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1. Introduction

A torsion-free abelian group G of finite rank is completely decomposable if G is isomorphic to a
finite direct sum of subgroups of Q, the additive group of rational numbers, and almost completely
decomposable if G has a completely decomposable subgroup C with G/C a finite group. Almost com-
pletely decomposable groups are a notoriously complicated class of torsion-free abelian groups of
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finite rank, [9,1,10], the source of many pathological examples, [8], and have been generalized to
infinite rank, [12].

A type is an isomorphism class [X] of a subgroup X of Q. The set of all types is a partially ordered
set (poset), where [X] � [Y ] if X is isomorphic to a subgroup of Y . The meet of two types [X] and
[Y ] is [X] ∧ [Y ] = [X ∩ Y ] and the join is [X] ∨ [Y ] = [X + Y ].

Let G be an almost completely decomposable group with a completely decomposable subgroup R
such that G/R is finite. The critical typeset of G is Tcr(G) = {[X]: X rank-1 summand of R} = Tcr(R).
The typeset Tst(G) of G is {[X]: X pure rank-1 subgroup of G}. The typeset of G is the meet closure
of the critical typeset of G and is finite.

A subgroup R of an almost completely decomposable group G is a regulating subgroup of G
if and only if R is completely decomposable (c.d.) and |G/R| is the least integer in the set
{|G/C |: C is c.d. with G/C finite}, [9].

The regulator R(G) is the intersection of all regulating subgroups of G . It is well known that the
regulator is again completely decomposable, has finite index in G and is fully invariant.

Given a finite partially ordered set S of types and an integer m � 1, an S-group with pm-regulator
quotient is an almost completely decomposable group G with critical typeset Tcr(G) ⊆ S and pmG ⊆
R(G), the regulator subgroup of G , e.g. see [14,15,11,13,6,10].

Let w(S) denote the width of S , the length of a maximal antichain contained in S . Define S-
groups with pm-regulator quotients to have unbounded representation type if there are indecomposable
S-groups with pm-regulator quotients of arbitrarily large finite rank.

The main result of this paper is:

Theorem 1. Let p be a prime, S a finite p-locally free poset of types and m � 1 an integer. Then S-groups with
pm-regulator quotients have unbounded representation type if

(1) m = 1, S contains (1,1,1,1), (2,2,2), (1,3,3), (1,2,5), or (N,4);
(2) m � 2, w(S) � 3;
(3) m � 6, (1,2) ⊆ S;
(4) m � 4, (1,3) ⊆ S;
(5) m � 3, (2,2) ⊆ S.

The class of S-groups with pm-regulator quotients arises naturally in a more general context. If G
is an almost completely decomposable group and τ is a type, then

G(τ ) =
∑{

X: X pure rank-1 subgroup of G with [X] � τ
}

is a pure subgroup of G . Let T be a finite p-locally free lattice of types and S T the poset of
join irreducible elements of T . Given a prime p and positive integer m, C(T , p,m) denotes the
isomorphism at p category of almost completely decomposable groups G with Tst(G) ⊆ T and
pmG ⊆ ∑{G(τ ): τ ∈ S T } ⊆ G . The representation type of C(T , p,m) has been characterized in terms
of m and the opposite of the poset S T via representations of finite posets over discrete valuation
rings, [4, Corollary 4.2].

Define Ccrit(T , p,m) to be the full subcategory of groups G in C(T , p,m) with Tcr(G) ⊆ S T . In
general, Ccrit(T , p,m) �= C(T , p,m), each S T -group with pm-regulator quotient is in Ccrit(T , p,m), but a
group in Ccrit(T , p,m) need not be an S T -group with pm-regulator quotient. As a result, the conditions
of Theorem 1 also give S T and m for which Ccrit(T , p,m) has unbounded representation type. This
extends results in [2] and answers some open questions in [1].

The converse of Theorem 1 for the case that S is an inverted forest is addressed in [3].

2. Preliminaries

A chain is a finite linearly ordered poset designated by n, the number of elements in the poset.
The poset {1 < 2 > 3 < 4} is denoted by N . If each Si is a poset, then the disjoint union S1 ∪ · · · ∪ Sm



52 D.M. Arnold et al. / Journal of Algebra 349 (2012) 50–62
is a poset denoted by (S1, S2, . . . , Sm). For example, (1,2) is the disjoint union of chains of length 1
and 2 and (N,4) is the disjoint union of N and a chain of length 4. A finite poset S is an inverted
forest if for each s ∈ S , {t ∈ S: t � s} is linearly ordered. For example, if S is an inverted forest with
w(S) = 2, then S = (k,n) for some 1 � k � n.

