923 research outputs found
Recommended from our members
Cryo-EM structure of the potassium-chloride cotransporter KCC4 in lipid nanodiscs.
Cation-chloride-cotransporters (CCCs) catalyze transport of Cl- with K+ and/or Na+across cellular membranes. CCCs play roles in cellular volume regulation, neural development and function, audition, regulation of blood pressure, and renal function. CCCs are targets of clinically important drugs including loop diuretics and their disruption has been implicated in pathophysiology including epilepsy, hearing loss, and the genetic disorders Andermann, Gitelman, and Bartter syndromes. Here we present the structure of a CCC, the Mus musculus K+-Cl- cotransporter (KCC) KCC4, in lipid nanodiscs determined by cryo-EM. The structure, captured in an inside-open conformation, reveals the architecture of KCCs including an extracellular domain poised to regulate transport activity through an outer gate. We identify binding sites for substrate K+ and Cl- ions, demonstrate the importance of key coordinating residues for transporter activity, and provide a structural explanation for varied substrate specificity and ion transport ratio among CCCs. These results provide mechanistic insight into the function and regulation of a physiologically important transporter family
A mitotic SKAP isoform regulates spindle positioning at astral microtubule plus ends
The Astrin/SKAP complex plays important roles in mitotic chromosome alignment and centrosome integrity, but previous work found conflicting results for SKAP function. Here, we demonstrate that SKAP is expressed as two distinct isoforms in mammals: a longer, testis-specific isoform that was used for the previous studies in mitotic cells and a novel, shorter
mitotic isoform. Unlike the long isoform, short SKAP rescues SKAP depletion in mitosis and displays robust microtubule plus-end tracking, including localization to astral microtubules. Eliminating SKAP microtubule binding results in severe chromosome segregation defects. In contrast, SKAP mutants specifically defective for plus-end tracking facilitate proper
chromosome segregation but display spindle positioning defects. Cells lacking SKAP plus-end tracking have reduced Clasp1 localization at microtubule plus ends and display increased lateral microtubule contacts with the cell cortex, which we propose results in unbalanced dynein-dependent cortical pulling forces. Our work reveals an unappreciated role for the Astrin/SKAP complex as an astral microtubule mediator of mitotic spindle positioning.Leukemia & Lymphoma Society of America (Scholar Award)National Institute of General Medical Sciences (U.S.) (GM088313)American Cancer Society (121776
A rapid, inexpensive, and semi-quantitative method for determining pollen tube extension using fluorescence
BACKGROUND: Pollen tubes extend rapidly when pollen grains are incubated in defined media. Tube extension requires many critical functions of plant cells including molecular signaling, cytoskeleton remodeling, secretion, and cell wall synthesis. Consequently, pollen tube growth has been established as a way to conduct primary screens of chemical libraries to identify compounds that perturb key cellular processes in plants. RESULTS: Here we report a simple, inexpensive, rapid and semi-quantitative method for measurement of pollen tube growth in microtiter plates. The method relies on Congo Red binding to pollen tubes and correlates dye fluorescence to tube length. CONCLUSIONS: This method can be used in any laboratory without specialized equipment, and has the potential to enable larger screens as chemical libraries grow and to make chemical screening accessible to researchers building specialized libraries designed to probe pathways in plant biology
Loss of murine Paneth cell function alters the immature intestinal microbiome and mimics changes seen in neonatal necrotizing enterocolitis
Necrotizing enterocolitis (NEC) remains the leading cause of gastrointestinal morbidity and mortality in premature infants. Human and animal studies suggest a role for Paneth cells in NEC pathogenesis. Paneth cells play critical roles in host-microbial interactions and epithelial homeostasis. The ramifications of eliminating Paneth cell function on the immature host-microbial axis remains incomplete. Paneth cell function was depleted in the immature murine intestine using chemical and genetic models, which resulted in intestinal injury consistent with NEC. Paneth cell depletion was confirmed using histology, electron microscopy, flow cytometry, and real time RT-PCR. Cecal samples were analyzed at various time points to determine the effects of Paneth cell depletion with and without Klebsiella gavage on the microbiome. Deficient Paneth cell function induced significant compositional changes in the cecal microbiome with a significant increase in Enterobacteriacae species. Further, the bloom of Enterobacteriaceae species that occurs is phenotypically similar to what is seen in human NEC. This further strengthens our understanding of the importance of Paneth cells to intestinal homeostasis in the immature intestine
The outer kinetochore protein KNL-1 contains a defined oligomerization domain in nematodes
