Almost completely decomposable groups and unbounded representation type

David M. Arnold ${ }^{\mathrm{a}, 1}$, Adolf Mader ${ }^{\mathrm{b}, *}$, Otto Mutzbauer ${ }^{\mathrm{c}, 2}$, Ebru Solak ${ }^{\mathrm{d}}$
${ }^{\text {a }}$ Department of Mathematics, Baylor University, Waco, TX 76798-7328, United States
${ }^{\text {b }}$ Department of Mathematics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, United States
${ }^{\text {c }}$ University Würzburg, Mathematisches Institut, Am Hubland, 97074 Würzburg, Germany
${ }^{\text {d }}$ Department of Mathematics, Middle East Technical University, Inönü̈ Bulvarl, 06531 Ankara, Turkey

ARTICLE INFO

Article history:

Received 28 June 2010
Available online 27 October 2011
Communicated by Gernot Stroth

MSC:

20K15
20K35

Keywords:
Almost completely decomposable group
Large rank
Indecomposable
Representation

Abstract

Almost completely decomposable groups with a regulating regulator and a p-primary regulator quotient are studied. It is shown that there are indecomposable such groups of arbitrarily large rank provided that the critical typeset contains some basic configuration and the exponent of the regulator quotient is sufficiently large.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

A torsion-free abelian group G of finite rank is completely decomposable if G is isomorphic to a finite direct sum of subgroups of \mathbb{Q}, the additive group of rational numbers, and almost completely decomposable if G has a completely decomposable subgroup C with G / C a finite group. Almost completely decomposable groups are a notoriously complicated class of torsion-free abelian groups of

[^0]0021-8693/\$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2011.10.019
finite rank, $[9,1,10$], the source of many pathological examples, [8], and have been generalized to infinite rank, [12].

A type is an isomorphism class [X] of a subgroup X of \mathbb{Q}. The set of all types is a partially ordered set (poset), where $[X] \leqslant[Y]$ if X is isomorphic to a subgroup of Y. The meet of two types $[X]$ and $[Y]$ is $[X] \wedge[Y]=[X \cap Y]$ and the join is $[X] \vee[Y]=[X+Y]$.

Let G be an almost completely decomposable group with a completely decomposable subgroup R such that G / R is finite. The critical typeset of G is $\mathrm{T}_{\text {cr }}(G)=\{[X]: X$ rank -1 summand of $R\}=\mathrm{T}_{\text {cr }}(R)$. The typeset $\operatorname{Tst}(G)$ of G is $\{[X]: X$ pure rank- 1 subgroup of $G\}$. The typeset of G is the meet closure of the critical typeset of G and is finite.

A subgroup R of an almost completely decomposable group G is a regulating subgroup of G if and only if R is completely decomposable (c.d.) and $|G / R|$ is the least integer in the set $\{|G / C|: C$ is c.d. with G / C finite $\}$, [9].

The regulator $\mathrm{R}(G)$ is the intersection of all regulating subgroups of G. It is well known that the regulator is again completely decomposable, has finite index in G and is fully invariant.

Given a finite partially ordered set S of types and an integer $m \geqslant 1$, an S-group with p^{m}-regulator quotient is an almost completely decomposable group G with critical typeset $\mathrm{T}_{\text {cr }}(G) \subseteq S$ and $p^{m} G \subseteq$ $\mathrm{R}(G)$, the regulator subgroup of G, e.g. see $[14,15,11,13,6,10]$.

Let $w(S)$ denote the width of S, the length of a maximal antichain contained in S. Define S groups with p^{m}-regulator quotients to have unbounded representation type if there are indecomposable S-groups with p^{m}-regulator quotients of arbitrarily large finite rank.

The main result of this paper is:
Theorem 1. Let p be a prime, S a finite p-locally free poset of types and $m \geqslant 1$ an integer. Then S-groups with p^{m}-regulator quotients have unbounded representation type if
(1) $m=1, S$ contains $(1,1,1,1),(2,2,2),(1,3,3),(1,2,5)$, or $(N, 4)$;
(2) $m \geqslant 2, \mathrm{w}(S) \geqslant 3$;
(3) $m \geqslant 6,(1,2) \subseteq S$;
(4) $m \geqslant 4,(1,3) \subseteq S$;
(5) $m \geqslant 3,(2,2) \subseteq S$.

The class of S-groups with p^{m}-regulator quotients arises naturally in a more general context. If G is an almost completely decomposable group and τ is a type, then

$$
G(\tau)=\sum\{X: X \text { pure rank-1 subgroup of } G \text { with }[X] \geqslant \tau\}
$$

is a pure subgroup of G. Let T be a finite p-locally free lattice of types and S^{T} the poset of join irreducible elements of T. Given a prime p and positive integer $m, \mathrm{C}(T, p, m)$ denotes the isomorphism at p category of almost completely decomposable groups G with $\operatorname{Tst}(G) \subseteq T$ and $p^{m} G \subseteq \sum\left\{G(\tau): \tau \in S^{T}\right\} \subseteq G$. The representation type of $C(T, p, m)$ has been characterized in terms of m and the opposite of the poset S^{T} via representations of finite posets over discrete valuation rings, [4, Corollary 4.2].

Define $\mathrm{C}_{\text {crit }}(T, p, m)$ to be the full subcategory of groups G in $\mathrm{C}(T, p, m)$ with $\mathrm{T}_{\mathrm{cr}}(G) \subseteq S^{T}$. In general, $\mathrm{C}_{\text {crit }}(T, p, m) \neq \mathrm{C}(T, p, m)$, each S^{T}-group with p^{m}-regulator quotient is in $\mathrm{C}_{\text {crit }}(T, p, m)$, but a group in $\mathrm{C}_{\text {crit }}(T, p, m)$ need not be an S^{T}-group with p^{m}-regulator quotient. As a result, the conditions of Theorem 1 also give S^{T} and m for which $\mathrm{C}_{\text {crit }}(T, p, m)$ has unbounded representation type. This extends results in [2] and answers some open questions in [1].

The converse of Theorem 1 for the case that S is an inverted forest is addressed in [3].

2. Preliminaries

A chain is a finite linearly ordered poset designated by n, the number of elements in the poset. The poset $\{1<2>3<4\}$ is denoted by N. If each S_{i} is a poset, then the disjoint union $S_{1} \cup \cdots \cup S_{m}$
is a poset denoted by $\left(S_{1}, S_{2}, \ldots, S_{m}\right)$. For example, (1,2) is the disjoint union of chains of length 1 and 2 and ($N, 4$) is the disjoint union of N and a chain of length 4 . A finite poset S is an inverted forest if for each $s \in S$, $\{t \in S: t \geqslant s\}$ is linearly ordered. For example, if S is an inverted forest with $\mathrm{w}(S)=2$, then $S=(k, n)$ for some $1 \leqslant k \leqslant n$.

If G is an almost completely decomposable group, then $G(\tau)=G_{\tau} \oplus G^{\sharp}(\tau)$ for each type $\tau \in \mathrm{T}_{\mathrm{cr}}(G)$, where $G^{\sharp}(\tau)$ is the pure subgroup of G generated by $\{X: X$ pure rank-1 subgroup of G with $[X]>\tau\}$ and G_{τ} is a pure subgroup of G isomorphic to a finite direct sum of copies of a rank-1 group Y with $[Y]=\tau$, [5]. A regulating subgroup need not be unique. The direct sum of the subgroups G_{τ} for $\tau \in \mathrm{T}_{\mathrm{cr}}(G)$ is a regulating subgroup of G and conversely, if R is a regulating subgroup of G and $R=$ $\bigoplus_{\tau \in \mathrm{T}_{\mathrm{cr}}(A)} R_{\tau}$ is a decomposition of R with τ-homogeneous completely decomposable summands R_{τ}, then $G(\tau)=R_{\tau} \oplus G^{\sharp}(\tau)$, [9].

It can happen that an almost completely decomposable group contains exactly one regulating subgroup that then coincides with the regulator. In this case the regulator is regulating and we have a regulating regulator. The following lemma was first proved in [7, Satz 5.1] and reproved in [10, Proposition 4.1] and [1, Corollary 3.2.13].