If G is an almost completely decomposable group, then G(τ ) = Gτ ⊕G�(τ ) for each type τ ∈ Tcr(G),
where G�(τ ) is the pure subgroup of G generated by {X: X pure rank-1 subgroup of G with [X] > τ }
and Gτ is a pure subgroup of G isomorphic to a finite direct sum of copies of a rank-1 group Y
with [Y ] = τ , [5]. A regulating subgroup need not be unique. The direct sum of the subgroups Gτ for
τ ∈ Tcr(G) is a regulating subgroup of G and conversely, if R is a regulating subgroup of G and R =⊕

τ∈Tcr(A) Rτ is a decomposition of R with τ -homogeneous completely decomposable summands Rτ ,

then G(τ ) = Rτ ⊕ G�(τ ), [9].
It can happen that an almost completely decomposable group contains exactly one regulating sub-

group that then coincides with the regulator. In this case the regulator is regulating and we have a
regulating regulator. The following lemma was first proved in [7, Satz 5.1] and reproved in [10, Propo-
sition 4.1] and [1, Corollary 3.2.13].

Lemma 2. Let G be an almost completely decomposable group. If Tcr(G) is an inverted forest, then

R(G) =
∑{

G(τ ): τ ∈ Tcr(G)
} =

⊕{
Rτ : τ ∈ Tcr(G)

}
is the regulating regulator of G and

G(τ ) = R(G)(τ ) =
⊕{

Rσ : τ � σ ∈ Tcr(G)
}

for each τ ∈ Tcr(G).

Given a prime p, a poset (S,�) of types is p-locally free if p X �= X for each [X] ∈ S .
Two almost completely decomposable groups G and H are isomorphic at p if there is an integer n

prime to p and homomorphisms f : G → H and g : H → G with f g = n1H and g f = n1G . The groups
G and H are nearly isomorphic if they are isomorphic at p for every prime p. Other characterizations
of isomorphism at p and near isomorphism are given in [1, Chapter 2] and [10, Chapter 9]. The
regulator R(G) of an almost completely decomposable group G and the regulator quotient G/R(G)

are near-isomorphism invariants. If H is nearly isomorphic to G ⊕ K for some almost completely
decomposable group K , then H has a group summand nearly isomorphic to G , [1, Corollary 5.1.8.b].

Lemma 3. (See [1, Lemma 5.4.1].) Assume that S is a finite p-locally free poset of types and that G and H are
S-groups with pm-regulator quotients.

(1) G and H are nearly isomorphic if and only if G and H are isomorphic at p.
(2) G is an indecomposable group if and only if G is isomorphic at p to an indecomposable group.

3. Groups and anti-representations

Let p be a prime and (S,�) a finite p-locally free inverted forest of types. Define cdrep(S,Zpm )

to be the collection of objects U = (U0, Us, U∗: s ∈ S) such that for each s ∈ S , there is a finitely
generated free Zpm -module V s with U0 = ⊕

s∈S V s , Us = ⊕
s�t∈S Vt , Ut ⊆ Us whenever s � t (note

the reversal of the order), and U∗ a submodule of U0 with Us ∩ U∗ = 0 for each s ∈ S . Notice that U∗
is finitely generated but need not be a free Zpm -module. An object U of cdrep(S,Zpm ) is called an
anti-representation in [10].

Homomorphisms from U = (U0, Us, U∗: s ∈ S) to W = (W0, W s, W∗: s ∈ S) are Zpm -homomor-
phisms f : U0 → W0 with f (Us) ⊆ W s for each s ∈ S ∪ {∗}. An object U is indecomposable if
whenever U = Y ⊕ W = (Y0 ⊕ W0, Ys ⊕ W s, Y∗ ⊕ W∗: s ∈ S), then either Y0 = 0 or W0 = 0. It is
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readily verified that U is indecomposable if and only if 0 and 1 are the only idempotents of End(U ),
the endomorphism ring of U in cdrep(S,Zpm ).

Suppose that R = ⊕{Rs: s ∈ Tcr(R)} is a completely decomposable group, where each Rs is a direct
sum of ns rank-1 groups of type s and n = ∑

s∈Tcr(R) ns = rank(R). An ordered subset {xsi ∈ Rs: s ∈
Tcr(R), 1 � i � ns} of R is a p-basis of R with coefficient groups Rsi if R = ⊕{Rsi xsi: s ∈ Tcr(R), 1 �
i � ns}, Rsi = {q ∈ Q: qxsi ∈ R} ⊆ Q has type s, and 1/p /∈ Rsi for each s and i. Notice that R has a
p-basis if and only if the critical types of R are p-locally free.

Let G be an almost completely decomposable group with a completely decomposable subgroup
R such that G/R is a finite p-group and {xsi ∈ Rs: s ∈ Tcr(R), 1 � i � ns} is a p-basis of R with
coefficient groups Rsi . An integer matrix M = (msi)r×n is a coordinate matrix of G modulo R if there is an
ordered basis (h1 + R, . . . ,hr + R) of G/R with each hi = (1/pki )(

∑
s∈S msi xsi) and pki = order(hi + R).

