800 research outputs found

    Medicaid Expenditures and State Budgets: Past, Present, and Future

    Get PDF
    Rapid spending growth has made Medicaid a major element in state budgets; financial support from Federal matching grants is now a main component of state government revenues and of intergovernmental fiscal relations. We discuss recent, ongoing, and prospective reforms of intergovernmental finances and regulations, including the 1996 welfare reform, the introduction of Medicare Part D, Section 1115 waivers, SCHIP reauthorization, and a shift to block grants. Each would affect the assignment of responsibilities between the state and Federal governments, the viability of which is questionable due to current and future interstate demographic and policy variation, population aging, and Federal fiscal imbalances.

    Integrating methods for determining length-at-age to improve growth estimates for two large scombrids

    Get PDF
    Fish growth is commonly estimated from length-at-age data obtained from otoliths. There are several techniques for estimating length-at-age from otoliths including 1) direct observed counts of annual increments; 2) age adjustment based on a categorization of otolith margins; 3) age adjustment based on known periods of spawning and annuli formation; 4) back-calculation to all annuli, and 5) back-calculation to the last annulus only. In this study we compared growth estimates (von Bertalanffy growth functions) obtained from the above five methods for estimating length-at-age from otoliths for two large scombrids: narrow-barred Spanish mackerel (Scomberomorus commerson) and broad-barred king mackerel (Scomberomorus semifasciatus). Likelihood ratio tests revealed that the largest differences in growth occurred between the back-calculation methods and the observed and adjusted methods for both species of mackerel. The pattern, however, was more pronounced for S. commerson than for S. semifasciatus, because of the pronounced effect of gear selectivity demonstrated for S. commerson. We propose a method of substituting length-at-age data from observed or adjusted methods with back-calculated length-at-age data to provide more appropriate estimates of population growth than those obtained with the individual methods alone, particularly when faster growing young fish are disproportionately selected for. Substitution of observed or adjusted length-at-age data with back-calculated length-at-age data provided more realistic estimates of length for younger ages than observed or adjusted methods as well as more realistic estimates of mean maximum length than those derived from backcalculation methods alone

    Transparent soil microcosms for live-cell imaging and non-destructive stable isotope probing of soil microorganisms

    Get PDF
    Microscale processes are critically important to soil ecology and biogeochemistry yet are difficult to study due to soil\u27s opacity and complexity. To advance the study of soil processes, we constructed transparent soil microcosms that enable the visualization of microbes via fluorescence microscopy and the non-destructive measurement of microbial activity and carbon uptake in situ via Raman microspectroscopy. We assessed the polymer Nafion and the crystal cryolite as optically transparent soil substrates. We demonstrated that both substrates enable the growth, maintenance, and visualization of microbial cells in three dimensions over time, and are compatible with stable isotope probing using Raman. We applied this system to ascertain that after a dry-down/rewetting cycle, bacteria on and near dead fungal hyphae were more metabolically active than those far from hyphae. These data underscore the impact fungi have facilitating bacterial survival in fluctuating conditions and how these microcosms can yield insights into microscale microbial activities

    Comparison of complexity indicators for assessing general process structures

    Get PDF
    Rad se bavi usporedbom različitih pokazatelja pri procjeni složenosti odabranih općih struktura procesa. Glavni cilj istraživanja je ispitivanje sposobnosti tih pokazatelja u otkrivanju očekivanih razlika u strukturnoj složenosti među promatranim općim strukturama procesa. Rezultati ovog teorijskog istraživanja pokazuju da svi predloženi pokazatelji mogu biti učinkovito upotrijebljeni pri analizi strukturne složenosti općih struktura procesa.This paper focuses on the comparison of different complexity indicators for complexity assessment of selected general process structures. The main objective in this study is to test their ability to uncover assumed differences in structural complexity among observed general process structures. The obtained results of this theoretical study show that all proposed indicators can be effectively used for analyzing structural complexity of general process structures

