109 research outputs found

    Organ-on-a-chip: current gaps and future directions.

    Get PDF
    As an emerging hot topic of the last decade, Organ on Chip (OoC) is a new technology that is attracting interest from both basic and translational scientists. The Biochemical Society, with its mission of supporting the advancement of science, with addressing grand challenges that have societal impact, has included OoC into their agenda to review the current state of the art, bottlenecks and future directions. This conference brought together representatives of the main stakeholders in the OoC field including academics, end-users, regulators and technology developers to discuss and identify requirements for this new technology to deliver on par with the expectations and the key challenges and gaps that still need to be addressed to achieve robust human-relevant tools, able to positively impact decision making in the pharmaceutical industry and reduce overreliance on poorly predictive animal models

    miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice

    Get PDF
    Excessive or inappropriate activation of the immune system can be deleterious to the organism, warranting multiple molecular mechanisms to control and properly terminate immune responses. MicroRNAs (miRNAs), ~22-nt-long noncoding RNAs, have recently emerged as key posttranscriptional regulators, controlling diverse biological processes, including responses to non-self. In this study, we examine the biological role of miR-146a using genetically engineered mice and show that targeted deletion of this gene, whose expression is strongly up-regulated after immune cell maturation and/or activation, results in several immune defects. Collectively, our findings suggest that miR-146a plays a key role as a molecular brake on inflammation, myeloid cell proliferation, and oncogenic transformation

    Tumour necrosis factor-alpha expression in tumour islets confers a survival advantage in non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of TNFΞ± in cancer is complex with both pro-tumourigenic and anti-tumourigenic roles proposed. We hypothesised that anatomical microlocalisation is critical for its function.</p> <p>Methods</p> <p>This study used immunohistochemistry to investigate the expression of TNFΞ± in the tumour islets and stroma with respect to survival in 133 patients with surgically resected NSCLC.</p> <p>Results</p> <p>TNFΞ± expression was increased in the tumour islets of patients with above median survival (AMS) compared to those with below median survival (BMS)(p = 0.006), but similar in the stroma of both groups. Increasing tumour islet TNFΞ± density was a favorable independent prognostic indicator (p = 0.048) while stromal TNFΞ± density was an independent predictor of reduced survival (p = 0.007). Patients with high TNFΞ± expression (upper tertile) had a significantly higher 5-year survival compared to patients in the lower tertile (43% versus 22%, p = 0.01). In patients with AMS, 100% of TNFΞ±<sup>+ </sup>cells were macrophages and mast cells, compared to only 28% in the islets and 50% in the stroma of BMS patients (p < 0.001).</p> <p>Conclusions</p> <p>The expression of TNFΞ± in the tumour islets of patients with NSCLC is associated with improved survival suggesting a role in the host anti-tumour immunological response. The expression of TNFΞ± by macrophages and mast cells is critical for this relationship.</p

    Genetic Variations in the Regulator of G-Protein Signaling Genes Are Associated with Survival in Late-Stage Non-Small Cell Lung Cancer

    Get PDF
    The regulator of G-protein signaling (RGS) pathway plays an important role in signaling transduction, cellular activities, and carcinogenesis. We hypothesized that genetic variations in RGS gene family may be associated with the response of late-stage non-small cell lung cancer (NSCLC) patients to chemotherapy or chemoradiotherapy. We selected 95 tagging single nucleotide polymorphisms (SNPs) in 17 RGS genes and genotyped them in 598 late-stage NSCLC patients. Thirteen SNPs were significantly associated with overall survival. Among them, rs2749786 of RGS12 was most significant. Stratified analysis by chemotherapy or chemoradiation further identified SNPs that were associated with overall survival in subgroups. Rs2816312 of RGS1 and rs6689169 of RGS7 were most significant in chemotherapy group and chemoradiotherapy group, respectively. A significant cumulative effect was observed when these SNPs were combined. Survival tree analyses identified potential interactions between rs944343, rs2816312, and rs1122794 in affecting survival time in patients treated with chemotherapy, while the genotype of rs6429264 affected survival in chemoradiation-treated patients. To our knowledge, this is the first study to reveal the importance of RGS gene family in the survival of late-stage NSCLC patients