The structure matrix belonging to (h1 + R, . . . ,hr + R) is the diagonal matrix

N = diag
(

pk1 , . . . , pkr
)
.

In summary, G = R + Zr N−1M�x, where Zr denotes the set of integral row vectors and �x = (xsi)
tr is

a column vector. This is called a standard description of G and if m � ki for i = 1, . . . , r, then the
matrix pmZr N−1M is integral and MG = pmZr N−1M(mod pm) is called a representing matrix of G . By
[10, Corollaries 11.2.5 and 11.3.4] G/R ∼= Zpk1 ⊕ · · · ⊕ Zpkr if and only if gcd(M, N) = I .

Lemma 4. Assume that p is a prime and S is a finite p-locally free inverted forest of types.

(1) There is a bijection [G] �→ [U G ] on isomorphism at p classes of S-groups with pm-regulator quotients and
S = Tcr(G) to isomorphism classes of objects of cdrep(S,Zpm ).

(2) G is indecomposable if and only if U G is indecomposable.

Proof. (1) Let G be an S-group with pm-regulator quotient and S = Tcr(G). By Lemma 2, G has the
regulating regulator R = ∑{R(s): s ∈ S} = ⊕{Rs: s ∈ S} and pmG ⊆ R ⊆ G , G(s) = R(s) = ⊕{Rt : s �
t ∈ S}, and each Rs is isomorphic to a direct sum of ns rank-1 groups of type s.

Define U G = (U0, Us, U∗: s ∈ S), where U0 = R/pm R , Us = (R(s) + pm R)/pm R ⊆ U0 for each s ∈ S ,
and U∗ = pmG/pm R ⊆ U0. Notice that U0 and every Us ∼= R(s)/pm R(s) are free Zpm -modules. Define
V s = (Rs + pm R)/pm R , a summand of U0 for each s ∈ S . It follows that U0 = ⊕

s∈S V s and Us =⊕
s�t∈S Vt for each s ∈ S .

Let G = R + Zr N−1M�x be a standard description of G , with �x = (xsi)
tr . Then U0 = ⊕{Zpm (xsi +

pm R): s ∈ S, 1 � i � ns} and U∗ = (pmZr N−1M�x + pm R)/pm R ⊆ U0. Hence, U∗ ∩ Us = 0 for each
s ∈ S , because R is the regulating regulator of G [10, Corollary 8.1.12], and so U G ∈ cdrep(S,Zpm ).

Assume that f : G → H is an isomorphism at p. Since S is an inverted forest, and by Lemma 2,
f induces an isomorphism f̄ : R(G)/pm R(G) → R(H)/pm R(H) with f̄ (G(s)/pmG(s)) = H(s)/pm H(s)
for each s ∈ S = Tcr(G) = Tcr(H) and f̄ (pmG/pm R(G)) = pm H/pm R(H). Hence, f̄ : U G → U H is an
isomorphism.

As for onto, let U = (U0, Us, U∗: s ∈ S) ∈ cdrep(S,Zpm ) with U0 = ⊕
s∈S V s , Us = ⊕

s�t∈S Vt and
U∗ ∩ Us = 0 for each s ∈ S . Choose a completely decomposable group RU with Tcr(RU ) = S and RU =⊕{Rs: s ∈ S} such that U0 = RU /pm RU , and each Us = Rs/pm Rs . For each s ∈ S , choose a p-basis
{xsi ∈ Rs: s ∈ S, 1 � i � ns} of RU with coefficient groups Rsi and observe that B = {vsi = xsi +
pm RU : s ∈ S, 1 � i � ns} is a basis for U0 and each Bs = {vsi = xsi + pm RU : 1 � i � ns} is a basis
for Us .

Write U∗ ∼= Z
l1
pk1

⊕ · · · ⊕ Z
lr
pkr

with ordered basis (h1, . . . ,hl), where l = l1 + · · · + lr . Then hi =∑{mi,sj vsj: s ∈ S, 1 � j � ns}, M = (mi,sj) is a Zpm -matrix, and pm N−1
U M is a Zpm -matrix, where

NU = diag
(

pk1 , . . . , pkr
)

and m = max{k1, . . . ,kr}.
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Let MU be an integer matrix with M = pm N−1
U MU (mod pm) and define GU = RU + Zn N−1

U MU �x. Then
RU is the regulating regulator of GU since U∗ ∩ Us = 0 for each s ∈ Tcr(GU ), [10, Corollary 8.1.12].
It now can be readily verified that Tcr(GU ) = S , GU is an S-group with pm-regulator quotient, and
U GU = U .

Finally, let f : U → W be an isomorphism in cdrep(S,Zpm ). In view of the constructions of RU

and RW and the fact that f : U0 → W0 with f (Us) ⊆ W s for each s ∈ S there is g : RU → RW with
g an isomorphism at p and ḡ = f . Since f (U∗) ⊆ W∗ , g extends to a map h : GU → GW that is an
isomorphism at p.