Lemma 2. Let G be an almost completely decomposable group. If $\mathrm{T}_{\mathrm{cr}}(G)$ is an inverted forest, then

$$
\mathrm{R}(G)=\sum\left\{G(\tau): \tau \in \mathrm{T}_{\mathrm{cr}}(G)\right\}=\bigoplus\left\{R_{\tau}: \tau \in \mathrm{T}_{\mathrm{cr}}(G)\right\}
$$

is the regulating regulator of G and

$$
G(\tau)=\mathrm{R}(G)(\tau)=\bigoplus\left\{R_{\sigma}: \tau \leqslant \sigma \in \mathrm{T}_{\mathrm{cr}}(G)\right\}
$$

for each $\tau \in \mathrm{T}_{\mathrm{cr}}(G)$.
Given a prime p, a poset (S, \leqslant) of types is p-locally free if $p X \neq X$ for each $[X] \in S$.
Two almost completely decomposable groups G and H are isomorphic at p if there is an integer n prime to p and homomorphisms $f: G \rightarrow H$ and $g: H \rightarrow G$ with $f g=n 1_{H}$ and $g f=n 1_{G}$. The groups G and H are nearly isomorphic if they are isomorphic at p for every prime p. Other characterizations of isomorphism at p and near isomorphism are given in [1, Chapter 2] and [10, Chapter 9]. The regulator $\mathrm{R}(G)$ of an almost completely decomposable group G and the regulator quotient $G / \mathrm{R}(G)$ are near-isomorphism invariants. If H is nearly isomorphic to $G \oplus K$ for some almost completely decomposable group K, then H has a group summand nearly isomorphic to G, [1, Corollary 5.1.8.b].

Lemma 3. (See [1, Lemma 5.4.1].) Assume that S is a finite p-locally free poset of types and that G and H are S-groups with p^{m}-regulator quotients.
(1) G and H are nearly isomorphic if and only if G and H are isomorphic at p.
(2) G is an indecomposable group if and only if G is isomorphic at p to an indecomposable group.

3. Groups and anti-representations

Let p be a prime and (S, \leqslant) a finite p-locally free inverted forest of types. Define $\operatorname{cdrep}\left(S, \mathbb{Z}_{p^{m}}\right)$ to be the collection of objects $U=\left(U_{0}, U_{s}, U_{*}: s \in S\right)$ such that for each $s \in S$, there is a finitely generated free $\mathbb{Z}_{p^{m} \text {-module }} V_{s}$ with $U_{0}=\bigoplus_{s \in S} V_{s}, U_{s}=\bigoplus_{s \leqslant t \in S} V_{t}, U_{t} \subseteq U_{s}$ whenever $s \leqslant t$ (note the reversal of the order), and U_{*} a submodule of U_{0} with $U_{s} \cap U_{*}=0$ for each $s \in S$. Notice that U_{*} is finitely generated but need not be a free $\mathbb{Z}_{p^{m}}$-module. An object U of $\operatorname{cdrep}\left(S, \mathbb{Z}_{p^{m}}\right)$ is called an anti-representation in [10].

Homomorphisms from $U=\left(U_{0}, U_{s}, U_{*}: s \in S\right)$ to $W=\left(W_{0}, W_{s}, W_{*}: s \in S\right)$ are $\mathbb{Z}_{p^{m}}$-homomorphisms $f: U_{0} \rightarrow W_{0}$ with $f\left(U_{s}\right) \subseteq W_{s}$ for each $s \in S \cup\{*\}$. An object U is indecomposable if whenever $U=Y \oplus W=\left(Y_{0} \oplus W_{0}, Y_{s} \oplus W_{s}, Y_{*} \oplus W_{*}: s \in S\right)$, then either $Y_{0}=0$ or $W_{0}=0$. It is
readily verified that U is indecomposable if and only if 0 and 1 are the only idempotents of $\operatorname{End}(U)$, the endomorphism ring of U in $\operatorname{cdrep}\left(S, \mathbb{Z}_{p^{m}}\right)$.

Suppose that $R=\bigoplus\left\{R_{s}: s \in \mathrm{~T}_{\mathrm{cr}}(R)\right\}$ is a completely decomposable group, where each R_{s} is a direct sum of n_{s} rank- 1 groups of type s and $n=\sum_{s \in \operatorname{Trr}(R)} n_{s}=\operatorname{rank}(R)$. An ordered subset $\left\{x_{s i} \in R_{s}: s \in\right.$ $\left.\mathrm{T}_{\text {cr }}(R), 1 \leqslant i \leqslant n_{s}\right\}$ of R is a p-basis of R with coefficient groups $R_{s i}$ if $R=\bigoplus\left\{R_{s i} x_{s i}: s \in \mathrm{~T}_{\text {cr }}(R), 1 \leqslant\right.$ $\left.i \leqslant n_{s}\right\}, R_{s i}=\left\{q \in \mathbb{Q}: q x_{s i} \in R\right\} \subseteq \mathbb{Q}$ has type s, and $1 / p \notin R_{s i}$ for each s and i. Notice that R has a p-basis if and only if the critical types of R are p-locally free.

Let G be an almost completely decomposable group with a completely decomposable subgroup R such that G / R is a finite p-group and $\left\{\chi_{s i} \in R_{s}: s \in \mathrm{~T}_{\mathrm{cr}}(R), 1 \leqslant i \leqslant n_{s}\right\}$ is a p-basis of R with coefficient groups $R_{s i}$. An integer matrix $M=\left(m_{s i}\right)_{r \times n}$ is a coordinate matrix of G modulo R if there is an ordered basis $\left(h_{1}+R, \ldots, h_{r}+R\right)$ of G / R with each $h_{i}=\left(1 / p^{k_{i}}\right)\left(\sum_{s \in S} m_{s i} x_{s i}\right)$ and $p^{k_{i}}=\operatorname{order}\left(h_{i}+R\right)$. The structure matrix belonging to ($h_{1}+R, \ldots, h_{r}+R$) is the diagonal matrix

$$
N=\operatorname{diag}\left(p^{k_{1}}, \ldots, p^{k_{r}}\right)
$$

In summary, $G=R+\mathbb{Z}^{r} N^{-1} M \vec{x}$, where \mathbb{Z}^{r} denotes the set of integral row vectors and $\vec{x}=\left(x_{s i}\right)^{t r}$ is a column vector. This is called a standard description of G and if $m \geqslant k_{i}$ for $i=1, \ldots, r$, then the matrix $p^{m} \mathbb{Z}^{r} N^{-1} M$ is integral and $M_{G}=p^{m} \mathbb{Z}^{r} N^{-1} M\left(\bmod p^{m}\right)$ is called a representing matrix of G. By [10, Corollaries 11.2.5 and 11.3.4] $G / R \cong \mathbb{Z}_{p^{k_{1}}} \oplus \cdots \oplus \mathbb{Z}_{p^{k r}}$ if and only if $\operatorname{gcd}(M, N)=I$.

Lemma 4. Assume that p is a prime and S is a finite p-locally free inverted forest of types.
(1) There is a bijection $[G] \mapsto\left[U_{G}\right]$ on isomorphism at p classes of S-groups with p^{m}-regulator quotients and $S=\mathrm{T}_{\text {cr }}(G)$ to isomorphism classes of objects of cdrep $\left(S, \mathbb{Z}_{p^{m}}\right)$.
(2) G is indecomposable if and only if U_{G} is indecomposable.

Proof. (1) Let G be an S-group with p^{m}-regulator quotient and $S=\mathrm{T}_{\text {cr }}(G)$. By Lemma 2 , G has the regulating regulator $R=\sum\{R(s): s \in S\}=\bigoplus\left\{R_{s}: s \in S\right\}$ and $p^{m} G \subseteq R \subseteq G, G(s)=R(s)=\bigoplus\left\{R_{t}: s \leqslant\right.$ $t \in S\}$, and each R_{s} is isomorphic to a direct sum of n_{s} rank-1 groups of type s.

