86 research outputs found
UNLV New Horizons Band & UNLV Community Concert Band
Program listing performers and works performed
EVA-SCRAM operations
This paper wrestles with the on-orbit operational challenges introduced by the proposed Space Construction, Repair, and Maintenance (SCRAM) tool kit for Extra-Vehicular Activity (EVA). SCRAM undertakes a new challenging series of on-orbit tasks in support of the near-term Hubble Space Telescope, Extended Duration Orbiter, Long Duration Orbiter, Space Station Freedom, other orbital platforms, and even the future manned Lunar/Mars missions. These new EVA tasks involve welding, brazing, cutting, coating, heat-treating, and cleaning operations. Anticipated near-term EVA-SCRAM applications include construction of fluid lines and structural members, repair of punctures by orbital debris, refurbishment of surfaces eroded by atomic oxygen, and cleaning of optical, solar panel, and high emissivity radiator surfaces which have been degraded by contaminants. Future EVA-SCRAM applications are also examined, involving mass production tasks automated with robotics and artificial intelligence, for construction of large truss, aerobrake, and reactor shadow shield structures. Realistically achieving EVA-SCRAM is examined by addressing manual, teleoperated, semi-automated, and fully-automated operation modes. The operational challenges posed by EVA-SCRAM tasks are reviewed with respect to capabilities of existing and upcoming EVA systems, such as the Extravehicular Mobility Unit, the Shuttle Remote Manipulating System, the Dexterous End Effector, and the Servicing Aid Tool
The SCRAM tool-kit
This paper proposes a new series of on-orbit capabilities to support the near-term Hubble Space Telescope, Extended Duration Orbiter, Long Duration Orbiter, Space Station Freedom, other orbital platforms, and even the future manned Lunar/Mars missions. These proposed capabilities form a toolkit termed Space Construction, Repair, and Maintenance (SCRAM). SCRAM addresses both intra-Vehicular Activity (IVA) and Extra-Vehicular Activity (EVA) needs. SCRAM provides a variety of tools which enable welding, brazing, cutting, coating, heating, and cleaning, as well as corresponding nondestructive examination. Near-term IVA-SCRAM applications include repair and modification to fluid lines, structure, and laboratory equipment inside a shirt-sleeve environment (i.e. inside Spacelab or Space Station). Near-term EVA-SCRAM applications include construction of fluid lines and structural members, repair of punctures by orbital debris, refurbishment of surfaces eroded by contaminants. The SCRAM tool-kit also promises future EVA applications involving mass production tasks automated by robotics and artificial intelligence, for construction of large truss, aerobrake, and nuclear reactor shadow shields structures. The leading candidate tool processes for SCRAM, currently undergoing research and development, include Electron Beam, Gas Tungsten Arc, Plasma Arc, and Laser Beam. A series of strategic space flight experiments would make SCRAM available to help conquer the space frontier
Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks
Motivation: The generation of time series transcriptomic datasets collected under multiple experimental conditions has proven to be a powerful approach for disentangling complex biological processes, allowing for the reverse engineering of gene regulatory networks (GRNs). Most methods for reverse engineering GRNs from multiple datasets assume that each of the time series were generated from networks with identical topology. In this study, we outline a hierarchical, non-parametric Bayesian approach for reverse engineering GRNs using multiple time series that can be applied in a number of novel situations including: (i) where different, but overlapping sets of transcription factors are expected to bind in the different experimental conditions; that is, where switching events could potentially arise under the different treatments and (ii) for inference in evolutionary related species in which orthologous GRNs exist. More generally, the method can be used to identify context-specific regulation by leveraging time series gene expression data alongside methods that can identify putative lists of transcription factors or transcription factor targets.
Results: The hierarchical inference outperforms related (but non-hierarchical) approaches when the networks used to generate the data were identical, and performs comparably even when the networks used to generate data were independent. The method was subsequently used alongside yeast one hybrid and microarray time series data to infer potential transcriptional switches in Arabidopsis thaliana response to stress. The results confirm previous biological studies and allow for additional insights into gene regulation under various abiotic stresses.
Availability: The methods outlined in this article have been implemented in Matlab and are available on request
The TLR9 ligand, CpG-ODN, Induces Protection Against Cerebral Ischemia/Reperfusion Injury via Activation of pi3k/Akt Signaling.