(2) [10, Corollary 10.7]. �
We follow up with an illustration of some notation and constructions in the proof of Lemma 4(1).

It shows that, given a poset S of p-locally free types and a representing matrix M , it is easy
to construct an almost completely decomposable group G whose critical typeset is S and whose
anti-representation has the representing matrix M . By Lemma 4(1) the group G is unique up to iso-
morphism at p.

For the purposes of this paper a rational group is a subgroup Q of Q such that 1 ∈ Q but 1/p /∈ Q .
If so, then {1} is a p-basis of Q . More generally, if R = ⊕

i∈I Ri is a direct sum of rational groups,
then R has the natural p-basis {(1,0, . . .), . . . , (. . . ,0,1)}.

Example 5. Let S = {1,2 < 3} be a poset of p-locally free types and let U = (U0, Ui, U∗: i ∈ S) with
the representing matrix (coefficients in Zp6 )

M =

⎛
⎜⎜⎝

In 0 0 | p2 In 0
... In 0

0 p2 In 0 | p3 In p4 In
... 0 p2 In

0 0 p4 In | p4 In p5 A
... 0 0

⎞
⎟⎟⎠ ,

where A is an n × n integer matrix.
The rows of M are the generators of U∗ and an arbitrary element of U∗ is given by

(
u, p2 v, p4 w

∣∣ p2u + p3 v + p4 w, p4 v + p5 w A
∣∣ u, p2 v

) = (u, v, w)M,

where u, v, w ∈ Zn
p6 . From this it is easily seen that Ui ∩ U∗ = 0, showing that U ∈ cdrep(S,Zp6 ). It is

also obvious that the rows of M are independent, the generators of the first block have orders p6, the
generators of the second block have orders p4, and the generators of the third block have orders p2.
Hence U∗ ∼= Zn

p6 ⊕ Zn
p4 ⊕ Zn

p2 .

Let N = diag(p6 In, p4 In, p2 In). The integer matrix

M0 :=

⎛
⎜⎜⎝

In 0 0 | p2 In 0
... In 0

0 In 0 | pIn p2 In
... 0 In

0 0 In | In p A
... 0 0

⎞
⎟⎟⎠

is such that p6N−1M0 ≡ M mod p6. Let R1, R2, R3 be rational groups such that [Ri] = i. Let R =
R3n

1 ⊕ R2n
2 ⊕ R2n

3 , and let G = R + �ZN−1M0 ⊆ Q7n . Then G is an almost completely decomposable group
with completely decomposable subgroup R and G/R ∼= Z(p6)n ⊕ Z(p4)n ⊕ Z(p2)n because obviously
gcd(N, M0) = I . Also Tcr(G) = Tcr(R) = S . Furthermore, U G = (U G

0 , U G
i , U G∗ : i ∈ S) ∈ cdrep(S,Zp6 ) is

given by

U G
0 = R/p6 R, U G

i = (
R(i) + p6 R

)
/p6 R, U G∗ = �ZM.
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Clearly U and U G are isomorphic anti-representations. In particular, Ui ∩ U∗ = 0 for every i, showing
that R is the regulating regulator of G .

4. Unbounded representation type

An S-group G with pm-regulator quotient and Tcr(G) = S will be proven indecomposable, via
Lemma 4(2), by showing that End(U G) has only 0 and 1 as idempotents.

Let U = (U0, U∗, Us: s ∈ S) where U0 = ⊕
s∈S V s , and Us = ⊕

s�t∈S Vt for each s and let f ∈
End(U ).

For convenience we assume that S is represented by {1, . . . ,k} as will be the case in all our
applications.

Let πi : U0 → V i and ιi : V i ↪→ U0 be the projections and insertions corresponding to the decom-
position U0 = ⊕

1�i�k V i . Set f i = πi f ιi : V i → V i and hij = π j f ιi : V i → V j . Then f can be written
in matrix form as

f =

⎛
⎜⎜⎝

f1 h12 · · · h1k
h21 f2 · · · h2k
...

...
. . .

...

hk1 hk2 · · · fk

⎞
⎟⎟⎠ .

The action of f on x = (x1, . . . , xk) ∈ U0 is by matrix multiplication:

f (x) = (x1, . . . , xk)

⎛
⎜⎜⎝

f1 h12 · · · h1k
h21 f2 · · · h2k
...

...
. . .

...

hk1 hk2 · · · fk

⎞
⎟⎟⎠ =

(
f1(x1) +

∑
j>1

h j1(x j), . . . , fk(xk) +
∑
j<k

h j1(x j)

)
.