Define $U_{G}=\left(U_{0}, U_{s}, U_{*}: s \in S\right)$, where $U_{0}=R / p^{m} R, U_{s}=\left(R(s)+p^{m} R\right) / p^{m} R \subseteq U_{0}$ for each $s \in S$, and $U_{*}=p^{m} G / p^{m} R \subseteq U_{0}$. Notice that U_{0} and every $U_{s} \cong R(s) / p^{m} R(s)$ are free $\mathbb{Z}_{p^{m}}$-modules. Define $V_{s}=\left(R_{s}+p^{m} R\right) / p^{m} R$, a summand of U_{0} for each $s \in S$. It follows that $U_{0}=\bigoplus_{s \in S} V_{s}$ and $U_{s}=$ $\bigoplus_{s \leqslant t \in S} V_{t}$ for each $s \in S$.

Let $G=R+\mathbb{Z}^{r} N^{-1} M \vec{x}$ be a standard description of G, with $\vec{x}=\left(x_{s i}\right)^{t r}$. Then $U_{0}=\bigoplus\left\{\mathbb{Z}_{p^{m}}\left(x_{s i}+\right.\right.$ $\left.\left.p^{m} R\right): s \in S, \quad 1 \leqslant i \leqslant n_{s}\right\}$ and $U_{*}=\left(p^{m} \mathbb{Z}^{r} N^{-1} M \vec{x}+p^{m} R\right) / p^{m} R \subseteq U_{0}$. Hence, $U_{*} \cap U_{s}=0$ for each $s \in S$, because R is the regulating regulator of G [10, Corollary 8.1.12], and so $U_{G} \in \operatorname{cdrep}\left(S, \mathbb{Z}_{p^{m}}\right)$.

Assume that $f: G \rightarrow H$ is an isomorphism at p. Since S is an inverted forest, and by Lemma 2 , f induces an isomorphism $\bar{f}: R(G) / p_{-}^{m} R(G) \rightarrow R(H) / p^{m} R(H)$ with $\bar{f}\left(G(s) / p^{m} G(s)\right)=H(s) / p^{m} H(s)$ for each $s \in S=\mathrm{T}_{\text {cr }}(G)=\mathrm{T}_{\text {cr }}(H)$ and $\bar{f}\left(p^{m} G / p^{m} R(G)\right)=p^{m} H / p^{m} R(H)$. Hence, $\bar{f}: U_{G} \rightarrow U_{H}$ is an isomorphism.

As for onto, let $U=\left(U_{0}, U_{s}, U_{*}: s \in S\right) \in \operatorname{cdrep}\left(S, \mathbb{Z}_{p^{m}}\right)$ with $U_{0}=\bigoplus_{s \in S} V_{s}, U_{s}=\bigoplus_{s \leqslant t \in S} V_{t}$ and $U_{*} \cap U_{s}=0$ for each $s \in S$. Choose a completely decomposable group R_{U} with $\mathrm{T}_{\mathrm{cr}}\left(R_{U}\right)=S$ and $R_{U}=$ $\bigoplus\left\{R_{s}: s \in S\right\}$ such that $U_{0}=R_{U} / p^{m} R_{U}$, and each $U_{s}=R_{s} / p^{m} R_{s}$. For each $s \in S$, choose a p-basis $\left\{x_{s i} \in R_{s}: s \in S, 1 \leqslant i \leqslant n_{s}\right\}$ of R_{U} with coefficient groups $R_{s i}$ and observe that $B=\left\{v_{s i}=x_{s i}+\right.$ $\left.p^{m} R_{U}: s \in S, 1 \leqslant i \leqslant n_{s}\right\}$ is a basis for U_{0} and each $B_{s}=\left\{v_{s i}=x_{s i}+p^{m} R_{U}: 1 \leqslant i \leqslant n_{s}\right\}$ is a basis for U_{s}.

Write $U_{*} \cong \mathbb{Z}_{p^{k_{1}}}^{l_{1}} \oplus \cdots \oplus \mathbb{Z}_{p^{k_{r}}}^{l_{1}}$ with ordered basis (h_{1}, \ldots, h_{l}), where $l=l_{1}+\cdots+l_{r}$. Then $h_{i}=$ $\sum\left\{m_{i, s j} v_{s j}: s \in S, 1 \leqslant j \leqslant n_{s}\right\}, M=\left(m_{i, s j}\right)$ is a $\mathbb{Z}_{p^{m}}$-matrix, and $p^{m} N_{U}^{-1} M$ is a $\mathbb{Z}_{p^{m}}$-matrix, where

$$
N_{U}=\operatorname{diag}\left(p^{k_{1}}, \ldots, p^{k_{r}}\right) \quad \text { and } \quad m=\max \left\{k_{1}, \ldots, k_{r}\right\} .
$$

Let M_{U} be an integer matrix with $M=p^{m} N_{U}^{-1} M_{U}\left(\bmod p^{m}\right)$ and define $G_{U}=R_{U}+\mathbb{Z}^{n} N_{U}^{-1} M_{U} \vec{x}$. Then R_{U} is the regulating regulator of G_{U} since $U_{*} \cap U_{S}=0$ for each $s \in \mathrm{~T}_{\text {cr }}\left(G_{U}\right)$, [10, Corollary 8.1.12]. It now can be readily verified that $\mathrm{T}_{\mathrm{cr}}\left(G_{U}\right)=S, G_{U}$ is an S-group with p^{m}-regulator quotient, and $U_{G_{U}}=U$.

Finally, let $f: U \rightarrow W$ be an isomorphism in $\operatorname{cdrep}\left(S, \mathbb{Z}_{p^{m}}\right)$. In view of the constructions of R_{U} and R_{W} and the fact that $f: U_{0} \rightarrow W_{0}$ with $f\left(U_{s}\right) \subseteq W_{s}$ for each $s \in S$ there is $g: R_{U} \rightarrow R_{W}$ with g an isomorphism at p and $\bar{g}=f$. Since $f\left(U_{*}\right) \subseteq W_{*}, g$ extends to a map $h: G_{U} \rightarrow G_{W}$ that is an isomorphism at p.
(2) [10, Corollary 10.7].

We follow up with an illustration of some notation and constructions in the proof of Lemma 4(1). It shows that, given a poset S of p-locally free types and a representing matrix M, it is easy to construct an almost completely decomposable group G whose critical typeset is S and whose anti-representation has the representing matrix M. By Lemma $4(1)$ the group G is unique up to isomorphism at p.

For the purposes of this paper a rational group is a subgroup Q of \mathbb{Q} such that $1 \in Q$ but $1 / p \notin Q$. If so, then $\{1\}$ is a p-basis of Q. More generally, if $R=\bigoplus_{i \in I} R_{i}$ is a direct sum of rational groups, then R has the natural p-basis $\{(1,0, \ldots), \ldots,(\ldots, 0,1)\}$.

Example 5. Let $S=\{1,2<3\}$ be a poset of p-locally free types and let $U=\left(U_{0}, U_{i}, U_{*}: i \in S\right)$ with the representing matrix (coefficients in $\mathbb{Z}_{p^{6}}$)

$$
M=\left(\begin{array}{ccccccccc}
I_{n} & 0 & 0 & \mid & p^{2} I_{n} & 0 & \vdots & I_{n} & 0 \\
0 & p^{2} I_{n} & 0 & \mid & p^{3} I_{n} & p^{4} I_{n} & \vdots & 0 & p^{2} I_{n} \\
0 & 0 & p^{4} I_{n} & \mid & p^{4} I_{n} & p^{5} A & \vdots & 0 & 0
\end{array}\right)
$$

where A is an $n \times n$ integer matrix.
The rows of M are the generators of U_{*} and an arbitrary element of U_{*} is given by

$$
\left(u, p^{2} v, p^{4} w\left|p^{2} u+p^{3} v+p^{4} w, p^{4} v+p^{5} w A\right| u, p^{2} v\right)=(u, v, w) M
$$

where $u, v, w \in \mathbb{Z}_{p^{6}}^{n}$. From this it is easily seen that $U_{i} \cap U_{*}=0$, showing that $U \in \operatorname{cdrep}\left(S, \mathbb{Z}_{p^{6}}\right)$. It is also obvious that the rows of M are independent, the generators of the first block have orders p^{6}, the generators of the second block have orders p^{4}, and the generators of the third block have orders p^{2}. Hence $U_{*} \cong \mathbb{Z}_{p^{6}}^{n} \oplus \mathbb{Z}_{p^{4}}^{n} \oplus \mathbb{Z}_{p^{2}}^{n}$.

