199 research outputs found

    Immaturity, Normative Competence, and Juvenile Transfer: How (Not) to Punish Minors for Major Crimes

    Get PDF
    This essay critically examines the national trend to get tough on juvenile crime by making it easier to transfer juvenile offenders to adult criminal court. It assesses this trend in light of different rationales for punishment, arguing that immaturity provides retributive, deterrent, and corrective reasons to punish juvenile crime differently than otherwise similar adult crime. Insofar as retributive concepts determine whom to punish and how much to punish, it is especially important that immaturity involves diminished normative competence and, hence, diminished responsibility. In defending a traditional approach to juvenile criminal justice against the reforms embodied in the transfer trend, the essay critically considers an alternative proposal that abolishes the juvenile court and requires a unitary system of criminal justice but treats immaturity as a mitigating factor at sentencing. Though it appears to be a more radical reform, this proposal accepts the traditional idea, rejected in the transfer trend, that immaturity implies differential desert and punishment. Despite the appeal of this non-traditional proposal for accommodating immaturity, it is rejected for sacrificing the demands of individualized justice

    FIRST ACTS, LAST ACTS, AND ABANDONMENT

    Full text link

    Principal forms X^2 + nY^2 representing many integers

    Get PDF
    In 1966, Shanks and Schmid investigated the asymptotic behavior of the number of positive integers less than or equal to x which are represented by the quadratic form X^2+nY^2. Based on some numerical computations, they observed that the constant occurring in the main term appears to be the largest for n=2. In this paper, we prove that in fact this constant is unbounded as n runs through positive integers with a fixed number of prime divisors.Comment: 10 pages, title has been changed, Sections 2 and 3 are new, to appear in Abh. Math. Sem. Univ. Hambur

    Universal Predictions for Statistical Nuclear Correlations

    Full text link
    We explore the behavior of collective nuclear excitations under a multi-parameter deformation of the Hamiltonian. The Hamiltonian matrix elements have the form P(∣Hij∣)∝1/∣Hij∣exp⁥(−∣Hij∣/V)P(|H_{ij}|)\propto 1/\sqrt{|H_{ij}|}\exp(-|H_{ij}|/V), with a parametric correlation of the type log⁡⟹H(x)H(y)âŸ©âˆâˆ’âˆŁx−y∣\log \langle H(x)H(y)\rangle\propto -|x-y|. The studies are done in both the regular and chaotic regimes of the Hamiltonian. Model independent predictions for a wide variety of correlation functions and distributions which depend on wavefunctions and energies are found from parametric random matrix theory and are compared to the nuclear excitations. We find that our universal predictions are observed in the nuclear states. Being a multi-parameter theory, we consider general paths in parameter space and find that universality can be effected by the topology of the parameter space. Specifically, Berry's phase can modify short distance correlations, breaking certain universal predictions.Comment: Latex file + 12 postscript figure

    D0-D4 brane tachyon condensation to a BPS state and its excitation spectrum in noncommutative super Yang-Mills theory

    Full text link
    We investigate the D0-D4-brane system for different B-field backgrounds including the small instanton singularity in noncommutative SYM theory. We discuss the excitation spectrum of the unstable state as well as for the BPS D0-D4 bound state. We compute the tachyon potential which reproduces the complete mass defect. The relevant degrees of freedom are the massless (4,4) strings. Both results are in contrast with existing string field theory calculations. The excitation spectrum of the small instanton is found to be equal to the excitation spectrum of the fluxon solution on R^2_theta x R which we trace back to T-duality. For the effective theory of the (0,0) string excitations we obtain a BFSS matrix model. The number of states in the instanton background changes significantly when the B-field becomes self-dual. This leads us to the proposal of the existence of a phase transition or cross over at self-dual B-field.Comment: a4 11pt Latex2e 40 pages; v2: typos fixed, refined comments on renormalisation, refs added, v3: ref added, version publishe

    Integrability and the conformal field theory of the Higgs branch

    Get PDF
    In the context of the AdS3/CFT2 correspondence, we investigate the Higgs branch CFT2. Witten showed that states localised near the small instanton singularity can be described in terms of vector multiplet variables. This theory has a planar, weak-coupling limit, in which anomalous dimensions of single-trace composite operators can be calculated. At one loop, the calculation reduces to finding the spectrum of a spin-chain with nearest-neighbour interactions. This CFT2 spin-chain matches precisely the one that was previously found as the weak-coupling limit of the integrable system describing the AdS3 side of the duality. We compute the one-loop dilatation operator in a non-trivial compact subsector and show that it corresponds to an integrable spin-chain Hamiltonian. This provides the first direct evidence of integrability on the CFT2 side of the correspondence

    A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team

    Full text link
    We report observations from HST of Cepheids in the hosts of 42 SNe Ia used to calibrate the Hubble constant (H0). These include all suitable SNe Ia in the last 40 years at z1000 orbits, more than doubling the sample whose size limits the precision of H0. The Cepheids are calibrated geometrically from Gaia EDR3 parallaxes, masers in N4258 (here tripling that Cepheid sample), and DEBs in the LMC. The Cepheids were measured with the same WFC3 instrument and filters (F555W, F814W, F160W) to negate zeropoint errors. We present multiple verifications of Cepheid photometry and tests of background determinations that show measurements are accurate in the presence of crowding. The SNe calibrate the mag-z relation from the new Pantheon+ compilation, accounting here for covariance between all SN data, with host properties and SN surveys matched to negate differences. We decrease the uncertainty in H0 to 1 km/s/Mpc with systematics. We present a comprehensive set of ~70 analysis variants to explore the sensitivity of H0 to selections of anchors, SN surveys, z range, variations in the analysis of dust, metallicity, form of the P-L relation, SN color, flows, sample bifurcations, and simultaneous measurement of H(z). Our baseline result from the Cepheid-SN sample is H0=73.04+-1.04 km/s/Mpc, which includes systematics and lies near the median of all analysis variants. We demonstrate consistency with measures from HST of the TRGB between SN hosts and NGC 4258 with Cepheids and together these yield 72.53+-0.99. Including high-z SN Ia we find H0=73.30+-1.04 with q0=-0.51+-0.024. We find a 5-sigma difference with H0 predicted by Planck+LCDM, with no indication this arises from measurement errors or analysis variations considered to date. The source of this now long-standing discrepancy between direct and cosmological routes to determining the Hubble constant remains unknown.Comment: 67 pages, 31 figures, replaced to match ApJ accepted version (March 2022), Table 6 distances included here, long form of photometry tables, fitting code, compact form of data, available from Github page, https://pantheonplussh0es.github.i

    The First Post-Kepler Brightness Dips of KIC 8462852

    Get PDF
    We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in 2015 October, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1%-2.5% dips, named Elsie, Celeste, Skara Brae, and Angkor, which persist on timescales from several days to weeks. Our main results so far are as follows: (i) there are no apparent changes of the stellar spectrum or polarization during the dips and (ii) the multiband photometry of the dips shows differential reddening favoring non-gray extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale â‰Ș1 ÎŒm, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term secular dimming, which may be caused by independent processes, or probe different regimes of a single process
    • 

    corecore