2,281 research outputs found
Rapid flipping of parametric phase states
Since the invention of the solid-state transistor, the overwhelming majority
of computers followed the von Neumann architecture that strictly separates
logic operations and memory. Today, there is a revived interest in alternative
computation models accompanied by the necessity to develop corresponding
hardware architectures. The Ising machine, for example, is a variant of the
celebrated Hopfield network based on the Ising model. It can be realized with
artifcial spins such as the `parametron' that arises in driven nonlinear
resonators. The parametron encodes binary information in the phase state of its
oscillation. It enables, in principle, logic operations without energy transfer
and the corresponding speed limitations. In this work, we experimentally
demonstrate flipping of parametron phase states on a timescale of an
oscillation period, much faster than the ringdown time \tau that is often
(erroneously) deemed a fundamental limit for resonator operations. Our work
establishes a new paradigm for resonator-based logic architectures.Comment: 6 pages, 3 figure
Signatures of exciton coupling in paired nanoemitters
An exciton formed by the delocalized electronic excitation of paired nanoemitters is interpreted in terms of the electromagnetic emission of the pair and their mutual coupling with a photodetector. A formulation directly tailored for fluorescence detection is identified, giving results which are strongly dependent on geometry and selection rules. Signature symmetric and antisymmetric combinations are analyzed and their distinctive features identified
Optical angular momentum: Multipole transitions and photonics
The premise that multipolar decay should produce photons uniquely imprinted with a measurably corresponding angular momentum is shown in general to be untrue. To assume a one-to-one correlation between the transition multipoles involved in source decay and detector excitation is to impose a generally unsupportable one-to-one correlation between the multipolar form of emission transition and a multipolar character for the detected field. It is specifically proven impossible to determine without ambiguity, by use of any conventional detector, and for any photon emitted through the nondipolar decay of an atomic excited state, a unique multipolar character for the transition associated with its generation. Consistent with the angular quantum uncertainty principle, removal of a detector from the immediate vicinity of the source produces a decreasing angular uncertainty in photon propagation direction, reflected in an increasing range of integer values for the measured angular momentum. In such a context it follows that when the decay of an electronic excited state occurs by an electric quadrupolar transition, for example, any assumption that the radiation so produced is conveyed in the form of “quadrupole photons” is experimentally unverifiable. The results of the general proof based on irreducible tensor analysis invite experimental verification, and they signify certain limitations on quantum optical data transmission
A photonic basis for deriving nonlinear optical response
Nonlinear optics is generally first presented as an extension of conventional optics. Typically the subject is introduced with reference to a classical oscillatory electric polarization, accommodating correction terms that become significant at high intensities. The material parameters that quantify the extent of the nonlinear response are cast as coefficients in a power series - nonlinear optical susceptibilities signifying a propensity to generate optical harmonics, for example. Taking the subject to a deeper level requires a more detailed knowledge of the structure and properties of each nonlinear susceptibility tensor, the latter differing in form according to the process under investigation. Typically, the derivations involve intricate development based on time-dependent perturbation theory, assisted by recourse to a set of Feynman diagrams. This paper presents a more direct route to the required results, based on photonic rather than semiclassical principles, and offers a significantly clearer perspective on the photophysics underlying nonlinear optical response. The method, here illustrated by specific application to harmonic generation and down-conversion processes, is simple, intuitive and readily amenable for processes of arbitrary photonic order. © 2009 IOP Publishing Ltd
Ising model on 3D random lattices: A Monte Carlo study
We report single-cluster Monte Carlo simulations of the Ising model on
three-dimensional Poissonian random lattices with up to 128,000 approx. 503
sites which are linked together according to the Voronoi/Delaunay prescription.
For each lattice size quenched averages are performed over 96 realizations. By
using reweighting techniques and finite-size scaling analyses we investigate
the critical properties of the model in the close vicinity of the phase
transition point. Our random lattice data provide strong evidence that, for the
available system sizes, the resulting effective critical exponents are
indistinguishable from recent high-precision estimates obtained in Monte Carlo
studies of the Ising model and \phi^4 field theory on three-dimensional regular
cubic lattices.Comment: 35 pages, LaTex, 8 tables, 8 postscript figure
Respiratory sequelae of COVID-19: pulmonary and extrapulmonary origins, and approaches to clinical care and rehabilitation
Although the exact prevalence of post-COVID-19 condition (also known as long COVID) is unknown, more than a third of patients with COVID-19 develop symptoms that persist for more than 3 months after SARS-CoV-2 infection. These sequelae are highly heterogeneous in nature and adversely affect multiple biological systems, although breathlessness is a frequently cited symptom. Specific pulmonary sequelae, including pulmonary fibrosis and thromboembolic disease, need careful assessment and might require particular investigations and treatments. COVID-19 outcomes in people with pre-existing respiratory conditions vary according to the nature and severity of the respiratory disease and how well it is controlled. Extrapulmonary complications such as reduced exercise tolerance and frailty might contribute to breathlessness in post-COVID-19 condition. Non-pharmacological therapeutic options, including adapted pulmonary rehabilitation programmes and physiotherapy techniques for breathing management, might help to attenuate breathlessness in people with post-COVID-19 condition. Further research is needed to understand the origins and course of respiratory symptoms and to develop effective therapeutic and rehabilitative strategies
Nuclear dependence of the transverse-single-spin asymmetry for forward neutron production in polarized collisions at GeV
During 2015 the Relativistic Heavy Ion Collider (RHIC) provided collisions of
transversely polarized protons with Au and Al nuclei for the first time,
enabling the exploration of transverse-single-spin asymmetries with heavy
nuclei. Large single-spin asymmetries in very forward neutron production have
been previously observed in transversely polarized collisions at
RHIC, and the existing theoretical framework that was successful in describing
the single-spin asymmetry in collisions predicts only a moderate
atomic-mass-number () dependence. In contrast, the asymmetries observed at
RHIC in collisions showed a surprisingly strong dependence in
inclusive forward neutron production. The observed asymmetry in Al
collisions is much smaller, while the asymmetry in Au collisions is a
factor of three larger in absolute value and of opposite sign. The interplay of
different neutron production mechanisms is discussed as a possible explanation
of the observed dependence.Comment: 315 authors, 8 pages, 4 figures, 1 table. v2 is version accepted for
publication in Phys. Rev. Lett. Plain text data tables for the points plotted
in figures for this and previous PHENIX publications are (or will be)
publicly available at http://www.phenix.bnl.gov/papers.htm
- …