Let $N=\operatorname{diag}\left(p^{6} I_{n}, p^{4} I_{n}, p^{2} I_{n}\right)$. The integer matrix

$$
M_{0}:=\left(\begin{array}{ccccccccc}
I_{n} & 0 & 0 & \mid & p^{2} I_{n} & 0 & \vdots & I_{n} & 0 \\
0 & I_{n} & 0 & \mid & p I_{n} & p^{2} I_{n} & \vdots & 0 & I_{n} \\
0 & 0 & I_{n} & \mid & I_{n} & p A & \vdots & 0 & 0
\end{array}\right)
$$

is such that $p^{6} N^{-1} M_{0} \equiv M \bmod p^{6}$. Let R_{1}, R_{2}, R_{3} be rational groups such that $\left[R_{i}\right]=i$. Let $R=$ $R_{1}^{3 n} \oplus R_{2}^{2 n} \oplus R_{3}^{2 n}$, and let $G=R+\vec{Z} N^{-1} M_{0} \subseteq \mathbb{Q}^{7 n}$. Then G is an almost completely decomposable group with completely decomposable subgroup R and $G / R \cong \mathbb{Z}\left(p^{6}\right)^{n} \oplus \mathbb{Z}\left(p^{4}\right)^{n} \oplus \mathbb{Z}\left(p^{2}\right)^{n}$ because obviously $\operatorname{gcd}\left(N, M_{0}\right)=I$. Also $\mathrm{T}_{\mathrm{cr}}(G)=\mathrm{T}_{\mathrm{cr}}(R)=S$. Furthermore, $U_{G}=\left(U_{0}^{G}, U_{i}^{G}, U_{*}^{G}: i \in S\right) \in \operatorname{cdrep}\left(S, \mathbb{Z}_{p^{6}}\right)$ is given by

$$
U_{0}^{G}=R / p^{6} R, \quad U_{i}^{G}=\left(R(i)+p^{6} R\right) / p^{6} R, \quad U_{*}^{G}=\overrightarrow{\mathbb{Z}} M .
$$

Clearly U and U_{G} are isomorphic anti-representations. In particular, $U_{i} \cap U_{*}=0$ for every i, showing that R is the regulating regulator of G.

4. Unbounded representation type

An S-group G with p^{m}-regulator quotient and $\mathrm{T}_{\mathrm{cr}}(G)=S$ will be proven indecomposable, via Lemma $4(2)$, by showing that $\operatorname{End}\left(U_{G}\right)$ has only 0 and 1 as idempotents.

Let $U=\left(U_{0}, U_{*}, U_{s}: s \in S\right)$ where $U_{0}=\bigoplus_{s \in S} V_{s}$, and $U_{s}=\bigoplus_{s \leqslant t \in S} V_{t}$ for each s and let $f \in$ $\operatorname{End}(U)$.

For convenience we assume that S is represented by $\{1, \ldots, k\}$ as will be the case in all our applications.

Let $\pi_{i}: U_{0} \rightarrow V_{i}$ and $\iota_{i}: V_{i} \hookrightarrow U_{0}$ be the projections and insertions corresponding to the decomposition $U_{0}=\bigoplus_{1 \leqslant i \leqslant k} V_{i}$. Set $f_{i}=\pi_{i} f \iota_{i}: V_{i} \rightarrow V_{i}$ and $h_{i j}=\pi_{j} f \iota_{i}: V_{i} \rightarrow V_{j}$. Then f can be written in matrix form as

$$
f=\left(\begin{array}{cccc}
f_{1} & h_{12} & \cdots & h_{1 k} \\
h_{21} & f_{2} & \cdots & h_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
h_{k 1} & h_{k 2} & \cdots & f_{k}
\end{array}\right) .
$$

The action of f on $x=\left(x_{1}, \ldots, x_{k}\right) \in U_{0}$ is by matrix multiplication:

$$
f(x)=\left(x_{1}, \ldots, x_{k}\right)\left(\begin{array}{cccc}
f_{1} & h_{12} & \cdots & h_{1 k} \\
h_{21} & f_{2} & \cdots & h_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
h_{k 1} & h_{k 2} & \cdots & f_{k}
\end{array}\right)=\left(f_{1}\left(x_{1}\right)+\sum_{j>1} h_{j 1}\left(x_{j}\right), \ldots, f_{k}\left(x_{k}\right)+\sum_{j<k} h_{j 1}\left(x_{j}\right)\right) .
$$

Since $f\left(U_{i}\right) \subseteq U_{i}$ the poset structure $<s$ of $S=\{1, \ldots, k\}$ requires that $h_{i j}=0$ unless $i<_{s} j$.
We adopt the following notation:

- $\bar{f}=f+p \operatorname{End}\left(U_{0}\right) \in \operatorname{End}\left(U_{0}\right) / p \operatorname{End}\left(U_{0}\right)$ for $f \in \operatorname{End}\left(U_{0}\right)$,
- $f_{i}=f_{i}+p \operatorname{End}\left(V_{i}\right) \in \operatorname{End}\left(V_{i}\right) / p \operatorname{End}\left(V_{i}\right)$ for $f_{i} \in \operatorname{End}\left(V_{i}\right)$,
- $E=\operatorname{End}\left(\mathbb{Z}_{p^{m}}^{n}\right), \bar{E}=E / p E=\operatorname{End}\left(\mathbb{Z}_{p}^{n}\right)$, and $\bar{g}=g+p E \in \bar{E}$ for $g \in E$.

Each $\operatorname{End}\left(V_{i}\right)$ is a free $\mathbb{Z}_{p^{m}}$-module because V_{i} is a free $\mathbb{Z}_{p^{m}-\text { module. Consequently, if } f_{i} \in \operatorname{End}\left(V_{i}\right)}$ and $1 \leqslant j \leqslant m-1$, then $p^{j} f_{i}=0$ if and only if $f_{i} \in p^{m-j} \operatorname{End}\left(V_{i}\right)$.

Given a prime p, a positive integer n, and an $n \times n \mathbb{Z}$-matrix $A=\left(a_{i j}\right)$, define

$$
A\left(\bmod p^{m}\right)=\left(a_{i j}\left(\bmod p^{m}\right)\right)
$$

 degree n and is a power of an irreducible polynomial in $\mathbb{Z}_{p}[x]$.

For example, let $\lambda \in \mathbb{Z}$ and

$$
A=J_{n}(\lambda)=\left(\begin{array}{cccccc}
\lambda & 1 & 0 & \cdots & 0 & 0 \\
0 & \lambda & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \lambda & 1 \\
0 & 0 & 0 & \cdots & 0 & \lambda
\end{array}\right)
$$

be an $n \times n$ Jordan block matrix. Then $m_{A(\bmod p)}(x)=(x-\lambda(\bmod p))^{n} \in \mathbb{Z}_{p}[x]$, and

$$
\mathbb{Z}_{p}[x] /\left\langle m_{A(\bmod p)}(x)\right\rangle=\mathbb{Z}_{p}^{n}
$$

is an indecomposable $\mathbb{Z}_{p}[x]$-module denoted by K^{A}.
Proposition 6. (See [2], [1, Example 5.2.3].) Let p be a prime, (1, 1, 1) \subseteq S a p-locally free poset of types, and $m \geqslant 2$. There are indecomposable S-groups with p^{m}-regulator quotients of arbitrarily large finite rank.