Since f (Ui) ⊆ Ui the poset structure <S of S = {1, . . . ,k} requires that hij = 0 unless i <S j.
We adopt the following notation:

• f̄ = f + p End(U0) ∈ End(U0)/p End(U0) for f ∈ End(U0),
• f̄ i = f i + p End(V i) ∈ End(V i)/p End(V i) for f i ∈ End(V i),
• E = End(Zn

pm ), Ē = E/pE = End(Zn
p), and ḡ = g + pE ∈ Ē for g ∈ E .

Each End(V i) is a free Zpm -module because V i is a free Zpm -module. Consequently, if f i ∈ End(V i)

and 1 � j � m − 1, then p j f i = 0 if and only if f i ∈ pm− j End(V i).
Given a prime p, a positive integer n, and an n × n Z-matrix A = (aij), define

A
(
mod pm) = (

aij
(
mod pm))

,

an n × n Zpm -matrix. Choose A such that the minimal polynomial mA(mod p)(x) of A(mod p) has
degree n and is a power of an irreducible polynomial in Zp[x].

For example, let λ ∈ Z and

A = Jn(λ) =

⎛
⎜⎜⎜⎜⎝

λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · λ 1
0 0 0 · · · 0 λ

⎞
⎟⎟⎟⎟⎠

be an n × n Jordan block matrix. Then mA(mod p)(x) = (x − λ(mod p))n ∈ Zp[x], and
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Zp[x]/〈mA(mod p)(x)
〉 = Zn

p

is an indecomposable Zp[x]-module denoted by K A .

Proposition 6. (See [2], [1, Example 5.2.3].) Let p be a prime, (1,1,1) ⊆ S a p-locally free poset of types, and
m � 2. There are indecomposable S-groups with pm-regulator quotients of arbitrarily large finite rank.

In the proof of Proposition 6, S = {1 | 2 | 3}, m = 2 and

MG =
(

In | In | A
0 | pIn | pIn

)
,

where A is an n × n Zp2 -matrix with K A indecomposable.

Proposition 7. If p is a prime, (1,2) ⊆ S is a finite poset of p-locally free types, and m � 6, then there are
indecomposable S-groups with pm-regulator quotients of arbitrarily large finite rank.

Proof. Consider Example 5 where A is such that K A is an indecomposable module.
It is left to show that G is indecomposable. We have the decomposition U0 = V 1 ⊕ V 2 ⊕ V 3, where

V 1 ∼= R3n
1 /p6 R3n

1
∼= Z3n

p6 , V 2 ∼= R2n
2 /p6 R2n

2
∼= Z2n

p6 , and V 3 ∼= R2n
3 /p6 R2n

3
∼= Z2n

p6 .

Let f 2 = f ∈ End(U ). Then

f =
( f1 0 0

0 f2 h23
0 0 f3

)
,

where f i : V i → V i and h23 : V 2 → V 3.
As f 2 = f

⎛
⎝ f 2

1 0 0
0 f 2

2 f2h23 + h23 f3

0 0 f 2
3

⎞
⎠ =

( f1 0 0
0 f2 h23
0 0 f3

)2

=
( f1 0 0

0 f2 h23
0 0 f3

)

so that

f 2
i = f i, f2h23 + h23 f3 = h23.

Write V 1 = V 11 ⊕ V 12 ⊕ V 13, V 2 = V 21 ⊕ V 22, and V 3 = V 31 ⊕ V 32 with each V ij = Zn
pm and

let πi j : U0 → V ij and ιi j : V ij → U0 be the corresponding projections and insertions. Define f i jk =
πik f jιi j : V ij → V ik so that, in matrix form,

f1 =
( f111 f112 f113

f121 f122 f123
f131 f132 f133

)
, f i =

(
f i11 f i12
f i21 f i22

)
, where i = 2,3.

The homomorphism f i jk : V ij = Zn
pm → V ik = Zn

pm is regarded as an element of E := End(Zn
pm ).

Let x ∈ Zn
pm , and recall that f (U∗) ⊆ U∗ .
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Then (x,0,0 | p2x,0 | x,0) is in the span of the first block of generators of U∗ and

f
(
x,0,0

∣∣ p2x,0
∣∣ x,0

) = (
f1(x,0,0)

∣∣ f2
(

p2x,0
) ∣∣ f3(x,0) + h23

(
p2x,0

))
= (

u1, p2 v1, p4 w1
∣∣ p2u1 + p3 v1 + p4 w1, p4 v1 + p5 w1 A

∣∣ u1, p2 v1
)

for some u1 = u1(x), v1 = v(x), w1 = w(x) ∈ End Zn
p6 . Hence

f1(x,0,0) = (
u1, p2 v1, p4 w1

)
, (1)

f2
(

p2x,0
) = (

p2u1 + p3 v1 + p4 w1, p4 v1 + p5 w1 A
)
, (2)

f3(x,0) + h23
(

p2x,0
) = (

u1, p2 v1
)
. (3)

Then by (1), (2), and (3) we have

f1
(

p5x,0,0
) = (

p5u1(x),0,0
)
, f2

(
p5x,0

) = (
p5u1(x),0

)
, f3

(
p5x,0

) = (
p5u1(x),0

)
.

