558 research outputs found

    Randomized Polypill Crossover Trial in People Aged 50 and Over

    Get PDF
    PMCID: PMC3399742This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Reconciling the Evidence on Serum Homocysteine and Ischaemic Heart Disease: A Meta-Analysis

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    The Internal Spin Angular Momentum of an Asymptotically Flat Spacetime

    Full text link
    In this paper we investigate the manner in which the internal spin angular momentum of a spinor field is encoded in the gravitational field at asymptotic infinity. The inclusion of internal spin requires us to re-analyze our notion of asymptotic flatness. In particular, the Poincar\'{e} symmetry at asymptotic infinity must replaced by a spin-enlarged Poincar\'{e} symmetry. Likewise, the generators of the asymptotic symmetry group must be supplemented to account for the internal spin. In the Hamiltonian framework of first order Einstein-Cartan gravity, the extra generator comes from the boundary term of the Gauss constraint in the asymptotically flat context. With the additional term, we establish the relations among the Noether charges of a Dirac field, the Komar integral, and the asymptotic ADM-like geometric integral. We show that by imposing mild restraints on the generating functionals of gauge transformations at asymptotic infinity, the phase space is rendered explicitly finite. We construct the energy-momentum and the new total (spin+orbital) angular momentum boundary integrals that satisfy the appropriate algebra to be the generators of the spin-enlarged Poincar\'{e} symmetry. This demonstrates that the internal spin is encoded in the tetrad at asymptotic infinity. In addition, we find that a new conserved and (spin-enlarged) Poincar\'{e} invariant charge emerges that is associated with the global structure of a gauge transformation.Comment: V2: No major changes, journal reference adde

    Generalized entropy and Noether charge

    Get PDF
    We find an expression for the generalized gravitational entropy of Hawking in terms of Noether charge. As an example, the entropy of the Taub-Bolt spacetime is calculated.Comment: 6 pages, revtex, reference correcte

    QCD uncertainties at the LHC and the implications of HERA

    Get PDF
    Strong interaction physics will be ubiquitous at the Large Hadron Collider since the colliding beams consist of confined quarks and gluons. Although the main purpose of the LHC is to study the mechanism of electroweak symmetry breaking and to search for physics beyond the Standard Model, to maximise the precision and sensitivity of such anaylses it is necessary to understand in detail various perturbative, semi-perturbative and non-perturbative QCD effects. Many of these effects have been extensively studied at HERA and will be studied further at HERA II. We discuss the impact of the knowledge thus gained on physics at the LHC.Comment: Contributed to the Proceedings of DIS04, Strbske Pleso, Slovaki

    Unitarity and the Hilbert space of quantum gravity

    Full text link
    Under the premises that physics is unitary and black hole evaporation is complete (no remnants, no topology change), there must exist a one-to-one correspondence between states on future null and timelike infinity and on any earlier spacelike Cauchy surface (e.g., slices preceding the formation of the hole). We show that these requirements exclude a large set of semiclassical spacetime configurations from the Hilbert space of quantum gravity. In particular, the highest entropy configurations, which account for almost all of the volume of semiclassical phase space, would not have quantum counterparts, i.e. would not correspond to allowed states in a quantum theory of gravity.Comment: 7 pages, 3 figures, revtex; minor changes in v2 (version published in Class. Quant. Grav.

    Black Holes Surrounded by Uniformly Rotating Rings

    Full text link
    Highly accurate numerical solutions to the problem of Black Holes surrounded by uniformly rotating rings in axially symmetric, stationary spacetimes are presented. The numerical methods developed to handle the problem are discussed in some detail. Related Newtonian problems are described and numerical results provided, which show that configurations can reach an inner mass-shedding limit as the mass of the central object increases. Exemplary results for the full relativistic problem for rings of constant density are given and the deformation of the event horizon due to the presence of the ring is demonstrated. Finally, we provide an example of a system for which the angular momentum of the central Black Hole divided by the square of its mass exceeds one.Comment: 12 pages, 14 figures, revtex, v4: minor changes, Eq. (17) corrected, corresponds to version in PR

    Geometric structure of the generic static traversable wormhole throat

    Get PDF
    Traversable wormholes have traditionally been viewed as intrinsically topological entities in some multiply connected spacetime. Here, we show that topology is too limited a tool to accurately characterize a generic traversable wormhole: in general one needs geometric information to detect the presence of a wormhole, or more precisely to locate the wormhole throat. For an arbitrary static spacetime we shall define the wormhole throat in terms of a 2-dimensional constant-time hypersurface of minimal area. (Zero trace for the extrinsic curvature plus a "flare-out" condition.) This enables us to severely constrain the geometry of spacetime at the wormhole throat and to derive generalized theorems regarding violations of the energy conditions-theorems that do not involve geodesic averaging but nevertheless apply to situations much more general than the spherically symmetric Morris-Thorne traversable wormhole. [For example: the null energy condition (NEC), when suitably weighted and integrated over the wormhole throat, must be violated.] The major technical limitation of the current approach is that we work in a static spacetime-this is already a quite rich and complicated system.Comment: 25 pages; plain LaTeX; uses epsf.sty (four encapsulated postscript figures

    Simple Quantum Systems in Spacetimes with Closed Timelike Curves

    Get PDF
    Three simple examples illustrate properties of path integral amplitudes in fixed background spacetimes with closed timelike curves: non-relativistic potential scattering in the Born approximation is non-unitary, but both an example with hard spheres and the exact solution of a totally discrete model are unitary.Comment: 15 pages, CALT-68-180

    Spacetime Energy Decreases under World-sheet RG Flow

    Get PDF
    We study renormalization group flows in unitary two dimensional sigma models with asymptotically flat target spaces. Applying an infrared cutoff to the target space, we use the Zamolodchikov c-theorem to demonstrate that the target space ADM energy of the UV fixed point is greater than that of the IR fixed point: spacetime energy decreases under world-sheet RG flow. This result mirrors the well understood decrease of spacetime Bondi energy in the time evolution process of tachyon condensation.Comment: 25 pages, 4 figures, harvma
    • …
    corecore