with the public switched network. Fast 
packet switching technology combined with a proprietary packet routing algorithm are used to 
adapt to the continually changing topology of the LEO-based network. 

Communication links between Earth terminals and satellites use the 30/20 gigahertz (GHz) 
frequency band, the lowest band with sufficient spectrum to meet the requirements imposed by 
Calling's quality and capacity objectives. A combination of a high mask angle (the lowest vertical 
angle from a terminal at which communication is attempted), high-gain satellite antennas, and 
small cell size compensate for the rain attenuation and terrain blocking characteristics of these 
frequencies and minimize interference to and from terrestrial systems. 

s 
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Figure 1 - Calling's distinguishing concepts. .. LEO constellation; b, Geodesic 
network; c, Fast packet switching; d, Adaptive routing; e, 301l0 GHz links at 40° 
mask angle; f, Multiple access; g, Earth-fixed cells; h, Standard interfaces; i, 
Economy of scale. 

A unique Earth-fixed-cell technology minimizes the tfhand-off" and frequency coordination 
problems associated with LEO networks. Instead of moving with the satellite footprint, the 
system's cells are arranged in a fixed grid on the Earth to which the satellites electronically steer 
their anteMas as they pass. This permits a terminal to keep the same channel assignment for the 
duration of a call, regardless of the number of satellites involved. Hand-offs become the exception 
rather than the rule. This Earth-fixed-cell technology enables the use of small cells, resulting in 
high spectral efficiency. 

The combination of low Earth orbit and high mask angle results in small satellite 
footprints. This in turn forces the constellation to contain a large number of satellites to cover the 
Earth. While a large constellation is expensive, it offers a number of significant advantages to a 
communications network with high quality. reliability. and capacity objectives. The apparent 
disadvantages - the cost and complexity of building, launching, and managing a large 
constellation - are not insurmountable. They are subject to economies of scale, as discussed 
below. 

All satellites are identical and designed to take full advantage of the economies of scale of 
high volume manufacturing and mUltiple launch. Once launched, each satellite and the 
constellation as a whole are essentially autonomous. On-board systems maintain the satellites' 
altitude and position in orbit, monitor and analyze subsystem status, and periodically report the 
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The CallingSM Network 

Figure 1- Calling's 11 orbits spaced 9S apart. 

results, including a projection of remaining useful life. Control from the ground is required only to 
handle exceptional cases. 

The CallingSM system demonstrates the important commercial benefits of using technology 
developed for other purposes by U.S. National Laboratories such as Jet Propulsion Laboratory 
(JPL) and Lawrence Livermore National Laboratory (LLNL). Many of the subsystems, 
components, materials, and processes developed for space exploration and national defense can be 
used directly or indirectly in Calling's network. 

The Constellation 
The network is embodied in a constellation of LEO satellites orbiting the Earth at an 

altitude of 700 km. There are 21 orbital planes inclined at 98.2° to the equator, with adjacent 
ascending nodes spaced at 9.5°. At this inclination, each satellite presents the same face to the sun 
at all seasons. This sun-synchronous orbit allows significant savings in solar power arrays and 
allows parts of the satellite's electronics to be cooled by radiation, as explained in more detail 
below. 

Each orbital plane contains 40 active satellites spaced evenly around the orbit, along with 
up to four operational spares, resulting in a total constellation of 840 to 924 satellites. Figure 2 
shows the entire set of orbits. The constellation is designed so that a subscriber's terminal can 
"see" two or more satellites most of the time. This allows load sharing among satellites, and also 
provides redundant coverage in the event of satellite failure. 

7 
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Figure 3 - Overlapping satellite f'ootprint coverage over tbe United States 
allows .. subscriber's terminal to "see" two or more satellites most of'the time. 

Figure 3 illustrates the coverage redundancy over the United States. The footprint and 
coverage diagrams are based on a system design feature which insures that there is at least one 
satellite no lower than 40° above the horizon. This high "mask angle" minimizes blockage from 
structures and terrain, minimizes interference with terrestrial microwave links, and limits the 
effects of rain attenuation and multi-path reflections. 