Toll-like receptors (TLRs) have been shown to be involved in cerebral ischemia/reperfusion (I/R) injury. TLR9 is located in intracellular compartments and recognizes CpG-DNA. This study examined the effect of CpG-ODN on cerebral I/R injury. C57BL/6 mice were treated with CpG-ODN by i.p. injection 1 hour before the mice were subjected to cerebral ischemia (60 minutes) followed by reperfusion (24 hours). Scrambled-ODN served as control-ODN. Untreated mice, subjected to cerebral I/R, served as I/R control. The effect of inhibitory CpG-ODN (iCpG-ODN) on cerebral I/R injury was also examined. In addition, we examined the therapeutic effect of CpG-ODN on cerebral I/R injury by administration of CpG-ODN 15 minutes after cerebral ischemia. CpG-ODN administration significantly decreased cerebral I/R-induced infarct volume by 69.7% (6.4±1.80% vs 21.0±2.85%, P\u3c0.05), improved neurological scores, and increased survival rate, when compared with the untreated I/R group. Therapeutic administration of CpG-ODN also significantly reduced infarct volume by 44.7% (12.6±2.03% vs 22.8±2.54%, P\u3c0.05) compared with untreated I/R mice. Neither control-ODN, nor iCpG-ODN altered I/R-induced cerebral injury or neurological deficits. Nissl staining showed that CpG-ODN treatment preserved neuronal morphology in the ischemic hippocampus. Immunoblot showed that CpG-ODN administration increased Bcl-2 levels by 41% and attenuated I/R-increased levels of Bax and caspase-3 activity in ischemic brain tissues. Importantly, CpG-ODN treatment induced Akt and GSK-3β phosphorylation in brain tissue and cultured microglial cells. PI3K inhibition with LY294002 abolished CpG-ODN-induced protection. CpG-ODN significantly reduces cerebral I/R injury via a PI3K/Akt-dependent mechanism. Our data also indicate that CpG-ODN may be useful in the therapy of cerebral I/R injury
UNLV New Horizons Band
Program listing performers and works performe
Seasonality and Children’s Blood Lead Levels: Developing a Predictive Model Using Climatic Variables and Blood Lead Data from Indianapolis, Indiana, Syracuse, New York, and New Orleans, Louisiana (USA)
On a community basis, urban soil contains a potentially large reservoir of accumulated lead. This study was undertaken to explore the temporal relationship between pediatric blood lead (BPb), weather, soil moisture, and dust in Indianapolis, Indiana; Syracuse, New York; and New Orleans, Louisiana. The Indianapolis, Syracuse, and New Orleans pediatric BPb data were obtained from databases of 15,969, 14,467, and 2,295 screenings, respectively, collected between December 1999 and November 2002, January 1994 and March 1998, and January 1998 and May 2003, respectively. These average monthly child BPb levels were regressed against several independent variables: average monthly soil moisture, particulate matter < 10 μm in diameter (PM(10)), wind speed, and temperature. Of temporal variation in urban children’s BPb, 87% in Indianapolis (R(2) = 0.87, p = 0.0004), 61% in Syracuse (R(2) = 0.61, p = 0.0012), and 59% in New Orleans (R(2) = 0.59, p = 0.0000078) are explained by these variables. A conceptual model of urban Pb poisoning is suggested: When temperature is high and evapotranspiration maximized, soil moisture decreases and soil dust is deposited. Under these combined weather conditions, Pb-enriched PM(10) dust disperses in the urban environment and causes elevated Pb dust loading. Thus, seasonal variation of children’s Pb exposure is probably caused by inhalation and ingestion of Pb brought about by the effect of weather on soils and the resulting fluctuation in Pb loading
Balance of Power and the Propensity of Conflict
We study the role of an imbalance in fighting strengths when players bargain in the shadow of conflict. Our experimental results suggest: In a simple bargaining game with an exogenous mediation proposal, the likelihood of conflict is independent of the balance of power. If bargaining involves endogenous demand choices, however, the likelihood of conflict is higher if power is more imbalanced. Even though endogenous bargaining outcomes reflect the players' unequal fighting strengths, strategic uncertainty causes outcomes to be most efficient when power is balanced. In turn, the importance of exogenous mediation proposals depends on the balance of power
- …