Traversable wormholes have traditionally been viewed as intrinsically
topological entities in some multiply connected spacetime. Here, we show that
topology is too limited a tool to accurately characterize a generic traversable
wormhole: in general one needs geometric information to detect the presence of
a wormhole, or more precisely to locate the wormhole throat. For an arbitrary
static spacetime we shall define the wormhole throat in terms of a
2-dimensional constant-time hypersurface of minimal area. (Zero trace for the
extrinsic curvature plus a "flare-out" condition.) This enables us to severely
constrain the geometry of spacetime at the wormhole throat and to derive
generalized theorems regarding violations of the energy conditions-theorems
that do not involve geodesic averaging but nevertheless apply to situations
much more general than the spherically symmetric Morris-Thorne traversable
wormhole. [For example: the null energy condition (NEC), when suitably weighted
and integrated over the wormhole throat, must be violated.] The major technical
limitation of the current approach is that we work in a static spacetime-this
is already a quite rich and complicated system.Comment: 25 pages; plain LaTeX; uses epsf.sty (four encapsulated postscript
figures