When the constellation is deployed, each launch vehicle carries a number of satellites that 
depends on the lifting capacity of the vehicle. These satellites are released in their proper orbital 
plane; each satellite then adjusts its position within the plane. On-board thrusters and an 
autonomous navigation system continuously monitor and adjust the satellite's altitude, attitude, 
and position. A number of active spare satellites are placed in orbit along with the first launch of 
satellites; additional multiple launches are made from time to time to replenish orbiting 
active spares. 

The satellite bus and payload are designed to have a lifetime of ten years. The lifetime is 
limited by batteries, solar cells, electronic component failure rates, and on-board consumables. 
Some thirty percent of the satellites are expected to fail at random before the end of the ten years. 
When an active satellite fails, all satellites in its orbit reposition themselves to fill the gap. This 
high degree of coverage redundancy minimizes or eliminates service disruption. Service continues 
during the repositioning process, which is complete in less than two hours. A loosely-coupled 
coverage pattern allows the satellites in one plane to be repositioned without opening gaps 
between its adjacent planes. No debris is left behind in orbit: launch vehicles retain enough fuel to 
deorbit themselves, and satellites at the end of their useful life are deorbited and disintegrate 
harmlessly in the atmosphere. 

The Network 
Figure 4 provides an overview of the network architecture. The network uses fast packet 

switching technology similar to the Asynchronous Transfer Mode ("AIM") technology now being 
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Figure 4 - Calling's LEO network provides low delay digital connei:tions 
between terminals and, tbrough regional gateway switcbes, to tbe Public 
Switched Network. Distributed administrative and control systems conoect to 
tbe network tbrougb tbe gateway interface. 

developed for LAN, WAN and Broadband ISDN ("B-ISDN") networks. All communication is 
treated identically within the network as streams of short fixed-length packets. Each packet 
contains a header that includes address and sequence information, an error-control section used to 
verify the integrity of the header, and a payload section which carries the digitally-encoded voice 
or data. Conversion to and from the packet format takes place in terminals and gateway 
interfaces. The fast packet switch network combines the advantages of a circuit-switched network 
(low delay "digital pipes"), and a packet-switched network (efficient handling of multi-rate and 
bursty data). The technology is ideally suited for the dynamic nature of a LEO network. 

Each satellite in the constellation is a node in the fast packet switch network, and has 
intersatellite communication links with up to eight other satellites in the same and adjacent orbital 
planes, as shown in Figure 5. Each satellite is normally linked with four satellites within the same 
plane (two in front and two behind), and with one in each of the two adjacent planes on both 
sides. This interconnection arrangement forms a non-hierarchical "geodesic," or mesh, network 
and provides a robust network configuration that is tolerant to faults and local congestion. 

The satellites communicate directly with fixed, transportable, and mobile terminals and to 
gateways. Gateways connect Calling traffic, inbound and outbound, to the other networks in the 
destination country. The gateway interface aiso provides the network access to various operations 
support, control, and database systems. 

9 
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Figure S - Terminals and gateway interfaces convert all communication to 
streams of fixed lengtb packets. Each satellite in tbe constellation is a switch 
node in tbe fast packet switcb network. Intenatellite links interconnect tbe 
nodes in a robust mesb or "geodesic" topology. 

Fast Packet Switch 
Figure 6 illustrates the architecture of the satellites' fast packet switch subsystem. The 

switch node is essentially non-blocking with very low packet delay, and a throughput in excess of 
five gigabits per second. Packets are received via an input port from an adjacent satellite, or from 
a gateway or terminal within the satellite footprint. An input packet processor examines the 
header to detennme the packet's destination and the corresponding switch output port. The input 
processor adds a routing tag to the packet which the self-routing section uses to direct the packet 
to the selected output port. The output port may be an intersatellite link leading to a distant 

. destination, or it may lead to a local transmitter, a gateway or to a cell currently served by this 
satellite. A proprietary adaptive routing algorithm adapts the packet routing decisions to the 
current network configuration and mapping between satellite scanning beams and Earth­
fixed cells. 

Adaptive Routing 
The network topology of a LEO-based network is dynamic. Each satellite keeps the same 

position relative to other satellites in the same orbital plane, but its position and propagation delay 
relative to ground tenninals and to satellites in other planes changes constantly. Communications 
links between satellites are connected and disconnected as orbits intersect and as satellites move in 
and out of communication range. The changes are continuous, but predictable. The system uses a 
proprietary autonomous orbit detennination system to provide the precise position of each 
satellite to all satellites in the constellation. The information is used for precise beam steering 
between satellites and to Earth terminals, to calculate propagation delays, and to determine 
current geographical coverage areas. This position information is derived at a very low cost 
directly from the geometry of the constellation, without the aid of outside navigation signals. 