    The Tissue Microlocalisation and Cellular Expression of CD163, VEGF, HLA-DR, iNOS, and MRP 8/14 Is Correlated to Clinical Outcome in NSCLC

    Get PDF
    BACKGROUND: We have previously investigated the microlocalisation of M1 and M2 macrophages in NSCLC. This study investigated the non-macrophage (NM) expression of proteins associated with M1 and M2 macrophages in NSCLC. METHODS: Using immunohistochemistry, CD68(+) macrophages and proteins associated with either a cytotoxic M1 phenotype (HLA-DR, iNOS, and MRP 8/14), or a non-cytotoxic M2 phenotype (CD163 and VEGF) were identified. NM expression of the markers was analysed in the islets and stroma of surgically resected tumours from 20 patients with extended survival (ES) (median 92.7 months) and 20 patients with poor survival (PS) (median 7.7 months). RESULTS: The NM expression of NM-HLA-DR (p<0.001), NM-iNOS (pβ€Š=β€Š0.02) and NM-MRP 8/14 (pβ€Š=β€Š0.02) was increased in ES compared to PS patients in the tumour islets. The tumour islet expression of NM-VEGF, was decreased in ES compared to PS patients (p<0.001). There was more NM-CD163 expression (pβ€Š=β€Š0.04) but less NM-iNOS (pβ€Š=β€Š0.002) and MRP 8/14 (pβ€Š=β€Š0.01) expression in the stroma of ES patients compared with PS patients. The 5-year survival for patients with above and below median NM expression of the markers in the islets was 74.9% versus 4.7% (NM-HLA-DR p<0.001), 65.0% versus 14.6% (NM-iNOS pβ€Š=β€Š0.003), and 54.3% versus 22.2% (NM-MRP 8/14 pβ€Š=β€Š0.04), as opposed to 34.1% versus 44.4% (NM-CD163 pβ€Š=β€Š0.41) and 19.4% versus 59.0% (NM-VEGF pβ€Š=β€Š0.001). CONCLUSIONS: Cell proteins associated with M1 and M2 macrophages are also expressed by other cell types in the tumour islets and stroma of patients with NSCLC. Their tissue and cellular microlocalisation is associated with important differences in clinical outcome

    CXCR4 Mediated Chemotaxis Is Regulated by 5T4 Oncofetal Glycoprotein in Mouse Embryonic Cells

    Get PDF
    5T4 oncofetal molecules are highly expressed during development and upregulated in cancer while showing only low levels in some adult tissues. Upregulation of 5T4 expression is a marker of loss of pluripotency in the early differentiation of embryonic stem (ES) cells and forms an integrated component of an epithelial-mesenchymal transition, a process important during embryonic development and metastatic spread of epithelial tumors. Investigation of the transcriptional changes in early ES differentiation showed upregulation of CXCL12 and down-regulation of a cell surface protease, CD26, which cleaves this chemokine. CXCL12 binds to the widely expressed CXCR4 and regulates key aspects of development, stem cell motility and tumour metastasis to tissues with high levels of CXCL12. We show that the 5T4 glycoprotein is required for optimal functional cell surface expression of the chemokine receptor CXCR4 and CXCL12 mediated chemotaxis in differentiating murine embryonic stem cells and embryo fibroblasts (MEF). Cell surface expression of 5T4 and CXCR4 molecules is co-localized in differentiating ES cells and MEF. By contrast, differentiating ES and MEF derived from 5T4 knockout (KO) mice show only intracellular CXCR4 expression but infection with adenovirus encoding mouse 5T4 restores CXCL12 chemotaxis and surface co-localization with 5T4 molecules. A series of chimeric constructs with interchanged domains of 5T4 and the glycoprotein CD44 were used to map the 5T4 sequences relevant for CXCR4 membrane expression and function in 5T4KO MEF. These data identified the 5T4 transmembrane domain as sufficient and necessary to enable CXCR4 cell surface expression and chemotaxis. Furthermore, some monoclonal antibodies against m5T4 can inhibit CXCL12 chemotaxis of differentiating ES cells and MEF which is not mediated by simple antigenic modulation. Collectively, these data support a molecular interaction of 5T4 and CXCR4 occurring at the cell surface which directly facilitates the biological response to CXCL12. The regulation of CXCR4 surface expression by 5T4 molecules is a novel means to control responses to the chemokine CXCL12 for example during embryogenesis but can also be selected to advantage the spread of a 5T4 positive tumor from its primary site