The kinetochore is a large, macromolecular assembly that is essential for connecting chromosomes to microtubules during mitosis. Despite the recent identification of multiple kinetochore components, the nature and organization of the higher order kinetochore structure remain unknown. The outer kinetochore KNL-1/Mis12 complex/Ndc80 complex (KMN) network plays a key role in generating and sensing microtubule attachments. Here, we demonstrate that Caenorhabditis elegans KNL-1 exists as an oligomer and we identify a specific domain in KNL-1 responsible for this activity. An N-terminal KNL-1 domain from both C. elegans and the related nematode C. remanei oligomerizes into a decameric assembly that appears roughly circular when visualized by electron microscopy. Based on sequence and mutational analysis, we identify a small hydrophobic region as responsible for this oligomerization activity. However, mutants that precisely disrupt KNL-1 oligomerization did not alter KNL-1 localization or result in the loss of embryonic viability based on gene replacements in C. elegans. In C. elegans, KNL-1 oligomerization may coordinate with other kinetochore activities to ensure the proper organization, function, and sensory capabilities of the kinetochore-microtubule attachment.Leukemia & Lymphoma Society of America (Scholar Award)National Institute of General Medical Sciences (U.S.) (Grant GM088313)American Cancer Society (Research Scholar Grant 121776
Olfactory Thresholds of the U.S. Population of Home-Dwelling Older Adults: Development and Validation of a Short, Reliable Measure
Current methods of olfactory sensitivity testing are logistically challenging and therefore infeasible for use in in-home surveys and other field settings. We developed a fast, easy and reliable method of assessing olfactory thresholds, and used it in the first study of olfactory sensitivity in a nationally representative sample of U.S. home-dwelling older adults. We validated our method via computer simulation together with a model estimated from 590 normosmics. Simulated subjects were assigned n-butanol thresholds drawn from the estimated normosmic distribution and based on these and the model, we simulated administration of both the staircase and constant stimuli methods. Our results replicate both the correlation between the two methods and their reliability as previously reported by studies using human subjects. Further simulations evaluated the reliability of different constant stimuli protocols, varying both the range of dilutions and number of stimuli (6–16). Six appropriately chosen dilutions were sufficient for good reliability (0.67) in normosmic subjects. Finally, we applied our method to design a 5-minute, in-home assessment of older adults (National Social Life, Health and Aging Project, or NSHAP), which had comparable reliability (0.56), despite many subjects having estimated thresholds above the strongest dilution. Thus, testing with a fast, 6-item constant stimuli protocol is informative, and permits olfactory testing in previously inaccessible research settings
Nectarine promotes longevity in Drosophila melanogaster.
Fruits containing high antioxidant capacities and other bioactivities are ideal for promoting longevity and health span. However, few fruits are known to improve the survival and health span in animals, let alone the underlying mechanisms. Here we investigate the effects of nectarine, a globally consumed fruit, on life span and health span in Drosophila melanogaster. Wild-type flies were fed standard, dietary restriction (DR), or high-fat diet supplemented with 0-4% nectarine extract. We measured life span, food intake, locomotor activity, fecundity, gene expression changes, and oxidative damage indicated by the level of 4-hydroxynonenal-protein adduct in these flies. We also measured life span, locomotor activity, and oxidative damage in sod1 mutant flies on the standard diet supplemented with 0-4% nectarine. Supplementation with 4% nectarine extended life span, increased fecundity, and decreased expression of some metabolic genes, including a key gluconeogenesis gene, PEPCK, and oxidative stress-response genes, including peroxiredoxins, in female wild-type flies fed the standard, DR, or high-fat diet. Nectarine reduced oxidative damage in wild-type females fed the high-fat diet. Moreover, nectarine improved the survival of and reduced oxidative damage in female sod1 mutant flies. Together, these findings suggest that nectarine promotes longevity and health span partly by modulating glucose metabolism and reducing oxidative damage
Variation resources at UC Santa Cruz
The variation resources within the University of California Santa Cruz Genome Browser include polymorphism data drawn from public collections and analyses of these data, along with their display in the context of other genomic annotations. Primary data from dbSNP is included for many organisms, with added information including genomic alleles and orthologous alleles for closely related organisms. Display filtering and coloring is available by variant type, functional class or other annotations. Annotation of potential errors is highlighted and a genomic alignment of the variant's flanking sequence is displayed. HapMap allele frequencies and linkage disequilibrium (LD) are available for each HapMap population, along with non-human primate alleles. The browsing and analysis tools, downloadable data files and links to documentation and other information can be found at
- …