In addition to the network's changing topology, as traffic flows through the network, 
queues of packets build up in the satellites, changing the waiting time before transmission to the 
next satellite. All of these factors affect the routing choice made by the fast packet switch. These 
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Figure 6 - Calling's fast packet switch node uses the destination address in 
the incoming packet's header and tables generated by the adaptive routing 
a1goritbm to select the output link. A self-routing switch fabric switcbes the 
packet to this link. 
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Figure 7 - Calling's distributed adaptive routing algorithm directs each 
packet along the "least delay" path to its destination. Packets of the same 
connection may follow different paths tbrough tbe network. The algorithm 
communicates with other nodes to "learn" the network status and adapt to 
changes. 
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decisions are made continuously within each node, using a proprietary distributed adaptive routing 
algorithm. This algorithm uses information broadcast throughout the network by each satellite to 
"learn" the current network status in order to select the least delay path to a packet's destination. 
The algorithm also controls the connection and disconnection of network links. 

The network uses a "connectionless" protocol: packets of the same connection may 
follow different paths through the network. Each node independently routes the packet along the 
path which currently offers the least expected delay to its destination (refer to Figure 7). The 
terminal or gateway interface at the destination buffers, and if necessary reorders, the received 
packets to eliminate the effect of timing variations. Extensive and detailed simulation of the 
network and routing algorithm has verified that for a long path the overall end-to-end delay is 
often less than that of a terrestrial fiber optics system connecting the same points. In addition, the 
deviation from the average packet delay for a connection is extremely low--typically a few 
milliseconds. 

The Terminals 
The system will support a wide variety of channel bandwidth and terminals that fall into 

two general categories: fixed and mobile. 

Fixed Terminals 
Fixed terminals can take any form, since there are no stringent constraints on power or 

antenna size. One possible configuration is shown in Figure 8. Fixed terminals operate at the basic 
channel rate - 16 Kbps "payload" with an additional 2 Kbps channel for signaling and control -­
and at multiples of the basic rate up to 2 Mbps. The basic rate supports low-delay "network 
quality" speech coding that is generally indistinguishable from today's 64 Kbps digital landline 
circuits. It also supports 4.8 Kbps voice-band modems, 16 Kbps digital data, and high-speed 

MICROWAVE 
ELECTRONICS 

EXTERNAL 
ANTENNA 

FIXED TERMINAL 

Figure 8 - A fixed terminal configuration at tbe basic rate supports low 
delay "network quality" speecb coding, voice-band modems, digital data 
and bigh speed facsimile. Higher rates support multiple individual 
cbannels and combined bigh-rate channels. 
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facsimile. The higher channel rates support multiple individual channels and combined high-rate 
channels, which offer the full range of switched N x 64 and multi-rate ISDN services. . 

Fixed terminals use a proprietary antenna approximately ten inches in diameter, normally 
mounted in a fixed position with an unobstructed path above 40°. We expect that most fixed 
terminals will be units with connections for standard telephones, ISDN sets, private branch 
exchanges, and/or data equipment. A group terminal option (see Figure 4) provides shared access 
to a small village or community of subscribers using inexpensive wireless phones. 

Mobile Terminals 
Mobile terminals are small and lightweight, similar to today's vehicle-mounted cellular 

terminals. They operate at low power levels and use a low-profile 7.5 cm diameter antenna. The 
mobile terminal provides a single basic-rate channel (16 Kbps payload plus 2 Kbps signaling and 
control) which supports network-quality speech., 4.8 Kbps voice-band modems, 16 Kbps digital­
data, and high-speed facsimile. To compensate for its smaller antenna size, a mobile terminal 
requires a higher energy per bit than a fixed terminal. 

Gateways 
Gateway interfaces are the network access nodes for inbound and outbound traffic to the 

destination region, and for connections to the system's network administration and control 
systems. Traffic sources include public or private gateway switches and full-term point-to-point 
transmission facilities at T -1 and higher rates. 