In the proof of Proposition $6, S=\{1|2| 3\}, m=2$ and

$$
M_{G}=\left(\begin{array}{c:c:c}
I_{n} & I_{n} & A \\
0 & p I_{n} & p I_{n}
\end{array}\right),
$$

where A is an $n \times n \mathbb{Z}_{p^{2}}$-matrix with K^{A} indecomposable.
Proposition 7. If p is a prime, $(1,2) \subseteq S$ is a finite poset of p-locally free types, and $m \geqslant 6$, then there are indecomposable S-groups with p^{m}-regulator quotients of arbitrarily large finite rank.

Proof. Consider Example 5 where A is such that K^{A} is an indecomposable module.
It is left to show that G is indecomposable. We have the decomposition $U_{0}=V_{1} \oplus V_{2} \oplus V_{3}$, where $V_{1} \cong R_{1}^{3 n} / p^{6} R_{1}^{3 n} \cong \mathbb{Z}_{p^{6}}^{3 n}, V_{2} \cong R_{2}^{2 n} / p^{6} R_{2}^{2 n} \cong \mathbb{Z}_{p^{6}}^{2 n}$, and $V_{3} \cong R_{3}^{2 n} / p^{6} R_{3}^{2 n} \cong \mathbb{Z}_{p^{6}}^{2 n}$.

Let $f^{2}=f \in \operatorname{End}(U)$. Then

$$
f=\left(\begin{array}{ccc}
f_{1} & 0 & 0 \\
0 & f_{2} & h_{23} \\
0 & 0 & f_{3}
\end{array}\right),
$$

where $f_{i}: V_{i} \rightarrow V_{i}$ and $h_{23}: V_{2} \rightarrow V_{3}$.
As $f^{2}=f$

$$
\left(\begin{array}{ccc}
f_{1}^{2} & 0 & 0 \\
0 & f_{2}^{2} & f_{2} h_{23}+h_{23} f_{3} \\
0 & 0 & f_{3}^{2}
\end{array}\right)=\left(\begin{array}{ccc}
f_{1} & 0 & 0 \\
0 & f_{2} & h_{23} \\
0 & 0 & f_{3}
\end{array}\right)^{2}=\left(\begin{array}{ccc}
f_{1} & 0 & 0 \\
0 & f_{2} & h_{23} \\
0 & 0 & f_{3}
\end{array}\right)
$$

so that

$$
f_{i}^{2}=f_{i}, \quad f_{2} h_{23}+h_{23} f_{3}=h_{23}
$$

Write $V_{1}=V_{11} \oplus V_{12} \oplus V_{13}, V_{2}=V_{21} \oplus V_{22}$, and $V_{3}=V_{31} \oplus V_{32}$ with each $V_{i j}=\mathbb{Z}_{p^{m}}^{n}$ and let $\pi_{i j}: U_{0} \rightarrow V_{i j}$ and $\iota_{i j}: V_{i j} \rightarrow U_{0}$ be the corresponding projections and insertions. Define $f_{i j k}=$ $\pi_{i k} f_{j} i_{i j}: V_{i j} \rightarrow V_{i k}$ so that, in matrix form,

$$
f_{1}=\left(\begin{array}{lll}
f_{111} & f_{112} & f_{113} \\
f_{121} & f_{122} & f_{123} \\
f_{131} & f_{132} & f_{133}
\end{array}\right), \quad f_{i}=\left(\begin{array}{cc}
f_{i 11} & f_{i 12} \\
f_{i 21} & f_{i 22}
\end{array}\right), \quad \text { where } i=2,3
$$

The homomorphism $f_{i j k}: V_{i j}=\mathbb{Z}_{p^{m}}^{n} \rightarrow V_{i k}=\mathbb{Z}_{p^{m}}^{n}$ is regarded as an element of $E:=\operatorname{End}\left(\mathbb{Z}_{p^{m}}^{n}\right)$.
Let $x \in \mathbb{Z}_{p^{m}}^{n}$, and recall that $f\left(U_{*}\right) \subseteq U_{*}$.

Then $\left(x, 0,0\left|p^{2} x, 0\right| x, 0\right)$ is in the span of the first block of generators of U_{*} and

$$
\begin{aligned}
f\left(x, 0,0\left|p^{2} x, 0\right| x, 0\right) & =\left(f_{1}(x, 0,0)\left|f_{2}\left(p^{2} x, 0\right)\right| f_{3}(x, 0)+h_{23}\left(p^{2} x, 0\right)\right) \\
& =\left(u_{1}, p^{2} v_{1}, p^{4} w_{1}\left|p^{2} u_{1}+p^{3} v_{1}+p^{4} w_{1}, p^{4} v_{1}+p^{5} w_{1} A\right| u_{1}, p^{2} v_{1}\right)
\end{aligned}
$$

for some $u_{1}=u_{1}(x), v_{1}=v(x), w_{1}=w(x) \in$ End $\mathbb{Z}_{p^{6}}^{n}$. Hence

$$
\begin{align*}
f_{1}(x, 0,0) & =\left(u_{1}, p^{2} v_{1}, p^{4} w_{1}\right), \tag{1}\\
f_{2}\left(p^{2} x, 0\right) & =\left(p^{2} u_{1}+p^{3} v_{1}+p^{4} w_{1}, p^{4} v_{1}+p^{5} w_{1} A\right), \tag{2}\\
f_{3}(x, 0)+h_{23}\left(p^{2} x, 0\right) & =\left(u_{1}, p^{2} v_{1}\right) \tag{3}
\end{align*}
$$

Then by (1), (2), and (3) we have

$$
f_{1}\left(p^{5} x, 0,0\right)=\left(p^{5} u_{1}(x), 0,0\right), \quad f_{2}\left(p^{5} x, 0\right)=\left(p^{5} u_{1}(x), 0\right), \quad f_{3}\left(p^{5} x, 0\right)=\left(p^{5} u_{1}(x), 0\right)
$$

Therefore,

$$
\begin{gather*}
p^{5} f_{111}=p^{5} u_{1}, \quad p^{5} f_{112}=0, \quad p^{5} f_{113}=0, \tag{4}\\
p^{5} f_{211}=p^{5} u_{1}, \quad p^{5} f_{212}=0, \tag{5}\\
p^{5} f_{311}=p^{5} u_{1}, \quad p^{5} f_{312}=0, \tag{6}
\end{gather*}
$$

The element $\left(0, p^{2} x, 0\left|p^{3} x, p^{4} x\right| 0, p^{2} x\right)$ is in the span of the second block of generators of U_{*} and

$$
\begin{aligned}
& f\left(0, p^{2} x, 0\left|p^{3} x, p^{4} x\right| 0, p^{2} x\right) \\
& \quad=\left(f_{1}\left(0, p^{2} x, 0\right)\left|f_{2}\left(p^{3} x, p^{4} x\right)\right| f_{3}\left(0, p^{2} x\right)+h_{23}\left(p^{3} x, p^{4} x\right)\right) \\
& \quad=\left(u_{2}, p^{2} v_{2}, p^{4} w_{2}\left|p^{2} u_{2}+p^{3} v_{2}+p^{4} w_{2}, p^{4} v_{2}+p^{5} w_{2} A\right| u_{2}, p^{2} v_{2}\right)
\end{aligned}
$$

for some $u_{2}=u_{2}(x), v_{2}=v_{2}(x), w_{2}=w_{2}(x) \in$ End $\mathbb{Z}_{p^{m}}^{n}$. Hence

$$
\begin{align*}
f_{1}\left(0, p^{2} x, 0\right) & =\left(u_{2}, p^{2} v_{2}, p^{4} w_{3}\right), \tag{7}\\
f_{2}\left(p^{3} x, p^{4} x\right) & =\left(p^{2} u_{2}+p^{3} v_{2}+p^{4} w_{2}, p^{4} v_{2}+p^{5} w_{2} A\right), \tag{8}\\
f_{3}\left(0, p^{2} x\right)+h_{23}\left(p^{3} x, p^{4} x\right) & =\left(u_{2}, p^{2} v_{2}\right) . \tag{9}
\end{align*}
$$