Therefore,

p5 f111 = p5u1, p5 f112 = 0, p5 f113 = 0, (4)

p5 f211 = p5u1, p5 f212 = 0, (5)

p5 f311 = p5u1, p5 f312 = 0, (6)

The element (0, p2x,0 | p3x, p4x | 0, p2x) is in the span of the second block of generators of U∗
and

f
(
0, p2x,0

∣∣ p3x, p4x
∣∣ 0, p2x

)
= (

f1
(
0, p2x,0

) ∣∣ f2
(

p3x, p4x
) ∣∣ f3

(
0, p2x

) + h23
(

p3x, p4x
))

= (
u2, p2 v2, p4 w2

∣∣ p2u2 + p3 v2 + p4 w2, p4 v2 + p5 w2 A
∣∣ u2, p2 v2

)
,

for some u2 = u2(x), v2 = v2(x), w2 = w2(x) ∈ End Zn
pm . Hence

f1
(
0, p2x,0

) = (
u2, p2 v2, p4 w3

)
, (7)

f2
(

p3x, p4x
) = (

p2u2 + p3 v2 + p4 w2, p4 v2 + p5 w2 A
)
, (8)

f3
(
0, p2x

) + h23
(

p3x, p4x
) = (

u2, p2 v2
)
. (9)

By (7), (8), and (9) we have u2 = p2u′ and

f1
(
0, p5x,0

) = (
p5u′, p5 v2,0

)
f2

(
p5x,0

) = (
p5 v2,0

)
f3

(
0, p5x

) = (
p5u′, p5 v2

)
.

Also

f2
(
0, p5x

) = pf2
(

p3x, p4x
) − f2

(
p4x,0

) (8),(2)= (
p5u′ + p4 v2 + p5 w2, p5 v2

) − (
p4u1 + p5 v1,0

)
= (

p5u′ + p4 v2 + p5 w2 − p4u1 − p5 v1, p5 v2
)
. (10)
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Multiplying (10) by p we get

0 = (
p5 v2 − p5u1,0

)
, so p5 v2 = p5u1. (11)

Therefore, using (11),

p5 f121 = p5u′, p5 f122 = p5u1, p5 f123 = 0, (12)

p5 f211 = p5u′, p5 f212 = 0, (13)

p5 f222 = p5u1, (14)

p5 f321 = p5u′, p5 f322 = p5u1. (15)

Finally, (0,0, p4x | p4x, p5xA | 0,0) is in the span of the third block of generators of U∗ and

f
(
0,0, p4x

∣∣ p4x, p5xA
∣∣ 0,0

)
= (

f1
(
0,0, p4x

) ∣∣ f2
(

p4x, p5xA
) ∣∣ f3(0,0) + h23

(
p4x, p5xA

))
= (

u3, p2 v3, p4 w3
∣∣ p2u3 + p3 v3 + p4 w3, p4 v3 + p5 w3 A

∣∣ u3, p2 v3
)

for some u3 = u3(x), v3 = v3(x), w3 = w3(x) ∈ End Zn
pm . Hence

f1
(
0,0, p4x

) = (
u3, p2 v3, p4 w3

)
, (16)

f2
(

p4x, p5xA
) = (

p2u3 + p3 v3 + p4 w3, p4 v3 + p5 w3 A
)
, (17)

h23
(

p4x, p5xA
) = (

u3, p2 v3
)
. (18)

By (16) and (17), we have that u3 = p4u′′ , v3 = p2 v ′ , and

f1
(
0,0, p5x

) = (
p5u′′, p5 v ′, p5 w3

)
, f2

(
p5x,0

) = (
p5 w3,0

)
.

Therefore

p5 f131 = p5u′′, p5 f132 = p5 v ′, p5 f133 = p5 w3, (19)

p5 f211 = p5 w3, p5 f212 = 0. (20)

From (20) and (5) we conclude that

p5 w3 = p5u1. (21)

We use that for any g1, g2 ∈ E := End Zn
p6 it follows from p5 g1 = p5 g2 that ḡ1 = ḡ2 ∈ Ē = E/pE .

Setting a := ū1 ∈ Ē , it follows from (4), (5), (6), (12), (13), (14), and (15) that:

f̄1 =
( a 0 0

ū′ a 0
¯ ′′ ¯ ′

)
, f̄2 =

(
a 0

f̄221 a

)
, f̄3 =

(
a 0
ū′ a

)
.

u v a
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Finally,

f2
(
0, p5xA

) = f2
(

p4x, p5xA
) − f2

(
p4x,0

) (17)= (∗, p4 v3 + p5 w3 A
) − f2

(
p4x,0

)
(2)= (∗, p4 v3 + p5 w3 A

) − (∗,0) = (∗, p5 w3 A
)
,

because p4 v3 = p6 v ′ = 0. Thus,

p5u1(xA)
(14)= f222

(
p5xA

) = p5 w3(x)A
(21)= p5u1(x)A,

so a(xA) = a(x)A or Aa = aA.
Moreover, a is idempotent as f̄1 is idempotent. As a ∈ Ē with aA = Aa, a is an idempotent endo-

morphism of the indecomposable Zp[x]-module K A . Hence, a = 0 or 1.
If a = 0, then f̄ is idempotent and nilpotent and so f̄ = 0. Write f = pg for some g ∈ End(U0).