The gateway interface performs the conversion between the network's internal network 
transmission and signaling formats and the international standards of the connecting systems. The 
gateway switch interface is based on ISDN standards for compatibility with current. digital 
switches. In this way telephone companies and service providers can use equipment from 
suppliers with whom they have established relationships, and equipment with which their 
maintenance craftspeople are familiar. 

Network Operational and Control Centers owned and operated by Calling include 
subscriber and network databases, feature processors, network management, and billing systems. 
Service providers have remote access to some of these systems for monitoring, testing, and 
administering terminals within their region. 

For reliability and to deal with rain attenuation at the gateways' uplink and downlink 
frequencies, the gateway interface uses two or more sets of radio and antenna assemblies 
separated by thirty to fifty kilometers (30 - 50 kIn) connected by standard commercial fiber-optic 
or microwave links. 

Operations Control Centers 
Gateway interfaces provide the interconnection points for the network's Constellation 

Operations and Control Centers ("COCC"), Network Operations Control Centers ("NOCC") and 
Service Provider Administration Centers ("SPAC"). COCCs coordinate the satellites' initial 
deployment, replenishment of spares, fault diagnosis, repair, and deorbiting. The NOCCs include 
a variety of distributed network administration and control functions including network databases, 
feature processors, network management and billing systems. SP ACs give local service providers 
control over the administration, billing, and testing of terminals in their region. 

Communication Links 
As discussed above, the network is based on fast packet technology, and all 

communications links transport voice and data as fixed-length packets. All links are also 

13 



The CalJingSM Network 

encrypted to guard against eavesdropping. T enninals and gateway interfaces perform the 
encryption/decryption and conversion to and from the packet format. The network has three 
categories of communications links: 

Intersatellite links (ISLs) intercoMect a satellite switch node with up to eight other nodes 
in the same or adjacent orbital planes. Each ISL can use from one to eight 138 Mbps chaMels, 
depending on the capacity required at any time. 

Gateway-satellite links (GSLs) COMect the satellite network through a gateway interface 
to the public network and to ground-based control, support, and database systems. Each satellite 
can support eight GSLs, each with a capacity of up to eight 138 Mbps chaMels. 

Tenninal-satellite links (TSLs) are direct cOMections between tenninals and the satellite­
based network. There are two types of TSLs: Fixed Terminal Satellite Links (FTSLs), which 
support larger, higher gain tenninals (normally fixed-site), and Mobile Tenninal-Satellite Links 
(MTSLs), which support small, moderate gain tenninals (nonnally mobile). The basic chaMel rate 
is 16 Kbps for the payload plus 2 Kbps for signaling and control. Fixed tenninals support 
multiples of the basic rate up to a 2 Mbps payload rate. 

Frequency Selection 
Spectrum requirements are detennined by quality, capacity, and chaMel density 

objectives. For example, FTSL uplinks and downlinks each require approximately 200 MHz to 
support 1440 simultaneous full-duplex chaMels within a 2841 km2 cell. Table 1 provides details 
of the bandwidth requirements and modulation parameters for each link. 

Table 1 - Bandwidth Requirements and Modulation Parameters 
Spectrum 

Requirement 
Link Type Modulation Format (MHz) 

UPLINK 
Fixed Terminals (FTSL) Rate 213 8·PSK TCM 198 
Mobile Terminal (MTSL) Rate 213 8·PSK TCM 12.4 
Gateway (GSL) Rate 3/4 16·PSK TCM 544 

DOWNLINKS 
Fixed Terminals (FTSL) Rate 213 8-PSK TCM 198 
Mobile Terminals (MTSL) Rate 213 8-PSK TCM 12.4 
Gateway (GSL) Rate 3/4 16·PSK TCM 544 

INTERSATELLITE (60 GHz) Rate 3/4 16·PSK TCM 1088 

The lowest frequency band with enough bandwidth available to support Calling's TSL and 
GSL requirements is at 30/20 GHz (Ka-band), which has international allocations for fixed and 
mobile satellite service. To deal with terrain blocking and high rain attenuation at these 
frequencies, the system uses a combination of a high mask angle, high-gain anteMas, transmitter 
power control, and (for GSLs) space diversity. The 4()0 mask angle avoids most terrain 
interference, minimizes interference with terrestrial systems, limits the user-to-satellite distance to 
1022 km, and limits the path length subject to rain attenuation to a few thousand meters (see 
Figure 9). These techniques result in high link availability in most climate areas. Figure 10 
provides a plot of expected link availability for various climatic regions. 
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CES PATH LOSS 