    SPIRE Point Source Catalog Explanatory Supplement

    Get PDF
    The Spectral and Photometric Imaging Receiver (SPIRE) was launched as one of the scientific instruments on board of the space observatory Herschel. The SPIRE photometer opened up an entirely new window in the Submillimeter domain for large scale mapping, that up to then was very difficult to observe. There are already several catalogs that were produced by individual Herschel science projects. Yet, we estimate that the objects of only a fraction of these maps will ever be systematically extracted and published by the science teams that originally proposed the observations. The SPIRE instrument performed its standard photometric observations in an optically very stable configuration, only moving the telescope across the sky, with variations in its configuration parameters limited to scan speed and sampling rate. This and the scarcity of features in the data that require special processing steps made this dataset very attractive for producing an expert reduced catalog of point sources that is being described in this document. The Catalog was extracted from a total of 6878 unmodified SPIRE scan map observations. The photometry was obtained by a systematic and homogeneous source extraction procedure, followed by a rigorous quality check that emphasized reliability over completeness. Having to exclude regions affected by strong Galactic emission, that pushed the limits of the four source extraction methods that were used, this catalog is aimed primarily at the extragalactic community. The result can serve as a pathfinder for ALMA and other Submillimeter and Far-Infrared facilities. 1,693,718 sources are included in the final catalog, splitting into 950688, 524734, 218296 objects for the 250\mu m, 350\mu m, and 500\mu m bands, respectively. The catalog comes with well characterized environments, reliability, completeness, and accuracies, that single programs typically cannot provide

    Reflective Coating for Lightweight X-Ray Optics

    Get PDF
    X-ray reflective coating for next generation's lightweight, high resolution, optics for astronomy requires thin-film deposition that is precisely fine-tuned so that it will not distort the thin sub-mm substrates. Film of very low stress is required. Alternatively, mirror distortion can be cancelled by precisely balancing the deformation from multiple films. We will present results on metallic film deposition for the lightweight optics under development. These efforts include: low-stress deposition by magnetron sputtering and atomic layer deposition of the metals, balancing of gross deformation with two-layer depositions of opposite stresses and with depositions on both sides of the thin mirrors

    Improving the Efficiency of Pyrolysis and Increasing the Quality of Gas Production through Optimization of Prototype Systems

    Get PDF
    Publisher's version (útgefin grein).Pyrolysis is a thermochemical process that consists of the degradation of organic polymers and biomass minerals in lignocellulose materials. At low pyrolysis temperature (300-400 degrees C), primarily carbon is produced during the reaction time. Rapid pyrolysis takes place at temperatures between 500 and 650 degrees C. If the temperature is higher than 700 degrees C, the final product is methane, also known as biogas. The pyrolysis generator can be combined with a small power plant (CHP), which is a promising technology because the unit can be installed directly near the biomass production, and electricity can be fed de-centrally to the public utility network, while there are several possibilities for using waste heat in local systems. Carbonaceous ash can be utilized well in the agricultural field, because, in areas with intensive farming, the soil suffers from carbon and mineral deficiencies, and the phenomenon of material defect can be reduced by a proper level of implementation. This study describes the technical content of the biochar pilot project, and then, through a detailed presentation of the experimental results, we interpret the new scientific results. Our aim is to improve the quality of the produced gas by increasing the efficiency of the pyrolysis generator. In order for the pyrolysis unit to operate continuously, with proper efficiency and good gas quality, it is necessary to optimize the operation process. Our review reveals that the use of vibration may be advantageous during pyrolysis, which affects the mass of the pyrolysis carbon in a plane. Accordingly, the application of vibration to the input section of the funnel might enhance the quality of the gas, as well. The study concludes that more accurate dimensioning of the main parts of the gas reactor and a more convenient design of the oxidation and reduction zones enhance the good-quality gas output.The Hungarian Ministry of National Economy, grant number GINOP 2.1.7-152016-01604. The Climate Change Research Centre and Doctoral School of Management and Business Administration at Szent Istvan University supported the preparation of the manuscript."Peer Reviewed

    First Results for the pLGAD Sensor for Low-Penetrating Particles

    Full text link
    Silicon sensors are the go-to technology for high-precision sensors in particle physics. But only recently low-noise silicon sensors with internal amplification became available. The so-called Low Gain Avalanche Detector (LGAD) sensors have been developed for applications in High Energy Physics, but lack two characteristics needed for the measurement of low-energy protons (<60 keV): a thin entrance window (in the order of tens of nm) and the efficient amplification of signals created near the sensor's surface (in a depth below 1 um). In this paper we present the so-called proton Low Gain Avalanche Detector (pLGAD) sensor concept and some results from characterization of the first prototypes of the sensor. The pLGAD is specifically designed to detect low-energy protons, and other low-penetrating particles. It will have a higher detection efficiency than non-silicon technologies, and promises to be a lot cheaper and easier to operate than competing silicon technologies.Comment: 5 pages, 5 figuures, VCI 202
    corecore