7,796 research outputs found

    Technologies for aerobraking

    Get PDF
    Aerobraking is one of the largest contributors to making both lunar and Mars missions affordable. The use of aerobraking/aeroassist over all propulsive approaches saves as much as 60 percent of the initial mass required in low earth orbit (LEO); thus, the number and size of earth to orbit launch vehicles is reduced. Lunar transfer vehicles (LTV), which will be used to transport personnel and materials from LEO to lunar outpost, will aerobrake into earth's atmosphere at approximately 11 km/sec on return from the lunar surface. Current plans for both manned and robotic missions to Mars use aerocapture during arrival at Mars and at return to Earth. At Mars, the entry velocities will range from about 6 to 9.5 km/sec, and at Earth the return velocity will be about 12.5 to 14 km/sec. These entry velocities depend on trajectories, flight dates, and mission scenarios and bound the range of velocities required for the current studies. In order to successfully design aerobrakes to withstand the aerodynamic forces and heating associated with these entry velocities, as well as to make them efficient, several critical technologies must be developed. These are vehicle concepts and configurations, aerothermodynamics, thermal protection system materials, and guidance, navigation, and control systems. The status of each of these technologies are described, and what must be accomplished in each area to meet the requirements of the Space Exploration Initiative is outlined

    Supporting public availability and accessibility with Elvin: experiences and reflections.

    Get PDF
    We provide a retrospective account of how a generic event notification service called Elvin and a suite of simple client applications: CoffeeBiff, Tickertape and Tickerchat, came to be used within our organisation to support awareness and interaction. After overviewing Elvin and its clients, we outline various experiences from data collated across two studies where Elvin and its clients have been used to augment the workaday world to support interaction, to make digital actions visible, to make physical actions available beyond the location of action, and to support content and socially based information filtering. We suggest there are both functional and technical reasons for why Elvin works for enabling awareness and interaction. Functionally, it provides a way to produce, gather and redistribute information from everyday activities (via Elvin) and to give that information a perceptible form (via the various clients) that can be publicly available and accessible as a resource for awareness. The integration of lightweight chat facilities with these information sources enables awareness to easily flow into interaction, starting to re-connect bodies to actions, and starting to approximate the easy flow of interaction that happens when we are co-located. Technically, the conceptual simplicity of the Elvin notification, the wide availability of its APIs, and the generic functionality of its clients, especially Tickertape, have made the use of the service appealing to developers and users for a wide range of uses

    Borrowed alleles and convergence in serpentine adaptation

    Get PDF
    ACKNOWLEDGMENTS. We thank members of the L.Y. and K.B. laboratories for helpful discussions. This work was supported through the European Research Council Grant StG CA629F04E (to L.Y.); a Harvard University Milton Fund Award (to K.B.); Ruth L. Kirschstein National Research Service Award 1 F32 GM096699 from the NIH (to L.Y.); National Science Foundation Grant IOS-1146465 (to K.B.); NIH National Institute of General Medical Sciences Grant 2R01GM078536 (to D.E.S.); and Biotechnology and Biological Sciences Research Council Grant BB/L000113/1 (to D.E.S.)Peer reviewedPublisher PD

    Materials Selection for Aerospace Systems

    Get PDF
    A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues

    Almost completely decomposable groups and unbounded representation type

    Get PDF
    AbstractAlmost completely decomposable groups with a regulating regulator and a p-primary regulator quotient are studied. It is shown that there are indecomposable such groups of arbitrarily large rank provided that the critical typeset contains some basic configuration and the exponent of the regulator quotient is sufficiently large

    Tracing out the Northern Tidal Stream of the Sagittarius Dwarf Spheoridal Galaxy

    Full text link
    The main aim of this paper is to report two new detections of tidal debris in the northern stream of the Sagittarius dwarf galaxy located at 45 arcdeg and 55 arcdeg from the center of galaxy. Our observational approach is based on deep color-magnitude diagrams, that provides accurate distances, surface brightness and the properties of stellar population of the studied region of this tidal stream. The derived distances for these tidal debris wraps are 45 kpc and 54 kpc respectively.We also confirm these detections with numerical simulations of the Sagittarius dwarf plus the Milky Way. The model reproduces the present position and velocity of the Sagittarius main body and presents a long tidal stream formed by tidal interaction with the Milky Way potential. This model is also in good agreement with the available observations of the Sagittarius tidal stream. We also present a method for estimating the shape of the Milky Way halo potential using numerical simulations. From our simulations we obtain an oblateness of the Milky Way dark halo potential of 0.85, using the current database of distances and radial velocities of the Sagittarius tidal stream. The color-magnitude diagram of the apocenter of Sagittarius shows that this region of the stream shares the complex star formation history observed in the main body of the galaxy. We present the first evidence for a gradient in the stellar population along the stream, possibly correlated with its different pericenter passages. (abridged)Comment: 43 pages (including 15 figures; for high resolution color figures, please contact [email protected]). Submitted to Ap

    Hierarchical galaxy formation and substructure in the Galaxy's stellar halo

    Get PDF
    We develop an explicit model for the formation of the stellar halo from tidally disrupted, accreted dwarf satellites in the cold dark matter (CDM) framework, focusing on predictions testable with the Sloan Digital Sky Survey (SDSS) and other wide-field surveys. Subhalo accretion and orbital evolution are calculated using a semi-analytic approach within the Press-Schechter formalism. Motivated by our previous work, we assume that low-mass subhalos (v < 30 km/s) can form significant populations of stars only if they accreted a substantial fraction of their mass before the epoch of reionization. With this assumption, the model reproduces the observed velocity function of galactic satellites in the Local Group, solving the ``dwarf satellite problem'' without modifying the popular LCDM cosmology. The disrupted satellites yield a stellar distribution with a total mass and radial density profile consistent with those observed for the Milky Way stellar halo. Most significantly, the model predicts the presence of many large-scale, coherent substructures in the outer halo. These substructures are remnants of individual, tidally disrupted dwarf satellite galaxies. Substructure is more pronounced at large galactocentric radii because of the smaller number density of tidal streams and the longer orbital times. This model provides a natural explanation for the coherent structures in the outer stellar halo found in the SDSS commissioning data, and it predicts that many more such structures should be found as the survey covers more of the sky. The detection (or non-detection) and characterization of such structures could eventually test variants of the CDM scenario, especially those that aim to solve the dwarf satellite problem by enhancing satellite disruption.Comment: 12 pages, 8 figures, Submitted to Ap
    • 

    corecore