Figure 9 - A 400 mask angle limits the portion of tbe path exposed to rain to 
• few thousand meten. eliminates most terrain blocking. and limits the 
overall terminal-to-satellite patb length. 
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Figure 10 - JOIlO GHz links are subject to bigh rain attenuation and 
terrain blocking. Calling's variety of compensation tecbniques result in 
very low link outages in most dimatic regions. Space diversity on 
gateway links eliminates most rain outages. 
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The combination of 400 mask angle and 700 km altitude also defines the satellite's 
footprint radius (approximately 706 km), which in turn determines the minimum number of 
satellites in the constellation (see Figure 11). 

Earth-Fixed-Cells 

Figure 11 - The combination of a 700 km orbit and a 40· mask angle 
defines tbe satellite footprint. The small footprint results in a large 
number of satellites for global coverage. 

The satellite footprint is composed of contiguous cells, analogous to a terrestrial cellular 
system. Each cell supports a number of communications channels. Terminals within each cell 
share these channels using a combination of multiple-access methods. Cells are arranged in a 
pattern that allows frequencies and time slots to be reused many times within a footprint without 
interference between adjacent cells. High gain satellite antennas produce small cells (53.3 k.m 
square) which efficiently use spectrum, provide high channel density, and requires low 
transmitter power. 

The footprint of a LEO satellite sweeps over the Earth's surface at approximately 25,000 
km/hr. If Calling's pattern of small cells moved with the satellite footprint, a terminal would 
remain in one cell for only a few seconds before a channel reassignment or "hand-off' to the next 
cell would be required. As is the case with terrestrial cellular systems, frequent hand-offs result in 
inefficient channel utilization, high processing costs, and lower system capacity. In this 
constellation, the hand-off problem is minimized with proprietary Earth-fixed-cell technology. 

The network maps the Earth's surface into a fixed grid of approximately 20,000 
"supercells". each consisting of 9 cells (see Figure 12). Each supercell is a square 160 k.m on a 
side, and supercelJs are arranged in bands parallel to the Equator. There are approximately 250 
supercells in the band at the Equator, and the number per band decreases in proportion to the 
cosine of the latitude. Because the number of supercells per band is not constant, the "north­
south" supercell borders in adjacent bands are not aligned. 
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/ EARTli-F1XED 

.UPIII CELL 

Figure 12 - Calling's small cell (53.3 x 53.3 kID) permits high frequency 
reuse, low transmitter power and high system capacity. This 
architecture minimizes the "hand-ofr' problems associated with LEO 
networks by arranging the cells in an Earth-fixed grid. 

There is a fixed relation between supercell coordinates and latitude-longitude coordinates. 
The time of day defines which orbital plane has primary coverage responsibility for each supercell. 
Each satellite's orbital position is then used to determine its assigned geographical coverage area. 
This fixed relationship makes it possible to determine at any time, based on a terminal's location, 
which satellite has primary coverage responsibility for that terminal. 

The satellite footprint encompasses a maximum of 64 supercells, or 576 cells. The actual 
number of cells for which a satellite is responsible is a variable that depends on satellite location 
and spacing between satellites. As a satellite passes over, it steers its antenna beams to the fixed 
cell locations within its footprint. This beam steering compensates for the satellite's motion as well 
as the Earth's rotation. (An analogy is the tread of a bulldozer that remains in contact with the 
same point while the bulldozer passes over). This concept is shown in Figure 13. Frequencies and 
time slots are associated with each cell and are managed by the current "serving" satellite. As long 
as a terminal remains within the cell, it maintains the same channel assignment for the duration of 
a call, regardless of how many satellites and beams are involved. Channel reassignments become 
the exception rather than the normal case, thus eliminating much frequency coordination and 
hand-off overhead. 

Small fixed cells also allow the system to contour service areas to national boundaries, an 
impossible feat with large cells or cells that move with the satellite. A cell database contained in 
each satellite defines the type of service allowed within each cell, and can be used to tum off 
service on a country-by-country basis, or to avoid interference with radio astronomy or other 
specific sites. 
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Figure 13 - Calling satellites use electronically-steered pbased-array 
antennas to direct beams to tbe Eartb-fixed cells. 