By (7), (8), and (9) we have $u_{2}=p^{2} u^{\prime}$ and

$$
f_{1}\left(0, p^{5} x, 0\right)=\left(p^{5} u^{\prime}, p^{5} v_{2}, 0\right) \quad f_{2}\left(p^{5} x, 0\right)=\left(p^{5} v_{2}, 0\right) \quad f_{3}\left(0, p^{5} x\right)=\left(p^{5} u^{\prime}, p^{5} v_{2}\right)
$$

Also

$$
\begin{align*}
f_{2}\left(0, p^{5} x\right) & =p f_{2}\left(p^{3} x, p^{4} x\right)-f_{2}\left(p^{4} x, 0\right) \stackrel{(8),(2)}{=}\left(p^{5} u^{\prime}+p^{4} v_{2}+p^{5} w_{2}, p^{5} v_{2}\right)-\left(p^{4} u_{1}+p^{5} v_{1}, 0\right) \\
& =\left(p^{5} u^{\prime}+p^{4} v_{2}+p^{5} w_{2}-p^{4} u_{1}-p^{5} v_{1}, p^{5} v_{2}\right) \tag{10}
\end{align*}
$$

Multiplying (10) by p we get

$$
\begin{equation*}
0=\left(p^{5} v_{2}-p^{5} u_{1}, 0\right), \quad \text { so } \quad p^{5} v_{2}=p^{5} u_{1} \tag{11}
\end{equation*}
$$

Therefore, using (11),

$$
\begin{gather*}
p^{5} f_{121}=p^{5} u^{\prime}, \quad p^{5} f_{122}=p^{5} u_{1}, \quad p^{5} f_{123}=0, \tag{12}\\
p^{5} f_{211}=p^{5} u^{\prime}, \quad p^{5} f_{212}=0, \tag{13}\\
p^{5} f_{222}=p^{5} u_{1}, \tag{14}\\
p^{5} f_{321}=p^{5} u^{\prime}, \quad p^{5} f_{322}=p^{5} u_{1} . \tag{15}
\end{gather*}
$$

Finally, $\left(0,0, p^{4} x\left|p^{4} x, p^{5} x A\right| 0,0\right)$ is in the span of the third block of generators of U_{*} and

$$
\begin{aligned}
& f\left(0,0, p^{4} x\left|p^{4} x, p^{5} x A\right| 0,0\right) \\
& \quad=\left(f_{1}\left(0,0, p^{4} x\right)\left|f_{2}\left(p^{4} x, p^{5} x A\right)\right| f_{3}(0,0)+h_{23}\left(p^{4} x, p^{5} x A\right)\right) \\
& \quad=\left(u_{3}, p^{2} v_{3}, p^{4} w_{3}\left|p^{2} u_{3}+p^{3} v_{3}+p^{4} w_{3}, p^{4} v_{3}+p^{5} w_{3} A\right| u_{3}, p^{2} v_{3}\right)
\end{aligned}
$$

for some $u_{3}=u_{3}(x), v_{3}=v_{3}(x), w_{3}=w_{3}(x) \in$ End $\mathbb{Z}_{p^{m}}^{n}$. Hence

$$
\begin{align*}
f_{1}\left(0,0, p^{4} x\right) & =\left(u_{3}, p^{2} v_{3}, p^{4} w_{3}\right) \tag{16}\\
f_{2}\left(p^{4} x, p^{5} x A\right) & =\left(p^{2} u_{3}+p^{3} v_{3}+p^{4} w_{3}, p^{4} v_{3}+p^{5} w_{3} A\right), \tag{17}\\
h_{23}\left(p^{4} x, p^{5} x A\right) & =\left(u_{3}, p^{2} v_{3}\right) . \tag{18}
\end{align*}
$$

By (16) and (17), we have that $u_{3}=p^{4} u^{\prime \prime}, v_{3}=p^{2} v^{\prime}$, and

$$
f_{1}\left(0,0, p^{5} x\right)=\left(p^{5} u^{\prime \prime}, p^{5} v^{\prime}, p^{5} w_{3}\right), \quad f_{2}\left(p^{5} x, 0\right)=\left(p^{5} w_{3}, 0\right)
$$

Therefore

$$
\begin{gather*}
p^{5} f_{131}=p^{5} u^{\prime \prime}, \quad p^{5} f_{132}=p^{5} v^{\prime}, \quad p^{5} f_{133}=p^{5} w_{3}, \tag{19}\\
p^{5} f_{211}=p^{5} w_{3}, \quad p^{5} f_{212}=0 . \tag{20}
\end{gather*}
$$

From (20) and (5) we conclude that

$$
\begin{equation*}
p^{5} w_{3}=p^{5} u_{1} \tag{21}
\end{equation*}
$$

We use that for any $g_{1}, g_{2} \in E:=$ End $\mathbb{Z}_{p^{6}}^{n}$ it follows from $p^{5} g_{1}=p^{5} g_{2}$ that $\bar{g}_{1}=\bar{g}_{2} \in \bar{E}=E / p E$.
Setting $a:=\bar{u}_{1} \in \bar{E}$, it follows from (4), (5), (6), (12), (13), (14), and (15) that:

$$
\bar{f}_{1}=\left(\begin{array}{ccc}
a & 0 & 0 \\
\bar{u}^{\prime} & a & 0 \\
\bar{u}^{\prime \prime} & \bar{v}^{\prime} & a
\end{array}\right), \quad \bar{f}_{2}=\left(\begin{array}{cc}
a & 0 \\
\bar{f}_{221} & a
\end{array}\right), \quad \bar{f}_{3}=\left(\begin{array}{cc}
a & 0 \\
\bar{u}^{\prime} & a
\end{array}\right) .
$$

Finally,

$$
\begin{aligned}
f_{2}\left(0, p^{5} x A\right) & =f_{2}\left(p^{4} x, p^{5} x A\right)-f_{2}\left(p^{4} x, 0\right) \stackrel{(17)}{=}\left(*, p^{4} v_{3}+p^{5} w_{3} A\right)-f_{2}\left(p^{4} x, 0\right) \\
& \stackrel{(2)}{=}\left(*, p^{4} v_{3}+p^{5} w_{3} A\right)-(*, 0)=\left(*, p^{5} w_{3} A\right)
\end{aligned}
$$

because $p^{4} v_{3}=p^{6} v^{\prime}=0$. Thus,

$$
p^{5} u_{1}(x A) \stackrel{(14)}{=} f_{222}\left(p^{5} x A\right)=p^{5} w_{3}(x) A \stackrel{(21)}{=} p^{5} u_{1}(x) A
$$

so $a(x A)=a(x) A$ or $A a=a A$.
Moreover, a is idempotent as \bar{f}_{1} is idempotent. As $a \in \bar{E}$ with $a A=A a, a$ is an idempotent endomorphism of the indecomposable $\mathbb{Z}_{p}[x]$-module K^{A}. Hence, $a=0$ or 1 .

If $a=0$, then \bar{f} is idempotent and nilpotent and so $\bar{f}=0$. Write $f=p g$ for some $g \in \operatorname{End}\left(U_{0}\right)$. Since f is idempotent, $f=f^{6}=p^{6} g^{6}=0$.

If $a=1$, then $\overline{1}-\bar{f}$ is idempotent and nilpotent, hence $\bar{f}=1$. Write $f=1+p g$ for some $g \in$ $\operatorname{End}\left(U_{0}\right)$. Then f is a unit of $\operatorname{End}\left(U_{0}\right)$, because $p g$ is nilpotent, and $f=1$ because $f^{2}=f$.

As 0 and 1 are the only idempotents of $\operatorname{End}(U), U=U_{G}$ is indecomposable. By Lemma 4(2), G is an indecomposable (1,2)-group with p^{6}-regulator quotient group and rank $7 n$. If $m \geqslant 6$ and $(1,2) \subseteq S$, then it is easy to see that G is an indecomposable S-group with p^{m}-regulator quotient group and rank $7 n$.

Proposition 8. Let p be a prime, $(1,3) \subseteq S$ a p-locally free poset of types, and $m \geqslant 4$. There are indecomposable S-groups with p^{m}-regulator quotients of arbitrarily large finite rank.