Since f is idempotent, f = f 6 = p6 g6 = 0.
If a = 1, then 1̄ − f̄ is idempotent and nilpotent, hence f̄ = 1. Write f = 1 + pg for some g ∈

End(U0). Then f is a unit of End(U0), because pg is nilpotent, and f = 1 because f 2 = f .
As 0 and 1 are the only idempotents of End(U ), U = U G is indecomposable. By Lemma 4(2),

G is an indecomposable (1,2)-group with p6-regulator quotient group and rank 7n. If m � 6 and
(1,2) ⊆ S , then it is easy to see that G is an indecomposable S-group with pm-regulator quotient
group and rank 7n. �
Proposition 8. Let p be a prime, (1,3) ⊆ S a p-locally free poset of types, and m � 4. There are indecompos-
able S-groups with pm-regulator quotients of arbitrarily large finite rank.

Proof. Let S = (1,3) = {1 | 2 < 3 < 4}, m = 4, and n a positive integer. Let U = (U0, Ui, U∗: i ∈ S) ∈
cdrep(S,Zp4 ) with representing matrix

MG =
⎛
⎝ In 0 | p2 In

... pIn
... In

0 p2 In | p3 A
... p2 In

... 0

⎞
⎠ .

Observe that an arbitrary element of U∗ is

(
u, p2 v

∣∣ p2u + p3 v A
... pu + p2 v

... u
) = (u, v)MG

for some u, v ∈ Zn
p4 . It follows easily that U∗ ∩ Ui = 0 for each 1 � i � 4 showing that indeed U ∈

cdrep(S,Zp4 ).
By Lemma 4(1) there is an S-group G such that U G ∼= U . We only need to show that U , and so G ,

are indecomposable.
Let f 2 = f ∈ End(U G). Then

f =
⎛
⎜⎝

f1 0 0 0
0 f2 h23 h24
0 0 f3 h34
0 0 0 f4

⎞
⎟⎠ .

As f 2 = f , it follows that f 2
i = f i for i = 1,2,3,4. We will use the matrix form of f1: f1 = ( f11 f12

f21 f22

)
corresponding to the decomposition R2n

1 = Rn
1 ⊕ Rn

1.
We now use the fact that f (U∗) ⊆ U∗ . Let x ∈ Zn

4 .

p
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Then (x,0 | p2x
.
.
. px

.

.

. x) is in the span of the first block of generators of U∗ and

f
(
x,0

∣∣ p2x
... px

... x
) = (

f1(x,0)
∣∣ f2

(
p2x

) ... f3(px) + h23
(

p2x
) ... f4(x) + h24

(
p2x

) + h34(px)
)

= (
u1, p2 v1

∣∣ p2u1 + p3 v1 A
... pu1 + p2 v1

... u1
) ∈ U∗

for some u1 = u1(x), v1 = v1(x), w1 = w1(x) ∈ End Zn
p4 . Then

f1(x,0) = (
u1, p2 v1

)
,

f2
(

p2x
) = p2u1 + p3 v1 A,

f3(px) + h23
(

p2x
) = pu1 + p2 v1,

f4(x) + h24
(

p2x
) + h34(px) = u1.

This yields

f̄11 = ū1, f̄12 = 0, f̄2 = ū1, f̄3 = ū1, f̄4 = ū1. (22)

The element (0, p2x | p3xA
.
.
. p2x

.

.

. 0) is in the span of the second block of generators of U∗ and

f
(
0, p2x

∣∣ p3xA
... p2x

... 0
)

= (
f1

(
0, p2x

) ∣∣ f2
(

p3xA
) ... f3

(
p2x

) + h23
(

p3xA
) ... f4(0) + h24

(
p3xA

) + h34
(

p2x
))

= (
u2, p2 v2

∣∣ p2u2 + p3 v2 A
... pu2 + p2 v2

... u2
) ∈ U∗

for some u2 = u2(x), v2 = v2(x), w2 = w2(x) ∈ End Zn
p4 . It follows that

f1
(
0, p2x

) = (
u2, p2 v2

)
,

f2
(

p3xA
) = p2u2 + p3 v2 A,

f3
(

p2x
) + h23

(
p3xA

) = pu2 + p2 v2,

h24
(

p2xA
) + h34

(
p2x

) = u2.