Earth-fixed-cell technology relies on accurate knowledge of the satellites' position and 
attitude, timing infonnation, and precision beam steering. The enabling technologies for Earth­
fixed cells include: autonomous orbit position determination system, active phased array 
antennas, multiple access method, fast packet switching, and adaptive routing. 

Multiple Access Method 
A mUltiple access method is the means by which multiple terminals share a common set of 

communications resources. The CallingSM system uses a combination of mUltiple access methods 
to insure efficient use of these resources (refer to Figure 14). Each cell within a supercell is 
assigned to one of nine equal time slots during which all communication takes place between the 
satellite and the tenninals in that cell. The full frequency allocation is available within each cell 
time slot. The cells are scanned in a regular cycle by the satellite'S transmit and receive beams, 
resulting in time division multiple access ("TDMA") among the cells in a supercell. Since 
propagation delay varies with path length, satellite transmissions are timed to insure that cell N 
(N=I, 2, 3, ... 9) of all supercells receive transmissions at the same time. Tenninal transmissions to 
a satellite are also timed to insure that transmissions from cell N of all superceUs arrive at the 
same time. Physical separation (space division multiple access, or "SOMA") eliminates 
interference between cells scanned at the same time in adjacent supercells. Guard intervals 
eliminate overlap between signals received from time-consecutive cells. 
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Figure 14 - Calling's multiple access method uses space dhision between 
supercells, time division among the 9 cells in a supercelJ, and a combination 
of frequency division and asynchronous time division multiplexing for 
channels within a cell. All communication uses fixed-length packets. 

Witrun each cell time slot, terminals use Frequency Division Multiple Access ("FDMA") 
on the uplink and Asynchronous Time Division Multiple Access ("ATDMAtI) on the downlink. 
On the FDMA uplink, each active terminal is assigned one or more frequency slots for the call 
duration, and it can send one packet per slot each scan period (23.111 msec). The number of slots 
assigned to a terminal determines its maximum available transmission rate. One slot corresponds 
to a fixed terminal 16 Kbps basic channel with its 2 Kbps signaling and control channel. A 
64 Kbps channel with a 8 Kbps control channel requires four frequency slots. A total of 1440 
slots per cell are available for fixed terminals, and 90 are available for mobile terminals. 

The ATDMA downlink does not use a fixed assignment of time slots to terminals. During 
each cell scan interval, the satellite transmits a series of packets addressed to terminals witrun that 
celL Packets are delimited by a unique bit pattern, and a terminal selects those addressed to it by 
examining each packet's address field. To compensate for a mobile terminal's lower-gain antenna, 
the bit duration of packets sent to a mobile terminal is 16 times that for a fixed terminal. The 
downlink to a cell has 1440 time slots, wruch support 1440 fixed terminal packets per scan period, 
90 mobile terminal packets or a combination of the two. The satellite transmits only as long as it 
takes to send the packets buffered for the cell. ATDMA takes advantage of the bursty nature of 
most communications. Since packets are not transmitted during "silent" intervals, satellite power 
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is conserved. In addition, it minimizes packet delay because a terminal is not limited to a single 
packet per time slot per scan. 

The combination of Earth-fix ed-cells and multiple access methods results in high spectral 
efficiency. The same channel resources are reused in each supercell over 350 times in the 
continental U.S. and 20,000 times across the Earth's surface. 

System Control 
There are many categories and levels of system control, including call control, network 

control (overload, reconfiguration, etc.), billing, administration, and satellite constellation control. 
Although each is critical to the system's operation, we will not attempt to cover them all in 
this paper. 

The network control hierarchy is distributed among the network elements and modeled 
using the Intelligent Network prototype. Terminals and other network elements use a packet­
based protocol for signaling and control messages (similar to the ISDN D-channel and CCITT 
No.7 signaling). The network handles these packets as normal traffic. 

The highest levels of network control reside in distributed, ground-based systems that are 
connected via gateway interfaces to the satellite network. Database systems provide terminaVuser 
feature and service profiles, authentication and encryption keys, mobile user location, call routing 
data, and other administrative data. Administrative systems, from "network-level" to local "in­
country" systems provide secure access to various levels of the database and billing data systems. 
In-country systems provide the local Service Provider with control of terminals in its area, while 
network and constellation control are restricted to the network-level administrative systems. 