Proof. Let $S=(1,3)=\{1 \mid 2<3<4\}, m=4$, and n a positive integer. Let $U=\left(U_{0}, U_{i}, U_{*}: i \in S\right) \in$ $\operatorname{cdrep}\left(S, \mathbb{Z}_{p^{4}}\right)$ with representing matrix

$$
M_{G}=\left(\begin{array}{cccccccc}
I_{n} & 0 & \mid & p^{2} I_{n} & \vdots & p I_{n} & \vdots & I_{n} \\
0 & p^{2} I_{n} & \mid & p^{3} A & \vdots & p^{2} I_{n} & \vdots & 0
\end{array}\right)
$$

Observe that an arbitrary element of U_{*} is

$$
\left(u, p^{2} v \mid p^{2} u+p^{3} v A \vdots p u+p^{2} v \vdots u\right)=(u, v) M_{G}
$$

for some $u, v \in \mathbb{Z}_{p^{4}}^{n}$. It follows easily that $U_{*} \cap U_{i}=0$ for each $1 \leqslant i \leqslant 4$ showing that indeed $U \in$ $\operatorname{cdrep}\left(S, \mathbb{Z}_{p^{4}}\right)$.

By Lemma $4(1)$ there is an S-group G such that $U_{G} \cong U$. We only need to show that U, and so G, are indecomposable.

Let $f^{2}=f \in \operatorname{End}\left(U_{G}\right)$. Then

$$
f=\left(\begin{array}{cccc}
f_{1} & 0 & 0 & 0 \\
0 & f_{2} & h_{23} & h_{24} \\
0 & 0 & f_{3} & h_{34} \\
0 & 0 & 0 & f_{4}
\end{array}\right)
$$

As $f^{2}=f$, it follows that $f_{i}^{2}=f_{i}$ for $i=1,2,3,4$. We will use the matrix form of $f_{1}: f_{1}=\left(\begin{array}{ll}f_{11} & f_{12} \\ f_{21} & f_{22}\end{array}\right)$ corresponding to the decomposition $R_{1}^{2 n}=R_{1}^{n} \oplus R_{1}^{n}$.

We now use the fact that $f\left(U_{*}\right) \subseteq U_{*}$. Let $x \in \mathbb{Z}_{p^{4}}^{n}$.

Then $\left(x, 0 \mid p^{2} x \vdots p x \vdots x\right)$ is in the span of the first block of generators of U_{*} and

$$
\begin{aligned}
f\left(x, 0 \mid p^{2} x \vdots p x \vdots x\right) & =\left(f_{1}(x, 0) \mid f_{2}\left(p^{2} x\right) \vdots f_{3}(p x)+h_{23}\left(p^{2} x\right) \vdots f_{4}(x)+h_{24}\left(p^{2} x\right)+h_{34}(p x)\right) \\
& =\left(u_{1}, p^{2} v_{1} \mid p^{2} u_{1}+p^{3} v_{1} A \vdots p u_{1}+p^{2} v_{1} \vdots u_{1}\right) \in U_{*}
\end{aligned}
$$

for some $u_{1}=u_{1}(x), v_{1}=v_{1}(x), w_{1}=w_{1}(x) \in \operatorname{End} \mathbb{Z}_{p^{4}}^{n}$. Then

$$
\begin{aligned}
f_{1}(x, 0) & =\left(u_{1}, p^{2} v_{1}\right), \\
f_{2}\left(p^{2} x\right) & =p^{2} u_{1}+p^{3} v_{1} A, \\
f_{3}(p x)+h_{23}\left(p^{2} x\right) & =p u_{1}+p^{2} v_{1}, \\
f_{4}(x)+h_{24}\left(p^{2} x\right)+h_{34}(p x) & =u_{1} .
\end{aligned}
$$

This yields

$$
\begin{equation*}
\bar{f}_{11}=\bar{u}_{1}, \quad \bar{f}_{12}=0, \quad \bar{f}_{2}=\bar{u}_{1}, \quad \bar{f}_{3}=\bar{u}_{1}, \quad \bar{f}_{4}=\bar{u}_{1} . \tag{22}
\end{equation*}
$$

The element $\left(0, p^{2} x \mid p^{3} x A \vdots p^{2} x \vdots 0\right)$ is in the span of the second block of generators of U_{*} and

$$
\begin{aligned}
& f\left(0, p^{2} x \mid p^{3} x A \vdots p^{2} x \vdots 0\right) \\
& \quad=\left(f_{1}\left(0, p^{2} x\right) \mid f_{2}\left(p^{3} x A\right) \vdots f_{3}\left(p^{2} x\right)+h_{23}\left(p^{3} x A\right) \vdots f_{4}(0)+h_{24}\left(p^{3} x A\right)+h_{34}\left(p^{2} x\right)\right) \\
& \quad=\left(u_{2}, p^{2} v_{2} \mid p^{2} u_{2}+p^{3} v_{2} A \vdots p u_{2}+p^{2} v_{2} \vdots u_{2}\right) \in U_{*}
\end{aligned}
$$

for some $u_{2}=u_{2}(x), v_{2}=v_{2}(x), w_{2}=w_{2}(x) \in$ End $\mathbb{Z}_{p^{4}}^{n}$. It follows that

$$
\begin{aligned}
f_{1}\left(0, p^{2} x\right) & =\left(u_{2}, p^{2} v_{2}\right), \\
f_{2}\left(p^{3} x A\right) & =p^{2} u_{2}+p^{3} v_{2} A, \\
f_{3}\left(p^{2} x\right)+h_{23}\left(p^{3} x A\right) & =p u_{2}+p^{2} v_{2}, \\
h_{24}\left(p^{2} x A\right)+h_{34}\left(p^{2} x\right) & =u_{2} .
\end{aligned}
$$

Hence $u_{2}=p^{2} u^{\prime}, p^{2} u_{2}=0$, and

$$
\begin{equation*}
\bar{f}_{21}=\bar{u}^{\prime}, \quad \bar{f}_{22}=\bar{v}_{2}, \quad \bar{f}_{2}(x A)=\bar{v}_{2}(x) A, \quad \bar{f}_{3}=\bar{v}_{2} \tag{23}
\end{equation*}
$$

By (22) and (23) $\bar{u}_{1}=\bar{f}_{2}=\bar{f}_{3}=\bar{v}_{2} \in \bar{E}$, and setting $a=\bar{u}_{1}$ we have $a(x A)=a(x) A$ or $a A=A a$ and

$$
\bar{f}_{1}=\left(\begin{array}{cc}
a & 0 \\
\bar{u}^{\prime} & a
\end{array}\right)
$$

As in the proof of Proposition 7, a is an idempotent endomorphism of the indecomposable module $K^{A}, a=0$ or $a=1, f=0$ or 1 , so $U=U_{G}$ and G are indecomposable.

Proposition 9. Let p be a prime, $(2,2) \subseteq S$ a p-locally free poset of types, and $m \geqslant 3$. There are indecomposable S-groups with p^{m}-regulator quotients of arbitrarily large finite rank.