    TGF-beta receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-beta1 expression in colon carcinoma: a retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Histological phenotype and clinical behaviour of malignant tumours are not only dependent on alterations in the epithelial cell compartment, but are affected by their interaction with inflammatory cells and tumour-associated stroma. Studies in animal models have shown influence of tumour-associated macrophages (TAM) on histological grade of differentiation in colon carcinoma. Disruption of transforming growth factor beta (TGF-beta) signalling in tumour cells is related to more aggressive clinical behaviour. Expression data of components of this pathway in tumour-associated stroma is limited.</p> <p>Methods</p> <p>Tissue micro arrays of 310 colon carcinomas from curatively resected patients in UICC stage II and III were established. In a first step we quantified amount of CD68 positive TAMs and expression of components of TGF-beta signalling (TGF-beta1, TGF-beta receptors type 1 and 2, Smad 3 and 4) in tumour and associated stroma. Further we analyzed correlation to histological and clinical parameters (histological grade of differentiation (low-grade (i.e. grade 1 and 2) vs. high-grade (i.e. grade 3 and 4)), lymph node metastasis, distant metastasis, 5 year cancer related survival) using Chi-square or Fisher's exact test, when appropriate, to compare frequencies, Kaplan-Meier method to calculate 5-year rates of distant metastases and cancer-related survival and log rank test to compare the rates of distant metastases and survival. To identify independent prognostic factors Cox regression analysis including lymph node status and grading was performed.</p> <p>Results</p> <p>High-grade tumours and those with lymph node metastases showed higher rates of TAMs and lower expression of TGF-beta1. Loss of nuclear Smad4 expression in tumor was associated with presence of lymph node metastasis, but no influence on prognosis could be demonstrated. Decrease of both TGF-beta receptors in tumour-associated stroma was associated with increased lymph node metastasis and shorter survival. Stromal TGF-beta receptor 2 expression was an independent prognostic factor for cancer related survival.</p> <p>Conclusion</p> <p>Histological phenotype and clinical behaviour of colon cancer is not only influenced by mutational incidents in tumour cells but also affected by interaction of tumour tissue with inflammatory cells like macrophages and associated stroma and TGF-beta signalling is one important part of this crosstalk. Further studies are needed to elucidate the exact mechanisms.</p

    Transcriptome Profiling of Whole Blood Cells Identifies PLEK2 and C1QB in Human Melanoma

    Get PDF
    Developing analytical methodologies to identify biomarkers in easily accessible body fluids is highly valuable for the early diagnosis and management of cancer patients. Peripheral whole blood is a "nucleic acid-rich" and "inflammatory cell-rich" information reservoir and represents systemic processes altered by the presence of cancer cells.We conducted transcriptome profiling of whole blood cells from melanoma patients. To overcome challenges associated with blood-based transcriptome analysis, we used a PAXgeneβ„’ tube and NuGEN Ovationβ„’ globin reduction system. The combined use of these systems in microarray resulted in the identification of 78 unique genes differentially expressed in the blood of melanoma patients. Of these, 68 genes were further analyzed by quantitative reverse transcriptase PCR using blood samples from 45 newly diagnosed melanoma patients (stage I to IV) and 50 healthy control individuals. Thirty-nine genes were verified to be differentially expressed in blood samples from melanoma patients. A stepwise logit analysis selected eighteen 2-gene signatures that distinguish melanoma from healthy controls. Of these, a 2-gene signature consisting of PLEK2 and C1QB led to the best result that correctly classified 93.3% melanoma patients and 90% healthy controls. Both genes were upregulated in blood samples of melanoma patients from all stages. Further analysis using blood fractionation showed that CD45(-) and CD45(+) populations were responsible for the altered expression levels of PLEK2 and C1QB, respectively.The current study provides the first analysis of whole blood-based transcriptome biomarkers for malignant melanoma. The expression of PLEK2, the strongest gene to classify melanoma patients, in CD45(-) subsets illustrates the importance of analyzing whole blood cells for biomarker studies. The study suggests that transcriptome profiling of blood cells could be used for both early detection of melanoma and monitoring of patients for residual disease
    • …
    corecore