High-level call control functions reside in gateway switches and feature processors. The 
feature processor is a pure control element (no switching), which controls terminal-to-terminal 
calls as well as the initial set-up of calls involving a gateway. Only control and signaling packets 
are passed to the feature processor; the "speech path" is a direct network connection between the 
terminals. The gateway switch controls the calls connected through it. 

The satellite-based switch node includes some mid-level call control functions in addition 
to its packet routing function. It manages the assignment, supervision, and release of all channels 
in its footprint, and the "hand-off" of channels to other satellites. It also monitors channel signal 
quality and initiates link power control when required. 

Terminals have control of some low-level call control functions similar to those controlled 
by a cellular or ISDN functional signaling terminal. This includes user authentication, location 
registration, link encryption, monitoring and reporting of channel quality, channel assignments and 
hand-off's, and D-channel signaling. 

The Satellites 
The CallingBM satellite bus is a lightweight, high-performance, high-power system based on 
modem components available from existing aerospace suppliers. Figure 15 is an illustration of the 
satellite's multiple launch configuration and Figure 16 is an artist's rendering of the satellite's fully 
deployed configuration in orbit over the Earth. 

All satellites are identical, with design features tailored specifically for a large 
constellation, including high-volume production by multiple producers, stacked launch by multiple 
launchers, and autonomous on-orbit constellation control. Robust design margins and on-orbit 
spares result in a highly reliable constellation with an extremely low mean time to repair. 
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Figure 15 - Satellite multiple launch configuration. 

The satellite is designed for a service life of ten years, with propellant for 12 years. The 
satellite's position is disturbed both by gravitational variations arising from the Earth's irregular 
shape and by atmospheric drag, which is greatest at the solar maximum when sunspot activity is at 
the peak of its eleven year cycle. Each satellite carries enough propellant to hold its position 
within its plane for the satellite's entire lifetime, to reposition itself when required, to overcome 
atmospheric drag for its design lifetime (including one solar maximum), and for a final deorbit 
maneuver. Several measures have been taken to avoid creating space debris: launch vehicles and 
satellites that have reached the end of their useful life are deorbited and disintegrate hannlessly on 
re-entry. The constellation orbits have been selected to avoid much of the existing debris, and are 
slightly staggered so that the probability of collision between satellites in the constellation is 
infinitesimally small. To further reduce this probability, the satellites use active collision avoidance 
when the separation between two satellites is projected to be less than acceptable limits. 

The satellites' structures use light-weight, high-strength materials and techniques which 
have become available only recently, partly as a result of U.S. Government-sponsored technology 
development and demonstration programs at JPL and LLNL. 

21 



The CallingSM Network 

Figure 16 - Artist rendering o( CalHnglatellite in space. 

The satellites' electrical energy requirements are generated from extremely thin and light 
solar arrays made of amorphous silicon. The solar array is also used to shade the satellite 
electronics from the sun. This allows the electronics package to operate at very low temperatures, 
thereby significantly increasing electronic efficiency and greatly enhancing the life and reliability of 
the electronics and antennas. 

Although all satellites are identical. their solar panels are adjustable and are maintained at 
the optimal angle for energy collection and solar shading in the satellite's intended orbit. Because 
the orbits are sun·synchronous, the satellite'S orientation with respect to the sun is constant. The 
power system is designed to handle wide variations in the communications payload requirements 
including peak loads of over 100 times the average load. 

Individual satellites operate autonomously, and the constellation is managed as a "herd" 
rather than as individual units. The on-board orbit-determination and navigation systems 
continuously and autonomously track and maintain each satellite's position within the 
constellation. Each satellite monitors its status, reports exception conditions immediately, and 
periodically sends reports on its vital functions to the COCCo These reports, as well as other 
control information for the spacecraft and its systems. are handled by the network as normal 
packet traffic. Figure 17 is a satellite block diagram. 
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Figure 17 - A block diagram of tbe satellite subsystems. 