Hence u2 = p2u′ , p2u2 = 0, and

f̄21 = ū′, f̄22 = v̄2, f̄2(xA) = v̄2(x)A, f̄3 = v̄2. (23)

By (22) and (23) ū1 = f̄2 = f̄3 = v̄2 ∈ Ē , and setting a = ū1 we have a(xA) = a(x)A or aA = Aa and

f̄1 =
(

a 0
ū′ a

)
.

As in the proof of Proposition 7, a is an idempotent endomorphism of the indecomposable module
K A , a = 0 or a = 1, f = 0 or 1, so U = U G and G are indecomposable. �
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Proposition 9. Let p be a prime, (2,2) ⊆ S a p-locally free poset of types, and m � 3. There are indecompos-
able S-groups with pm-regulator quotients of arbitrarily large finite rank.

Proof. Let S = (2,2) = {1 < 2,3 < 4}, m = 3, and let n be a positive integer. Further let U =
(U0, Ui, U∗: i ∈ S) ∈ cdrep(S,Zp3 ) with representing matrix

M =
⎛
⎝ pIn

... In | p A
... In

p2 In
... 0 | p2 In

... 0

⎞
⎠ ,

where A is as always. An arbitrary element of U∗ is

(
pu + p2 v

... u
∣∣ pu A + p2 v

... u
) = (u, v)M

for some u, v ∈ Zn
p3 . It is easily seen that U∗ ∩ Ui = 0 for each 1 � i � 4, hence U ∈ cdrep(S,Zp3 ).

The proof of indecomposability of G follows that of Proposition 7. Let f ∈ End(U G) be an idempo-
tent. Then

f =
⎛
⎜⎝

f1 h12 0 0
0 f2 0 0
0 0 f3 h34
0 0 0 f4

⎞
⎟⎠ ,

and f 2
i = f i for i = 1,2,3,4.

Let x ∈ Zn
p3 . Then (px

.

.

. x | pxA
.
.
. x) ∈ U∗ is in the span of the first block of generators of U∗ and

f (px
... x | pxA

... x) = (
f1(px)

... f2(x) + h12(px)
∣∣ f3(pxA)

... f4(x) + h34(pxA)
)

= (
pu1 + p2 v1

... u1
∣∣ pu1 A + p2 v1

... u1
) ∈ U∗

for some u1 = u1(x) and v1 = v1(x). Hence

f1(px) = pu1 + p2 v1,

f2(x) + h12(px) = u1,

f3(pxA) = pu1 A + p2 v1,

f4(x) + h34(pxA) = u1.

Consequently,

a := f̄1 = f̄2 = f̄4 = ū1 ∈ Ē and f̄3(xA) = a(x)A. (24)

Further, (p2x
.
.
. 0 | p2x

.

.

. 0) is in the span of the second block of generators of U∗ and

f
(

p2x
... 0

∣∣ p2x
... 0

) = (
f1

(
p2x

) ... h12
(

p2x
) ∣∣ f3

(
p2x

) ... h34
(

p2x
))

= (
pu2 + p2 v2

... u2
∣∣ pu2 A + p2 v2

... u2
) ∈ U∗
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for some u2 = u2(x) ∈ End Zn
p3 and v2 = v2(x) ∈ End Zn

p3 . Then

f1
(

p2x
) = pu2 + p2 v2,

h12
(

p2x
) = u2,

f3
(

p2x
) = pu2 A + p2 v2,

h34
(

p2x
) = u2.

Consequently,

u2 = p2u′, pu2 = 0, f̄3 = v̄2 = f̄1 = a. (25)

By (24) and (25) aA = f̄3 A = v̄2(x)A = Aa.
As in the proof of Proposition 7, a is an idempotent endomorphism of the indecomposable mod-

ule K A , a = 0 or a = 1, f = 0 or f = 1, U G is indecomposable, and G is an indecomposable (2,2)-
group with p3-regulator quotient group of rank 4n.

Hence there exist indecomposable S-groups of rank 4n with pm-regulator quotient whenever
m � 3 and (2,2) ⊆ S . �
5. Proof of Theorem 1

Proof. (1) If S is a p-locally free inverted forest of types, then, by Lemma 4(1), there is a bijection
from isomorphism at p classes of indecomposable S-groups with p-regulator quotients to isomor-
phism classes of indecomposable anti-representations in cdrep(S,Zp). The category cdrep(S,Zp) is
equivalent to the category rep(S,Zp) of Zp-representations of S , [1, Theorem 5.2.8(b)]. By Kleiner’s
theorem for representations of finite posets over a field, [1, Theorem 1.3.6], if S contains (1,1,1,1),
(2,2,2), (1,3,3), (1,2,5), or (N,4), then rep(S,Zp) has unbounded representation type.

(2)–(5) are Propositions 6, 7, 8 and 9, respectively. �
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