Proof. Let $S=(2,2)=\{1<2,3<4\}, m=3$, and let n be a positive integer. Further let $U=$ $\left(U_{0}, U_{i}, U_{*}: i \in S\right) \in \operatorname{cdrep}\left(S, \mathbb{Z}_{p^{3}}\right)$ with representing matrix

$$
M=\left(\begin{array}{ccccccc}
p I_{n} & \vdots & I_{n} & \mid & p A & \vdots & I_{n} \\
p^{2} I_{n} & \vdots & 0 & \mid & p^{2} I_{n} & \vdots & 0
\end{array}\right),
$$

where A is as always. An arbitrary element of U_{*} is

$$
\left(p u+p^{2} v \vdots u \mid p u A+p^{2} v \vdots u\right)=(u, v) M
$$

for some $u, v \in \mathbb{Z}_{p^{3}}^{n}$. It is easily seen that $U_{*} \cap U_{i}=0$ for each $1 \leqslant i \leqslant 4$, hence $U \in \operatorname{cdrep}\left(S, \mathbb{Z}_{p^{3}}\right)$.
The proof of indecomposability of G follows that of Proposition 7. Let $f \in \operatorname{End}\left(U_{G}\right)$ be an idempotent. Then

$$
f=\left(\begin{array}{cccc}
f_{1} & h_{12} & 0 & 0 \\
0 & f_{2} & 0 & 0 \\
0 & 0 & f_{3} & h_{34} \\
0 & 0 & 0 & f_{4}
\end{array}\right)
$$

and $f_{i}^{2}=f_{i}$ for $i=1,2,3,4$.
Let $x \in \mathbb{Z}_{p^{3}}^{n}$. Then $(p x: x \mid p x A: x) \in U_{*}$ is in the span of the first block of generators of U_{*} and

$$
\begin{aligned}
f(p x \vdots x \mid p x A \vdots x) & =\left(f_{1}(p x) \vdots f_{2}(x)+h_{12}(p x) \mid f_{3}(p x A) \vdots f_{4}(x)+h_{34}(p x A)\right) \\
& =\left(p u_{1}+p^{2} v_{1} \vdots u_{1} \mid p u_{1} A+p^{2} v_{1} \vdots u_{1}\right) \in U_{*}
\end{aligned}
$$

for some $u_{1}=u_{1}(x)$ and $v_{1}=v_{1}(x)$. Hence

$$
\begin{aligned}
f_{1}(p x) & =p u_{1}+p^{2} v_{1}, \\
f_{2}(x)+h_{12}(p x) & =u_{1}, \\
f_{3}(p x A) & =p u_{1} A+p^{2} v_{1}, \\
f_{4}(x)+h_{34}(p x A) & =u_{1} .
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
a:=\bar{f}_{1}=\bar{f}_{2}=\bar{f}_{4}=\bar{u}_{1} \in \bar{E} \quad \text { and } \quad \bar{f}_{3}(x A)=a(x) A . \tag{24}
\end{equation*}
$$

Further, $\left(p^{2} x \vdots 0 \mid p^{2} x \vdots 0\right)$ is in the span of the second block of generators of U_{*} and

$$
\begin{aligned}
f\left(p^{2} x \vdots 0 \mid p^{2} x \vdots 0\right) & =\left(f_{1}\left(p^{2} x\right) \vdots h_{12}\left(p^{2} x\right) \mid f_{3}\left(p^{2} x\right) \vdots h_{34}\left(p^{2} x\right)\right) \\
& =\left(p u_{2}+p^{2} v_{2} \vdots u_{2} \mid p u_{2} A+p^{2} v_{2} \vdots u_{2}\right) \in U_{*}
\end{aligned}
$$

for some $u_{2}=u_{2}(x) \in \operatorname{End} \mathbb{Z}_{p^{3}}^{n}$ and $v_{2}=v_{2}(x) \in \operatorname{End} \mathbb{Z}_{p^{3}}^{n}$. Then

$$
\begin{aligned}
f_{1}\left(p^{2} x\right) & =p u_{2}+p^{2} v_{2} \\
h_{12}\left(p^{2} x\right) & =u_{2} \\
f_{3}\left(p^{2} x\right) & =p u_{2} A+p^{2} v_{2} \\
h_{34}\left(p^{2} x\right) & =u_{2}
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
u_{2}=p^{2} u^{\prime}, \quad p u_{2}=0, \quad \bar{f}_{3}=\bar{v}_{2}=\bar{f}_{1}=a \tag{25}
\end{equation*}
$$

By (24) and (25) $a A=\bar{f}_{3} A=\bar{v}_{2}(x) A=A a$.
As in the proof of Proposition $7, a$ is an idempotent endomorphism of the indecomposable module $K^{A}, a=0$ or $a=1, f=0$ or $f=1, U_{G}$ is indecomposable, and G is an indecomposable (2,2)group with p^{3}-regulator quotient group of rank $4 n$.

Hence there exist indecomposable S-groups of rank $4 n$ with p^{m}-regulator quotient whenever $m \geqslant 3$ and $(2,2) \subseteq S$.

5. Proof of Theorem 1

Proof. (1) If S is a p-locally free inverted forest of types, then, by Lemma $4(1)$, there is a bijection from isomorphism at p classes of indecomposable S-groups with p-regulator quotients to isomorphism classes of indecomposable anti-representations in $\operatorname{cdrep}\left(S, \mathbb{Z}_{p}\right)$. The category $\operatorname{cdrep}\left(S, \mathbb{Z}_{p}\right)$ is equivalent to the category $\operatorname{rep}\left(S, \mathbb{Z}_{p}\right)$ of \mathbb{Z}_{p}-representations of S, [1, Theorem 5.2.8(b)]. By Kleiner's theorem for representations of finite posets over a field, [1, Theorem 1.3.6], if S contains (1, 1, 1, 1), $(2,2,2),(1,3,3),(1,2,5)$, or $(N, 4)$, then $\operatorname{rep}\left(S, \mathbb{Z}_{p}\right)$ has unbounded representation type.
(2)-(5) are Propositions 6, 7, 8 and 9 , respectively.

References

[1] D.M. Arnold, Abelian Groups and Representations of Partially Ordered Sets, CMS Adv. Books in Math., Springer-Verlag, New York, 2000.
[2] D.M. Arnold, M. Dugas, Representation type of finite rank almost completely decomposable groups, Forum Math. 10 (1998) 729-749.
[3] D.M. Arnold, A. Mader, O. Mutzbauer, E. Solak, (1, 3)-groups, Czechoslovak Math. J., in press.
[4] D.M. Arnold, D. Simson, Representations of finite partially ordered sets over discrete valuation rings, Comm. Algebra 35 (2007) 3128-3144.
[5] M.C.R. Butler, A class of torsion-free abelian groups of finite rank, Proc. Lond. Math. Soc. (3) 15 (1965) 680-698.
[6] T. Faticoni, Ph. Schultz, Direct decompositions of almost completely decomposable groups with primary regulating index, in: Abelian Groups and Modules, Marcel Dekker, New York, 1996, pp. 233-242.
[7] B. Frey, O. Mutzbauer, Regulierende Untergruppen und der Regulator fast vollständig zerlegbarer Gruppen, Rend. Semin. Mat. Univ. Padova 88 (1992) 1-23.
[8] L. Fuchs, Infinite Abelian Groups, vol. II, Academic Press, New York, 1973.
[9] E.L. Lady, Almost completely decomposable torsion-free abelian groups, Proc. Amer. Math. Soc. 45 (1974) 41-47.
[10] A. Mader, Almost Completely Decomposable Groups, Algebra Logic Appl. Ser., vol. 13, Gordon and Breach, Amsterdam, 2000.
[11] A. Mader, O. Mutzbauer, Almost completely decomposable groups with cyclic regulator quotient, in: Abelian Groups, Proc. 1991 Curaçao Conference, Marcel Dekker, 1993, pp. 209-217.
[12] A. Mader, L. Strüngmann, Generalized almost completely decomposable groups, Rend. Semin. Mat. Univ. Padova 113 (2005) 47-69.
[13] A. Mader, Ch. Vinsonhaler, Almost completely decomposable groups with cyclic regulator quotient, J. Algebra 177 (1995) 463-492.
[14] O. Mutzbauer, E. Solak, (1, 2)-groups with p^{3}-regulator quotient, J. Algebra 320 (2008) 3821-3831.
[15] E. Solak, Almost completely decomposable groups of type (1, 2), Doctoral dissertation, Universität Würzburg, 2007.

[^0]: * Corresponding author.

 E-mail addresses: David_Arnold@baylor.edu (D.M. Arnold), adolf@math.hawaii.edu (A. Mader), mutzbauer@mathematik.uni-wuerzburg.de (O. Mutzbauer), esolak@metu.edu.tr (E. Solak).
 ${ }^{1}$ Research of the author supported, in part, by funds from the University Research Committee and the Vice Provost for Research at Baylor University.
 ${ }^{2}$ The author would like to thank the Department of Mathematics at the University of Hawaii for the kind hospitality afforded him.