Communications Payload 
Antennas and radio subsystems comprise the largest and most complex part of the 

satellite. The satellite uses a multi-panel antenna system with multiple active phased-array antenna 
facets on each panel. Each antenna facet is dedicated to a transmit or receive function for the TSL 
or GSL subsystems. Antenna panels integrate advanced composites and a thermal control system 
into an ultra-light-weight rigid structure. 

Several innovations included in the thermal control system contribute to creating an 
isothermal environment at a low temperature optimum for highly reliable operation of the key 
electronic components in the communications payload. These include using the solar array as a 
large sun shade to continuously shield the satellite from solar radiation, passive thermal radiators 
oriented towards deep space to sustain a cold channel for active GaAs 
microwave!superconducting millimeter wave subsystems, and phase-change thermal capacitors to 
absorb thermal transients arising from major changes in the communications payload duty cycle. 
The active components for the microwave arrays are distributed across the array faces. Solar 
radiators and thermal capacitors are located on the backs of the array panels in close proximity to 
active heat loads to minimize thermal transport. 

The antenna panels are deployed at angles to the Earth's surface which reduce the beam 
steering requirements to a few degrees. The antenna arrays on the inclined panels are elliptical in 
shape and produce elliptical patterns which compensate for the distortion from circular 
encountered at antenna grazing angles less than 900 with the Earth's surface. All of the satellite 
antennas are advanced active-element phased-array systems using GaAs MMIC amplifiers and 
beam steering circuits. These proprietary components and techniques provide dynamic control of 
gain, beam shape, and power level. This feature allows the satellite to maintain a scanning spot 
beam of constant shape and flux density on the Earth's surface as the satellite passes overhead. 
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Additionally, the individual beams can scan and operate in unison with a separation of only two 
cells. As noted above, the precision beam steering supports the Eanh-fixed-cell and mUltiple 
access technologies. 

Figure 18 shows the antenna panels in a deployed mode from the Earth facing view. The 
antenna gains and element count are noted in tabular form. 
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Figure 18 - View of Antenna Panels as seen from Earth. 

Satellite Production and Launch 

41 

.. 
41.0 .. 

A significant portion of the system cost will be the production, launch, and replenishment 
of the satellite constellation. It would be impossible to meet system cost objectives using today·s 
satellite production and individual launch methods; satellites are therefore designed to take 
advantage of the cost benefits of high-volume production and multiple launch. All satellites are 
identical, there are large numbers of identical components and subsystems within each satellite, 
and the satellite and Eanh terminal antennas use similar technology and components. The 
feasibility of producing and launching a large constellation of similar satellites at low cost has been 
shown by recently declassified work done in connection with the Strategic Defense Initiative 
program and by extensive manufacturing engineering and analysis performed by Calling engineers. 

A unique deployment technique satisfies the seemingly conflicting goals of high packing 
density within the rocket shroud and a large surface area for antenna and solar arrays. The 
satellites are designed to be stacked, and one or more stacks can be launched in one vehicle. 
These stacks are compatible with over 20 launchers currently in operation, and with over 
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10 additional launchers in funded development. This diverse set of international launchers avoids 
interruptions caused by launch failures, delays, or production problems. The policy of launch 
independence insures a stable supply of launch vehicles, and the cost benefits of volume launches 
and competitive bidding. 

Conclusion 
There is a very large demand for basic and enhanced telephone service in developing 

nations and in remote parts of industrialized nations which cannot be met by conventional wireline 
and cellular systems. This demand constitutes the world's largest unserved market. 

Advances in active phased-array anteMas, fast-packet switching technology, adaptive 
routing, and light spacecraft technology have converged to make it possible to address this market 
by designing and building a global telephone network based on a large low-Earth-orbit 
constellation of identical satellites. A telephone utility using such a network can provide modern 
basic and enhanced telephone services which are indistinguishable from services offered by 
telephone utilities in the urban centers of fully-industrialized nations. If the network is sufficiently 
large, the capital and operating costs per subscriber are low enough to provide these services to 
all subscribers, regardless of location, at prices comparable to the same services in urban areas of 
industrialized nations, while generating operating profits great enough to attract the capital 
needed for its construction. 

Global demand for such service is great enough to support at least three networks of the 
size described herein. The volume of advanced components, such as gallium arsenide integrated 
circuits, and services, such as launch services, required to construct these networks is sufficient to 
propel certain industries to market leadership positions in the early 21st Century. 
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